← Back to team overview

yade-dev team mailing list archive

[Branch ~yade-dev/yade/trunk] Rev 2763: Small fix in unbalancedForce doc.

 

------------------------------------------------------------
revno: 2763
committer: Bruno Chareyre <bruno.chareyre@xxxxxxxxxxx>
branch nick: yade
timestamp: Fri 2011-02-25 19:19:15 +0100
message:
  Small fix in unbalancedForce doc.
modified:
  py/_utils.cpp


--
lp:yade
https://code.launchpad.net/~yade-dev/yade/trunk

Your team Yade developers is subscribed to branch lp:yade.
To unsubscribe from this branch go to https://code.launchpad.net/~yade-dev/yade/trunk/+edit-subscription
=== modified file 'py/_utils.cpp'
--- py/_utils.cpp	2011-02-14 08:05:09 +0000
+++ py/_utils.cpp	2011-02-25 18:19:15 +0000
@@ -457,7 +457,7 @@
 	py::def("bodyNumInteractionsHistogram",bodyNumInteractionsHistogram,bodyNumInteractionsHistogram_overloads(py::args("aabb")));
 	py::def("elasticEnergy",elasticEnergyInAABB);
 	py::def("inscribedCircleCenter",inscribedCircleCenter,(py::arg("v1"),py::arg("v2"),py::arg("v3")),"Return center of inscribed circle for triangle given by its vertices *v1*, *v2*, *v3*.");
-	py::def("unbalancedForce",&Shop__unbalancedForce,(py::args("useMaxForce")=false),"Compute the ratio of mean (or maximum, if *useMaxForce*) summary force on bodies and maximum force magnitude on interactions. For perfectly static equilibrium, summary force on all bodies is zero (since forces from interactions cancel out and induce no acceleration of particles); this ratio will tend to zero as simulation stabilizes, though zero is never reached because of finite precision computation. Sufficiently small value can be e.g. 1e-2 or smaller, depending on how much equilibrium it should be.");
+	py::def("unbalancedForce",&Shop__unbalancedForce,(py::args("useMaxForce")=false),"Compute the ratio of mean (or maximum, if *useMaxForce*) summary force on bodies and mean force magnitude on interactions. For perfectly static equilibrium, summary force on all bodies is zero (since forces from interactions cancel out and induce no acceleration of particles); this ratio will tend to zero as simulation stabilizes, though zero is never reached because of finite precision computation. Sufficiently small value can be e.g. 1e-2 or smaller, depending on how much equilibrium it should be.");
 	py::def("kineticEnergy",Shop__kineticEnergy,(py::args("findMaxId")=false),"Compute overall kinetic energy of the simulation as\n\n.. math:: \\sum\\frac{1}{2}\\left(m_i\\vec{v}_i^2+\\vec{\\omega}(\\mat{I}\\vec{\\omega}^T)\\right).\n\nFor :yref:`aspherical<Body.aspherical>` bodies, the inertia tensor $\\mat{I}$ is transformed to global frame, before multiplied by $\\vec{\\omega}$, therefore the value should be accurate.\n");
 	py::def("sumForces",sumForces,(py::arg("ids"),py::arg("direction")),"Return summary force on bodies with given *ids*, projected on the *direction* vector.");
 	py::def("sumTorques",sumTorques,(py::arg("ids"),py::arg("axis"),py::arg("axisPt")),"Sum forces and torques on bodies given in *ids* with respect to axis specified by a point *axisPt* and its direction *axis*.");