dolfin team mailing list archive
-
dolfin team
-
Mailing list archive
-
Message #21025
Re: [Question #141904]: Eigenproblem for integral operator
Question #141904 on DOLFIN changed:
https://answers.launchpad.net/dolfin/+question/141904
Raphael Kruse gave more information on the question:
Part 2 of the code:
# Compute all eigenvalues of Q x = \lambda M x
print "Computing eigenvalues...",
eigensolver.solve(Qh,M)
print "Done"
# Extract largest (first) eigenpair
i = 0
while i < dof:
r, c, rx, cx = eigensolver.get_eigenpair(i)
print "%2i. eigenvalue: %g" % (i+1, r)
i += 1
if abs(r) < tol:
i = dof
# Plot eigenfunction corresponding to the largest eigenvalue
r, c, rx, cx = eigensolver.get_eigenpair(2)
print "Eigenvalue corresponding to the plotted eigenfunction is: %g" \
% r
eigfct = Function(V, rx)
plot(eigfct, title='Eigenfunction')
# Testing the eigenfunction
Qu = np.zeros( dof ) # holds all values of convolutions of q with
# testfunctions
for i in range(dof):
q_1d.y = coor[i][0] # y runs through the coordinates of the mesh
L = q_1d*eigfct*dx
Qu[i] = assemble(L, mesh=mesh)
Qufct = Function(V)
Qufct.vector()[:] = np.array(Qu)
plot(Qufct, title='Qu')
interactive()
--
You received this question notification because you are a member of
DOLFIN Team, which is an answer contact for DOLFIN.