dolfin team mailing list archive
-
dolfin team
-
Mailing list archive
-
Message #20622
Re: [Question #140910]: Mixed problem, no solution
Question #140910 on DOLFIN changed:
https://answers.launchpad.net/dolfin/+question/140910
Johan Hake proposed the following answer:
I cannot spot anything right now.
You might want to write down the math of your form and maybe someone else
might give you a hint.
Johan
On Monday January 10 2011 10:36:53 B. Emek Abali wrote:
> Question #140910 on DOLFIN changed:
> https://answers.launchpad.net/dolfin/+question/140910
>
> B. Emek Abali posted a new comment:
> it is an iterative nonlinear problem, by cutting all the leaves away,
> this code leads still to NaN solutions
>
> from dolfin import *
> import numpy
>
> def FormF(v,w,p,q):
> F = w[i]*v[i].dx(j)*v[j]*dx
> return F
>
> def FormG(v,w,dv,p,q,dp):
> G = w[i]*dv[i].dx(j)*v[j]*dx
> return G
>
> mesh = Box(0.0, -0.5, -0.5, 2.0, 0.5, 0.5, 10, 5, 5)
> V = VectorFunctionSpace(mesh, 'CG', 1)
> Q = FunctionSpace(mesh, 'CG', 1)
> ME = MixedFunctionSpace([V,Q])
>
> subdomains = MeshFunction("uint", mesh, mesh.topology().dim()-1)
> right, left, back, front, top, bottom = compile_subdomains(["(fabs(x[0] -
> 2.0) < DOLFIN_EPS) && on_boundary", "(fabs(x[0] + 0.0) < DOLFIN_EPS) &&
> on_boundary", "(fabs(x[1] - 0.5) < DOLFIN_EPS) && on_boundary",
> "(fabs(x[1] + 0.5) < DOLFIN_EPS) && on_boundary", "(fabs(x[2] - 0.5) <
> DOLFIN_EPS) && on_boundary", "(fabs(x[2] + 0.5) < DOLFIN_EPS) &&
> on_boundary"])
>
> null = Constant(0.0)
> class TopDrag(Expression):
> def eval(self, vec, x):
> vec[0] = 1.0
> vec[1] = 0.0
> vec[2] = 0.0
> def dim(self):
> return 3
>
> class BottomHold(Expression):
> def eval(self, vec, x):
> vec[0] = 0.0
> vec[1] = 0.0
> vec[2] = 0.0
> def dim(self):
> return 3
>
> vOnTop = TopDrag()
> vOnBottom = BottomHold()
> pOut = 100.0 #right side pressure
> pIn = 100.0 #left side pressure
>
> bc = [DirichletBC(ME.sub(0), vOnBottom, bottom), DirichletBC(ME.sub(0),
> vOnTop, top), DirichletBC(ME.sub(0).sub(1), null, front),
> DirichletBC(ME.sub(0).sub(1), null, back), DirichletBC(ME.sub(1), pIn,
> left), DirichletBC(ME.sub(1), pOut, right)]
>
> u = Function(ME)
> v = u.split()[0]
> p = u.split()[1]
> omega = TestFunction(ME)
> w, q = split(omega)
> du = TrialFunction(ME)
> dv, dp = split(du)
>
> F = FormF(v,w,p,q)
> G = FormG(v,w,dv,p,q,dp)
> a = lhs(F-G)
> L = rhs(F-G)
> A = assemble(a)
> b = assemble(L)
> for condition in bc:
> condition.apply(A, b)
>
> du = Function(ME)
> solve(A, du.vector(), b)
>
> print 'some value:', u((0.5,0.5,0.5))
> print 'some value:', du((0.5,0.5,0.5))
--
You received this question notification because you are a member of
DOLFIN Team, which is an answer contact for DOLFIN.