dolfin team mailing list archive
-
dolfin team
-
Mailing list archive
-
Message #02051
Re: viscosity at each vertex
On Wed, 2006-02-22 at 10:45 +0000, Alexander Jarosch wrote:
> Hi,
>
> I have a rather simple question I guess. I tried to figure out how to
> give the stokes solver a viscosity for each vertex and started of with
> the stokes solver with a constant viscosity nu:
>
> modified from Anders file:
> ---------------
> P1 = FiniteElement("Lagrange", "triangle", 1)
> P2 = FiniteElement("Vector Lagrange", "triangle", 2)
> TH = P2 + P1
>
> (v, q) = BasisFunctions(TH)
> (u, p) = BasisFunctions(TH)
> nu = Constant() #viscosity
>
>
> f = Function(P2)
>
> a = (dot(nu*grad(u), grad(v)) - p*div(v) + div(u)*q)*dx
> L = dot(f, v)*dx
> ---------------
>
> now that works fine and now i have the viscosity values for each vertex
> in a vector as values and in a function like:
>
> Function viscfunc(viscosity, mesh, element);
>
> Now i tried to get a form file which takes these values like:
> ---------------
> P1 = FiniteElement("Lagrange", "triangle", 1)
> P2 = FiniteElement("Vector Lagrange", "triangle", 2)
> element1 = FiniteElement("Discontinuous vector Lagrange", "triangle", 0, 1)
>
element1 is a constant, so you won't be able to set the viscosity at
vertexes, just on elements. Also, you can simplify it by writing
element1 = FiniteElement("Discontinuous Lagrange", "triangle", 0)
>
>
>
> TH = P2 + P1
>
> (v, q) = BasisFunctions(TH)
> (u, p) = BasisFunctions(TH)
> nu = Function(element1) #viscosity
>
> f = Function(P2)
>
> a = (dot(dot(nu, grad(u)), grad(v)) - p*div(v) + div(u)*q)*dx
> L = dot(f, v)*dx
> ---------------
>
> well and it does not work, as well as the approach like:
>
> ---------------
> P1 = FiniteElement("Lagrange", "triangle", 1)
> P2 = FiniteElement("Vector Lagrange", "triangle", 2)
> constant_scalar = FiniteElement("Discontinuous Lagrange", "triangle", 1)
>
>
"constant_scalar" is not constant. It's linear on elements, but because
it's discontinuous it's value is not unique at each vertex in the mesh.
Try
constant_scalar = FiniteElement("Discontinuous Lagrange", "triangle", 0)
or
linear_scalar = FiniteElement("Lagrange", "triangle", 1)
>
> TH = P2 + P1
>
> (v, q) = BasisFunctions(TH)
> (u, p) = BasisFunctions(TH)
> nu = Function(constant_scalar) #viscosity
> #nu = Constant()
>
> f = Function(P2)
>
> a = (dot(nu*grad(u), grad(v)) - p*div(v) + div(u)*q)*dx
> L = dot(f, v)*dx
> ---------------
>
> which actually takes my viscosity vector and starts to solve but does
> not converge.
Make sure that you initialise Function correctly in DOLFIN. Try with a
constant function first,
Function nu = 1.0;
Garth
>
>
>
>
>
> might be a simple mistake in there, I appreciate any help or hints.
>
> Alex
>
> _______________________________________________
> DOLFIN-dev mailing list
> DOLFIN-dev@xxxxxxxxxx
> http://www.fenics.org/cgi-bin/mailman/listinfo/dolfin-dev
--
Dr. Garth N. Wells
Faculty of Civil Engineering and Geosciences
Delft University of Technology
Stevinweg 1
2628 CN Delft
The Netherlands
tel. +31 15 278 7922
fax. +31 15 278 6383
e-mail g.n.wells@xxxxxxxxxx
url http://www.mechanics.citg.tudelft.nl/~garth
References