← Back to team overview

dolfin team mailing list archive

Re: Status of new Expression interface

 

Anders Logg wrote:
> Looks like the new Expression interface might be working now but more
> tests are needed. Please help out getting all the demos over to the
> new interface.
> 
> The changes to the interface are as follows:
> 
> 1. V=V argument in Expression should be removed
> 
> 2. mesh argument in Constant should be removed
> 
> 3. Subclasses of Expression overloading eval must overload dim if not
> scalar
> 
> The Poisson and elasticity demos have been moved and both work.

Attached a patch (I think) cleaning up the hyperelasticity demo.

Harish
# Bazaar merge directive format 2 (Bazaar 0.90)
# revision_id: hnarayanan@xxxxxxxxx-20091126213524-01lfutt4pk7fz7c4
# target_branch: bzr+ssh://bazaar.launchpad.net/~dolfin-\
#   core/dolfin/main/
# testament_sha1: 0211fe69b173e5afe7620f71c063b61f4b8c1056
# timestamp: 2009-11-26 21:40:47 +0000
# base_revision_id: logg@xxxxxxxxx-20091126211643-x3c3h07gz7kbd3k1
# 
# Begin patch
=== modified file 'demo/pde/hyperelasticity/python/demo.py'
--- demo/pde/hyperelasticity/python/demo.py	2009-10-12 08:20:23 +0000
+++ demo/pde/hyperelasticity/python/demo.py	2009-11-26 21:35:24 +0000
@@ -1,14 +1,13 @@
-""" This demo program solves a hyperelastic problem
-
-Implemented in python from cpp demo by Johan Hake.
-
-"""
+""" This demo program solves a hyperelastic problem. It is implemented
+in Python by Johan Hake following the C++ demo by Harish Narayanan"""
 
 __author__ = "Johan Hake (hake@xxxxxxxxx)"
 __date__ = "2009-10-11 -- 2009-10-11"
 __copyright__ = "Copyright (C) 2008 Johan Hake"
 __license__  = "GNU LGPL Version 2.1"
 
+# Modified by Harish Narayanan, 2009.
+
 from dolfin import *
 
 # Optimize compilation of the form
@@ -23,11 +22,11 @@
 V = VectorFunctionSpace(mesh, "CG", 1)
 
 # Define Dirichlet boundary (x = 0 or x = 1)
-c = Expression(("0.0", "0.0", "0.0"), V = V) 
+c = Expression(("0.0", "0.0", "0.0")) 
 r = Expression(("0.0",
                 "y0 + (x[1] - y0) * cos(theta) - (x[2] - z0) * sin(theta) - x[1]",
                 "z0 + (x[1] - y0) * sin(theta) + (x[2] - z0) * cos(theta) - x[2]"),
-                defaults = dict(y0 = 0.5, z0 = 0.5, theta = pi / 3), V = V)
+                defaults = dict(y0 = 0.5, z0 = 0.5, theta = pi / 3))
 
 left, right = compile_subdomains(["(fabs(x[0]) < DOLFIN_EPS) && on_boundary",
                                   "(fabs(x[0] - 1.0) < DOLFIN_EPS) && on_boundary"])
@@ -39,8 +38,8 @@
 v  = TestFunction(V)      # Test function
 du = TrialFunction(V)     # Incremental displacement
 u  = Function(V)          # Displacement from previous iteration
-B  = Expression(("0.0", "0.0", "0.0"), V = V)          # Body force per unit mass
-T  = Expression(("0.0", "0.0", "0.0"), V = V)          # Traction force on the boundary
+B  = Expression(("0.0", "0.0", "0.0"))          # Body force per unit mass
+T  = Expression(("0.0", "0.0", "0.0"))          # Traction force on the boundary
 
 # Kinematics
 I = Identity(v.cell().d)        # Identity tensor
@@ -53,8 +52,8 @@
 Em = 10.0
 nu = 0.3
 
-mu    = Constant(mesh, Em / (2*(1 + nu))) # Lame's constants
-lmbda = Constant(mesh, Em * nu / ((1 + nu) * (1 - 2 * nu)));
+mu    = Constant(Em / (2*(1 + nu))) # Lame's constants
+lmbda = Constant(Em * nu / ((1 + nu) * (1 - 2 * nu)))
 
 # Strain energy function (material model)
 psi = lmbda/2*(tr(E)**2) + mu*tr(E*E)
@@ -75,4 +74,4 @@
 file << u;
 
 # Plot and hold solution
-plot(u, interactive = True)
+plot(u, mode = "displacement", interactive = True)

# Begin bundle
IyBCYXphYXIgcmV2aXNpb24gYnVuZGxlIHY0CiMKQlpoOTFBWSZTWf7lducAAhrfgEEUWP//91p3
RgC/79/wUASb22AOXo3rAHoGqeQoxGhoDNJkPUeoAAAAAMkFNpqeptMqb0jUNHqeoAAABoAGggKT
9NUMTMoeobRMEMEaB6QANNUmjIyA00GTQDTTRoyDJkAASRJkAJoJ6GpgU9CbUaCaB6nlMmajCncr
cxf2LV96qRgp50qBg5Q6fhQA0wIQ6FVEuNjuV0aIyrzBYyD8OT9PluF0jx3tXD0tgq4eev+APWsm
R+MaRGdAEoBuGOqSgiE5CD7xxEdLmgcoVhMiWoruAnbwYTRaTKVfGFlj7W6TV7wnFwObHROqsjni
kZv+mJRf5KDaOLGGBNZdW8tzNTr19+iRX3xQadovitCpYgy6vO+qSpUXxcpGYj3nkweHN700CdYZ
OfWQrWl3Ec4vVZT4jrcK6bDntU8V4z7RFbH3S5hYrgtk1WPh2SHa1ke0pvBB2IIqpUCTRM3UU1a/
GC0qZxKehhky6kx7th8Yz2g7HJM7Ra+/7ZlrK65yQJmViqUZRqLKpCH6z57z5lYqqFtX/WwVejs6
8YootG8jZqeoVqnYatnza3MULvjySM1NGsW+nKh2QUZY0qaM+BqqiG5NLBqXTwrYlG+AssSrK72V
1U6iuiczVM5Yk0FuodUXl606Cgo7QoO0s91I+qhh+grL9hEgoiz3DwkzUFi67WqZnN+DSA7TI3jP
ljqoqSFA+qgfcKTblyCDpv00FsItOIL4PqkDQ5CtWxeLI5qZnWQIetCChlgI0sJBhnhURKl2qRKG
NBQWM/YVsSk6zMRdNO0xEFRY7HCQORCOV6xafIxcMiqJTkRhQkEmdgLEKvhRDJhEmTzUWuH18YFz
T5BMGbI5T6yXHx3luw5kb4hil539ZvXTpaLIOoiMJg6fdSSzIqWizOMO19Yjw8l36jwe5Md/iqtd
G7ey4INlNli96KRqVwz7zOdc5rtii05yZMXFoQvxngu6JdAyqKlljl7UnCfpE8nEkpsrE9SYECp9
Y5clNomWq25YrLI5gkHktDE/A8xpHRdApxBjKqT3Y4WqTceNGK7ra0T1UGiyCOBzsCXlR1M0TCwk
lS1TaK6qgbU4RUPpiXmOrSUNNEw52r06c+yjZBHImFtFMaleh+S9Umitq16UzhVGGIQb07juGmzx
XTA36UGmJtZmz68v0myjMsUoKBXpBq26BGEfaJ88M8pUgcp8y5hdhz2U08IdqbEW5ajEOKWwKQpc
PeFDkVr5zcfAVeMKX1qVZNH6E7isxfolsgqJEiq87KZhUSkStZEBpJmdkzIZJouI2pNMFrRZQ4Tf
AIhNUwykMmd1QEFosWzaDrasAf8v5aE/531ZbwNRdeydkdf7UajAKUdrq3VvfPbkzL2gQ+xO/kLP
HfZu8wnK96f48OAcV5PeHPTIRAoiQRaFd0SJ3SWVCh6lSjje3qnFS5oB351hArEHGwjF2WwBxNMy
V5YuVkqhd4OVoZ/1F1dzeoX7zwyKrkPCTEbDkyOKhXQe68tU8wUopk64CvOMA+XopaWiHdffbbMK
utW6An1r4BBWclc+renM/osBHA9pGjOLopaC4/8XckU4UJD+5Xbn

Follow ups

References