dolfin team mailing list archive
-
dolfin team
-
Mailing list archive
-
Message #02566
Stokes on complex geometries
Hi,
did anyone play around with the stokes solver on more complex
geometries? I only seem to get something senseful using a stabalized
stokes like:
scalar = FiniteElement("Lagrange", "triangle", 1)
vector = FiniteElement("Vector Lagrange", "triangle", 2)
system = vector + scalar
(v, q) = TestFunctions(system)
(u, p) = TrialFunctions(system)
f = Function(vector)
h = Function(scalar)
nu = Function(scalar)
beta = 0.2
delta = beta*h*h
a = (nu*dot(grad(v), grad(u)) - div(v)*p + q*div(u) + delta*dot(grad(q),
grad(p)))*dx
L = dot(v + mult(delta, grad(q)), f)*dx
which is fine, but when I compare the solution to another FEM package,
they do not quite match. Was there already some benchmarking done?
cheers,
Alex
--
Alexander H. Jarosch
Jarðvísindastofnun Háskólans
Institute of Earth Sciences, University of Iceland
Náttúrufræðahús, Askja
Building of Natural Sciences, Askja
Sturlugata 7
IS - 101 Reykjavík
Iceland
Tel.: +354 525 4906
http://raunvis.hi.is/~jarosch/
Follow ups