← Back to team overview

dolfin team mailing list archive

Re: [FFC-dev] [HG FFC] Restrictions appears to be working for the Poisson demo.

 



Kent Andre wrote:
Not sure what we have to do actually. I suppose I want get any clue from the
  demo/function/restriction

demo? I see that Kent has modified the dolfin.FunctionSpace to reflect the present (broken) implementation of restriction, anything in that line? Should such an implementation has been done in FunctionSpaceBase instead of FunctionSpace? Kent?

Johan


This restriction is different in the sense that the restriction is made
by the standard element on a sub mesh.
The restriction in focus now is on the complete mesh but for only
a part of the element. Combined, these two features will be very powerful. I guess the sub-mesh restriction stuff is broken due to the parallel mesh.


I've attached an example solver. To make it work for P^k with k > 2 we need to restrict some functions to cell facets. Using FFC, we do

    scalar  = FiniteElement("Lagrange", "triangle", 3)
    dscalar = FiniteElement("Discontinuous Lagrange", "triangle", 3)

    # This syntax restricts the space 'scalar' to cell facets.
    mixed = scalar["facet"] + dscalar

In PyDOLFIN we could do

    V_dg = FunctionSpace(mesh, "DG", 3)
    V_cg = FunctionSpace(mesh, "CG", 3, "facet")

    mixed = V_cg + V_dg

or

    V_dg = FunctionSpace(mesh, "DG", 3)
    V_cg = FunctionSpace(mesh, "CG", 3)

    mixed = V_cg["scalar"] + V_dg

Garth

Kent

_______________________________________________
DOLFIN-dev mailing list
DOLFIN-dev@xxxxxxxxxx
http://www.fenics.org/mailman/listinfo/dolfin-dev
""" Steady state advection-diffusion equation based on Labeur, R.J. 
and Wells, G.N. (2007), http://dx.doi.org/10.1016/j.cma.2007.06.025

"""

__author__ = "Garth N. Wells (gnw20@xxxxxxxxx) and Robert Jan Labeur (r.j.labeur@xxxxxxxxxx)"
__date__ = "2009-08-19"
__copyright__ = "Copyright (C) 2009 Garth N. Wells and Robert Jan Labeur"
__license__  = "GNU LGPL Version 2.1"

from dolfin import *

class Velocity(Function):
    def eval(self, values, x):
        values[0] = 0.0;
        values[1] = 0.0;
        #values[0] = -1.0;
        #values[1] = -0.4;

class DirichletBoundary(SubDomain):
    def inside(self, x, on_boundary):
        return abs(x[0] - 1.0) < DOLFIN_EPS and on_boundary

# Load mesh
#mesh = Mesh("unstruct-trimesh-2.xml.gz")
mesh = UnitSquare(32, 32)

# Defining the function spaces
V_dg = FunctionSpace(mesh, "DG", 2)
V_cg = FunctionSpace(mesh, "CG", 2)
V_b  = VectorFunctionSpace(mesh, "CG", 1)

mixed = V_cg + V_dg

# Test and trial functions
vhat, v = TestFunction(mixed)
uhat, u = TrialFunction(mixed)

# Set the the method (-1 = symmetric IP, 1 = Baumann-Oden)
method = -1.0

# Diffusivity
kappa = 1.0

# Source term
#f = 1.0
f = Function(V_cg, "500.0 * exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)")

b = Velocity(V_b)

# Penalty term
alpha = 0.0e0

# Mesh-related functions
n = FacetNormal(mesh)
h = CellSize(mesh)

# ( dot(v, n) + |dot(v, n)| )/2.0  = an on outflow,  0 on inflow 
an = (dot(b, n) + abs(dot(b, n)))/2.0

# ( -dot(v, n) + |dot(v, n)| )/2.0  = 0 on outflow,  -an on inflow 
an_min = (-dot(b, n) + abs(dot(b, n)))/2.0

# Standard flux
sigma = -b*u + kappa*grad(u) 

# Interface flux
sigma_a = -dot(b, n)*u + an_min*(uhat - u)
sigma_d = kappa*grad(u) + (alpha/h)*kappa*(uhat -u)*n
sigma_hat = sigma_a + dot(sigma_d, n)

# Bilinear form
a_local = dot(grad(v), sigma)*dx \
         - v('+')*sigma_hat('+')*dS - v('-')*sigma_hat('-')*dS \
         - method*dot(grad(v)('+'), n('+'))*kappa*(uhat('+') - u('+'))*dS \
         - method*dot(grad(v)('-'), n('-'))*kappa*(uhat('-') - u('-'))*dS \
         - v*sigma_hat*ds \
         - method*dot(grad(v), n)*kappa*(uhat - u)*ds

a_global = vhat('+')*sigma_hat('+')*dS + vhat('-')*sigma_hat('-')*dS \
         + vhat*sigma_hat*ds \
         + vhat*an*uhat*ds  # active on outflow boundary
          #+ vhat*hbc*ds  # Flux bc

a = a_local + a_global

# Linear form
L = v*f*dx

# Set up boundary condition (apply strong BCs)
g = Function(V_dg,"sin(pi*5.0*x[1])")
bc = DirichletBC(V_cg, g, DirichletBoundary())

# Solution function
uh = Function(mixed)

# Assemble and apply boundary conditions
A = assemble(a)
b = assemble(L)
bc.apply(A, b)

# Solve system
solve(A, uh.vector(), b)

file = File("u.pvd")
file << uh.sub(0)

# Plot solution
plot(uh.sub(0), interactive=True)


Follow ups

References