dolfin team mailing list archive
-
dolfin team
-
Mailing list archive
-
Message #16326
Re: [FEniCS-users] Axisymmetric deformation
On Mon, Oct 19, 2009 at 12:40:49PM +0100, Garth N. Wells wrote:
>
>
> Anders Logg wrote:
> >On Mon, Oct 19, 2009 at 12:40:25PM +0900, azumi.hayakawa@xxxxxxxxxxxxxxxxxxx wrote:
> >>Hello.
> >>
> >>I want to implement a bilinear form for axisymmetric
> >>elastic problems on cylindrical coordinates (r, theta, z).
> >>All of displacement, strain, and stress are assumed
> >>to be axisymmetric. I am expecting the form will look
> >>like:
> >> def epsilon(v):
> >> return
> >> [ del(v.r)/del(r) 0 ]
> >> [ 0 del(v.z)/del(z)]
> >> [ del(v.r)/del(z) del(v.z)/del(z)]
> >> [ v.r/r 0 ]
> >
> >Try this:
> >
> > def epsilon(v):
> > return as_matrix([[del(v.r)/del(r), 0],
> > [0, del(v.z)/del(z)],
> > [del(v.r)/del(z), del(v.z)/del(z)],
> > [v.r/r, 0]])
> >
> > def sigma(v):
> > return E/((1+nu)*(1-2*nu))*as_matrix([[1-nu, nu, 0, nu ],
> > [nu, 1-nu, 0, nu ],
> > [0, 0, (1-2*nu)/2, 0],
> > [nu, nu, 0, 1-nu]]) * epsilon(v)
> >
>
> Are r and z functions?
>
> I guess FFC will soon support using coordinates in a .ufl file.
There is already a Function named MeshCoordinates defined in
SpecialFunctions.h.
Perhaps we could just predefined x, y, z as being components of this
Function in PyDOLFIN?
--
Anders
Attachment:
signature.asc
Description: Digital signature