
Flexible Representation of Computational Meshes

Matthew G. Knepley and Dmitry A. Karpeev

We propose a new representation of computational meshes in terms of a covering relation defined

by discrete topological objects we call sieves. Fields over a mesh are handled locally using the

notion of refinement, dual to covering, and are later reassembled. In this approach fields are
modeled by sections of a fiber bundle over a sieve. This approach cleanly separates the topology

of the mesh from its geometry and other value-storage mechanisms. By using these abstractions

we are able to express finite element calculations using algorithms that are independent of mesh
dimension, global topology, element shapes, and the finite element itself. Extensions and other

applications are discussed.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Algorithm design and anal-

ysis; G.1.m [Partial Differential Equations]: Miscellaneous; E.2 [Data Storage Represen-
tations]: Composite structures

General Terms: Algorithms, Theory

Additional Key Words and Phrases: mesh, discretization, finite elements, sieve

1. INTRODUCTION

Many mesh generators are freely available [Shewchuk 2005; Si 2005], in which the
interfaces presented to the user closely mirror the specific characters of these meshes
(e.g., triangular or hexahedral) and the specific algorithms used in the construction
(e.g., incircle tests). It has become common practice to transfer these interfaces
directly into PDE simulation packages in order to represent the domain. However,
such practice severely reduces the flexibility and extensibility of those packages. To
rectify this situation, we must return to the underlying mathematical abstractions
on which the discretization algorithms themselves are based.

An essential feature of PDEs is their locality: (1) a differential operator needs the
input field values only from a neighborhood of point x to compute the output value
there, and (2) locally defined fields can be extended to the larger set covered by
their domains if they agree on the domain intersections. This feature is reflected in
the finite element method (FEM) approach to the discretized problem: operators
are assembled from local pieces operating on fields restricted to mesh elements,
with the assembly performed on the intersections. The intersection structure of the
local pieces determines the global data flow and provides a natural index into the
global data objects. Here we formalize the notion of a computational domain and
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Fig. 1. Examples of simple 2D polyhedral complexes: simplicial (left) and cubic (right). Cells are

labeled by their indices (subscript) within each dimension (superscript).

a field over it. The ultimate goal is the definition of discrete operators acting on
fields, and the solution of discretized PDEs couched in these terms.

Moreover, in the spirit of the FENICS [Dupont et al. 2005] project in computa-
tional mathematical modeling, we focus on mathematics that describes the com-
putation itself, rather than the solution. For instance, much effort has gone into
characterizing the convergence and accuracy properties of finite element algorithms,
but little work – apart from FIAT [Kirby 2004] – has sought to characterize struc-
tures capable of representing or calculating with classes of finite elements. In the
way similar to the FIAT effort [Kirby ], we seek to define computational structures
that can represent very general hierarchies and operations over these structures
from which we may construct very general algorithms.

2. COMPUTATIONAL SPACE ABSTRACTIONS

The prototypical setting where a need for computational domains arises is the
application of the finite element method to the discretization of PDEs. The first
requisite of the finite element method, according to the Ciarlet definition [Ciarlet
1978], is a bounded domain K with a piecewise smooth boundary. These elementary
objects are images in Rd of some polyhedral sets assembled into a mesh by matching
polyhedra faces. On the basis of this purely combinatorial information, a mesh
corresponds exactly to the elements of a polyhedral cell complex. The best known
of polyhedral cell complexes are simplicial complexes [Aleksandrov 1957], although
we do not restrict the shape of cells a priori (see Figure 1 for examples). The
basis of the complex topology is the incidence relation between adjacent cells and
between the cells and their faces.

Alternatively, we can say that the mesh is covered by its elements. In fact, the
mesh topology itself may be expressed in terms of the covering relation among its
elements. For example, an edge is covered by each endpoint, and it in turn covers
the faces it borders. In general, an element e′ covers another element e if it is part
of the boundary or e′ ∈ ∂e, and all elements cover themselves. At the moment
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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this definition appears unsatisfactory because it apparently omits the interior of
the elements, but it does capture the main idea of the covering relation, which we
want to extract and refine. It is inspired by Grothendieck’s notion of a site [Barr
and Wells 1985], as a category with an étale (or covering) topology, in which the
notion of covering is axiomatized. We will examine the categorical ramifications of
our approach in subsequent publications [Knepley and Karpeev ]. Here we present
a more traditional graph-theoretic development of these ideas.

In a sense, a cover carries all the information about the covered domain localized
in its subdomains. The main advantage of such an approach to topology is that it
makes natural the notion of localization useful for the definition and manipulation
of fields (see Section 3). Any field defined on a domain can be restricted to a
covering subdomain by composition with a covering arrow, manipulated locally,
and then reassembled from the pieces supported on the elements of the cover.
A recursive application of this decomposition allows one to separate a field into
pieces that can be conveniently manipulated independently and then reassembled
in another recursive process, or the equivalent one-step procedure, a composition
of the individual assembly stages.

2.1 Sieves

To express the idea of covering in a compact and intuitive way, we introduce the
Sieve interface. It consists of a directed acyclic graph (DAG) with covering arrows
between the nodes, also known as points. In many cases, however, the primitive
input and output object is a chain1, or set of sieve nodes.

2.1.1 Basic Queries. The key operation on a sieve is the cone: for any sieve
point p the output of cone(p) is the chain that completely covers point p – the
set of all points with an arrow to p. By taking the cone recursively after a finite
number of steps (thanks to acyclicity) we obtain the closure(p) of node p – the
chain of all points from which p is reacheable. The dual operations of support and
star are defined analogously by reversing the arrows: support(p) and star(p)
respectively produce the chains of all nodes pointed to by p and reacheable from p.

A less trivial operation, the meet(p1, p2) of two points p1 and p2, is defined as
the chain m of all the points from which both p1 and p2 are reacheable, and which
is minimal in the sense that for any such point the paths to p1 and p2 necessarily
factor through m. Equivalently, the meet can be described as the minimal separator
of the two points – a set whose removal ensures that no point can simultaneously
reach p1 and p2. The dual of meet is the join of two points.2 Together meet and
join make the set of sieve chains into a lattice. Alternatively, a lattice structure
could be introduced on the set of sieve’s nodes by adjoining (perhaps implicitly)
special nodes: an emptyNode, covering each of the root nodes (nodes that, in the
absence of special nodes, have zero in-degree), and a totalSieve node, covered by

1Despite what the name might suggest, no extra relations between the elements of the chain are
presumed. From the point of view of combinatorial topology we are dealing with chains mod 2 or
chains with coefficients in the two-point field F2. However, we shall not use the algebraic structure

or homology in this publication.
2The obvious analogy with the categorical notions of product and coproduct will be clarified in

our forthcoming paper [Knepley and Karpeev ].
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Fig. 2. Illustration of mesh representation using a sieve.

all leaf nodes (nodes that, in the absence of the special nodes, have zero out-degree).
This, however, in many cases provides no information on the relationship between
the nodes within a sieve. On the other hand, using chains as the primitive objects
the special objects are simply represented by an empty chain as well as the chain
of all leaves.

As we see, it is really the chains that play the principal role in all Sieve construc-
tions, nodes being the special case of a singleton chain. All of the above methods,
such as meet, join, are defined on chains simply by taking the unions of the point-
wise results. In the case of meet and join the result is the union of all pairwise
operations with one point from each of the two chains. We extend the notion of
covering from nodes to chains by saying that a chain c′ covers another chain c iff
each node of c′ is itself a node of c or covers some node of c. More strongly, we say
that c′ completely covers c (denoted c′ � c) iff, in addition to covering c, whenever
c′ omits a node p of c, it contains cone(p).

The methods described above are sufficient to express all of the mesh topology
semantics. In particular, interpreting a sieve as a cell complex with the arrows
indicating face inclusion, the closure and star operations correspond exactly to
the same operations on the complex [Aleksandrov 1957]. We illustrate the use of
sieves in representing meshes in Figure 2.

2.1.2 Parallel Queries. As sieves are inherently parallel objects, all of their
nodes are labeled with integer (prefix, index) pairs to allow for independent
insertion of nodes on different processes without fear of label collision. For exam-
ple, the processor rank can be used as the prefix, although arbitrary integer prefixes
are allowed and identically labeled nodes on different processes are treated as iden-
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Fig. 3. Illustration of support completion (dashed) and the corresponding footprint (dotted) of a

mesh sieve.

tical. At the same time, the same node on different processes may have distinct
cone or support sets so that in general each process possesses only partial informa-
tion about the sieve – its localSieve – which is a subsieve of the totalSieve. In
fact, the ability to complete the local picture on any process is, in our view, the
most powerful feature of sieves. Such a completion operation obtains the remote
portion of the cone (coneCompletion) or the support (supportCompletion) over
each locally-held node and stores it in a separate completion sieve. If necessary
the completion can be added to the original sieve using the add method, forming
a new sieve with the node and arrow sets formed by the unions of the node and
arrow sets respectively of the added sieves. It is important to note that even after
completion the local sieve may contain only partial information about the total
sieve, as illustrated in Figure 3.

At this point it may be useful to introduce the notion of a base and cap of a sieve
as the sets of nodes of nonzero in-degress and out-degrees respectively. Intuitively,
the base can be thought of as the domain of incoming arrows and the cap as
the domain of outgoing arrows, and the sieve may be conveniently pictured as a
bi-partite graph with the cap lined above the base and the two levels joined by
arrows. Since the intersection of the base and the cap is non-empty in general, a
sieve is not a bona fide bi-partite graph, unless the occurences of the same node in
the base and the cap are distinguished as separate nodes. It can be a useful way of
viewing sieves, as well as a source of interface and implementation simplifications.
The methods returning the base and cap sets are base and cap respectively, while
space returns their union – all of the points in a sieve.

Returning to the question of completion, we note that during cone completion no
new base points are introduced on any given process. Only additional cap points,
present in the remote cone over an existing base point, are added together with
the corresponding arrows. Similarly, during support completion no new cap points
are introduced, so that recursive invocation of the completion methods is necessary
for the total completion of the local sieves. Since in most application this is rarely
required, and due to the complexities of communicating the nodes and arrows, we
do not implement this procedure internally.

Sometimes it is useful to expand the definition of the base and cap sets by intro-
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Fig. 4. A base-cap view of the mesh sieve (top), its completion (middle) and the result of addition
of the completion (bottom).

ducing into them the nodes with no arrows at all. In this case base and cap can
be viewed as the sets from which the terminating or originating arrow nodes can
be drawn. These “placeholder” nodes can be effectively used for distributing data
from a subset of processes to the rest of the communicator universe. For example,
a local sieve can be prepared on the root process assigning mesh elements residing
in the cap to the nodes representing the processes residing in the base. Each of the
remaining processors add a single empty node to the base representing the process
itself, and upon cone completion each process contains exactly the mesh elements
assigned to it in the cap of the completion sieve. An example of this process can
be found in Section 7.3.

The origin, i.e., the contributing process, of the nodes added during completion
is optionally recorded in a footprint sieve with arrows from the nodes to the origi-
nating processes, themselves encoded as sieve nodes. This illustrates the utility of
sieves even for sieve-specific bookkeeping purposes. In fact, the cone and support
completion operations can be implemented by a single generic completion routine.
Not only is a single routine easier to maintain and optimize, but this generality
makes parallel, dimension independent code possible. More generally, we believe
that Sieve and its completion methods can encode a very wide variety of unstruc-
tured distributed data and associated communication procedures used in scientific
computing and beyond. The scalability of the communication methods is limited
at most by memory requirements of order P , the size of the communication uni-
verse, or the communicator [MPI Forum 2005]. With the advent of architectures
with hundreds of thousands of processors, such as IBM’s BlueGene/L [Fitch et. al.
2005], this may become a limiting factor and some sort of hierarchical approach to
communication may be warranted. Such organization is also likely to be reflected in
the underlying architecture of the future massively-parallel computers, as is evident
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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from BlueGene/L’s experience.

2.1.3 General Manipulation. Finally, we list some of the basic sieve operations.
All main sieve construction operations are defined in terms of arrows between
cap and base points. A point p can be added to the base or the cap set, un-
less it is already there, by addBasePoint(p) or addCapPoint(p), or to both sets
by addPoint(p), with its cone and support sets initially empty. An arrow be-
tween a cap point q and base point p is added by addArrow(q,p), which will
insert the appropriate points into the cap and base sets. An arrow is removed by
removeArrow(q,p), while leaving the endpoints in the cap and base sets respec-
tively, even if the support of q or the cone of p becomes empty upon the removal.
To get rid of the points themselves, along with all of the arrows to or from them,
use removeBasePoint(p) or removeCapPoint(q), or removePoint(p) to do both
at once. These “precise” manipulations are useful for “sieve surgery” as exemplified
in Section 7.1).

In addition to these basic operations, wholesale addition of a chain c to the cone
or support of a point p is accomplished by addCone(c,p) or addSupport(q,c),
which will add all of the arrows from the points of c to p or from q to the points of
c. Likewise, setCone(c,p) and setSupport(q,c) will replace the existing arrows.
Mass point removals, such as restrictBase(c) or restrictCap(c) retain only the
nodes from chain c in the base or the cap of the sieve, eliminating the others along
with the arrows to or from them. For example, these can be used to eliminate the
spurious nodes from the mesh partition sieve on the root process as in the example
of Section 7.3.

Since sieves are acyclic graphs, each node can be ascribed a height, measured as
longest path from any leaf node, and a depth, measured as the longest path from
any root node, while the sieve as a whole can be given a diameter, measured as
the longest path between any root and any leaf. These quantities are retrieved
with depth(p), height(p), and diameter respectively. The sieve can be viewed as
being divided into strata (sets) of points at different heights from 0 to diameter, or
into strata of points at different depths from 0 to diameter. For a mesh sieve, such
as that in Figure 2, the points at depth 0 are the mesh vertices, those at depth 1 are
the edges, and so on. In Figure 2 the strata are indicated by color. In general, in a
mesh sieve the points at depth k are k-dimensional cells, and the points at height k
are k-codimensional cells, with the mesh dimension equal to diameter. The chains
containing these strata are retrieved by heightStratum(k) and depthStratum(k)
respectively.

2.1.4 Stacks. In many applications, it is useful to distinguish between different
“kinds” of arrows. For example, in Section 7.5 we use a covering of mesh elements
for both topology and assignment of degrees of freedom to elements. To accomplish
this, we provide a composition mechanism embodied in the Stack interface, which
links two sieves by using vertical arrows. The two sieves function as the base and
the cap of the stack and can be shared among multiple stacks.

Stack is a subclass of Sieve and therefore inherits all the sieve operations; how-
ever, they now operate over the vertical arrows. New methods include setCap and
setBase. The only controvesial point concerns stack point insertion and deletion,

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



8 · Matthew G. Knepley and Dmitry A. Karpeev

since these translate into nontrivial structural changes in the cap or base sieves. To
prevent unintended side effects we block point insertions and deletions, including
those implied by restrictBase and restrictCap; these methods remove arrows
only in the context of stacks. As arrows can be added only between existing cap
and base points, the necessary insertions must be performed explicitly on the cor-
responding sieves returned by the overloaded cap and base methods.

3. DATA STORAGE ABSTRACTIONS

Sieved arrays are envisioned as a discrete counterpart to the continuum concept of
a field. Intuitively, fields represent quantities with spatial extent defined over some
domain. They can be restricted to convenient subdomains or even defined locally,
manipulated locally and then (re)assembled if they agree on the intersections of
the subdomains. To represent fields in the discrete setting we choose to formalize
this “sewing together” property in terms of the covering relation on the sieve of
subdomains. If we reverse the covering arrows and replace subdomains with fields
defined over them, we obtain a sieve with the arrows signifying restriction relations
that meet some natural consistency constraints. These restriction relations between
fields are the dual of the covering relations of the sumdomains, and the core of finite
element methods.

The SievedArray abstraction formalizes the notion of a discrete field as a con-
tainer of (distributed) numerical data that can be addressed at different levels of
granularity reflecting the organization of the underlying “base” sieve3. The base is
regarded as a representation of some computational domain, typically a mesh, and
its decomposition into progressively finer covering subdomains. A chain of base
sieve nodes is selected as the “support” of the sieved array: supp(X). A sieved
array X is indexed by its support nodes: we can retrieve the array values “resid-
ing” at a given support node p into a contiguous “native” array X(p) using the
getValues(p) method. This retrieves the data stored “at p” in the same way as
the value at a given index i of an ordinary array is returned in a single variable.
Similarly, setValues(p,values) sets the new values of X(p) supplyed in a con-
tiguous native array values. The only guarantee made at this point is that the
values are retrieved in the same order as they are set.

Any “subarray” X(p) can be refined by restricting it to each node q of the cone
over p thereby generating a subarray X(q) at each q. This way each covering arrow
q → p is converted to an oppositely oriented restriction arrow X(q)← X(p). After
such a refinement p is replaced by its cone in the support of the sieved array and the
values can be addressed at a lower level of granularity. Indeed, instead of a single
array X(p) we can retrieve any one of the “smaller” arrays {X(q)}. In general, to
any support chain c = {r} there corresponds a cochain (a chain in the dual sieve) of
arrays Xc = {X(r) : r ∈ c}. Indeed, to each covering relation between the elements
of chains there corresponds a dual restriction relation between the corresponding
cochain elements. Likewise, for any complete covering c′ � c the corresponding
cochains are in a refinement relation: Xc′ � Xc; in the discussion of a single
cochain element refinement we have c = {p}, c′ = cone(p), and X{p} � Xcone(p).

3As we shall see below, the subdomain sieve is typically represented as the base of an appropriate

stack.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Fig. 5. Illustration of a discrete field defined over the doublet mesh. Each element carries three
numbered degrees of freedom indicated in square brackets. A sieved array can be defined by

associating with each mesh sieve element the degrees of freedom contained in its geometric closure.

Thus, a sieved array is a collection of cochains that are refinements of one another.
At any given time a single cochain represents the sieved array. The following
example illustrates the introduced concepts and introduces the bundle construction
used in the implementation. Consider a discrete field defined on a doublet mesh by
attaching 3 degrees of freedom to the interior of each mesh element (Figure 3). Such
a field may result, for example, from a mixed order finite element discretization of
some continuous fields over the domain discretized by the mesh.

The assignment of degrees of freedom to mesh elements can be encoded by the
vertical arrows of a stack, which we call the bundle, whose cap contains the degrees
of freedom themselves in a discrete4 sieve, and the base is the mesh sieve, sometimes
referred to as the topology. The bundle is set and retrieved using getBundle()
and setBundle(bundle) respectively, where any object implementing the Stack
interface can serve as the bundle.

Given a base element e, the vertical cone over its horizontal closure represents the
degrees of freedom supported at e (see top of Figure 3). If e is among the support
elements of the array, then using e as an index into the array will return only the
values of the degrees of freedom supported on e in a contiguous native array.

A sieved array starts out supported on the leaves of the base sieve (chain c0) and
in the course of computation may be refined to have a more convenient support
chain c. The refine(c) method will refine the each of the element of c ⊂ supp(X).
The inverse operation of assembly, discussed below, is implemented by the method
assemble(c), takes the same input as refine. It reconstructs the subchain sup-
ported on c from its complete covering c′ ⊂ supp(X) and replaces c′ with c in

4Discrete, in this case, means ’without arrows’, by analogy with a discrete category, which such a
sieve uniquely determines. This is also reminiscent of a space with discrete topology; in this case,

it means ’absence of coverings’.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



10 · Matthew G. Knepley and Dmitry A. Karpeev

1 32 5 8 10

1413
16 17 18

19 20 21 23

1211

2422

2928 30
31 32 33

4 6 7 9

15
0,1

0,6 0,7

0,10
0,11

0,8 0,90,5

25 26 27

0,0

0,2 0,3 0,4

edges

vertices

triangles 

local sieve

13 14 15654321 16 17 18321 10 11 12 10 11 12987

28 29 30

31 32 33

987654

16 17 1813 14 15987654321

25 26 2722 23 2419 20 2110 11 12987

31 32 3328 29 3025 26 2722 23 2419 20 2116 17 1813 14 1510 11 12987654321

654

654

987

0,0

0,10

0,11

0,5 0,6

0,7

0,8
0,9

321

0,20,1 0,3

10 11 12

0,4

987 654

19 20 21

22 23 24 25 26 27

19 20 21

3 3 33

9 9 9 9

9

21

21

33
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closure. The dotted arrows of the dual sieve represent restriction relations.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



Flexible Representation of Computational Meshes · 11

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	


 
 
 
 


 
 
 
 


 
 
 
 


 
 
 
 


� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

    
    
    
    

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

     
     
     
     

! ! ! ! !
! ! ! ! !
! ! ! ! !
! ! ! ! !

" " " " "
" " " " "
" " " " "
" " " " "

# # # # #
# # # # #
# # # # #
# # # # #

$ $ $ $ $ $
$ $ $ $ $ $
$ $ $ $ $ $
$ $ $ $ $ $

% % % % % %
% % % % % %
% % % % % %
% % % % % %

0,10

0,0

0,5 0,6 0,7

31 32 3328 29 3025 26 2722 23 2416 17 1813 14 1510 11 12321

0,11

22 23 2410 11 12 31 32 3325 26 2719 20 219874 65

A CB

13 14 15 16 17 18 19 20 21

4 65

A

987

B

31 32 3325 26 274

0,11

13 14 15987 19 20 21 28 29 30321

D

4 65

A

19 20 21

C

4 65

A

321

D

987

B

321

D

987

B

4 65

A

CB

65 10 11 12 22 23 2419 20 21987

16 17 18

Fig. 7. Illustration of a refinement process on a sieved array over the doublet mesh sieve. From the

bottom up: first the single node leaf support chain (totalSieve) is refined into its two covering
nodes (mesh triangles), then the left triangle is refined into the set of covering edges. The degrees

of freedom duplicated at each state are indicated by color.

supp(X). Another method, restrict(c), leapfrogs all of the intermediate levels
of refinement between supp(X) and c, where c � . . . � supp(X), and refines X
all the way to c. Assembly can be done using assemble(c′) where c � c′.

Since the leaves become roots in the dual sieve, the initial state is a cochain of
all roots, or root cochain Xc0 . In some situations it may be convenient to adjoin
a unique leaf node to the base sieve or stack signifying the total (or local) sieve,
as illustrated in Figure 3. After the maximal number of refinements the support
reaches the roots c∞ through a series of complete coverings c∞ � . . . � c0, and
the corresponding cochain is reached from the coroot chain through a series of
refinements Xc∞ �, . . . � Xc0 , as illustrated in Figure 3.

More generally, it may be desirable to have each cochain element support repre-
sent a chain of mesh elements (rather than a single element) that are not readily
present in the mesh sieve. For an example think of a decomposition of a mesh
into the boundary and the interior, the set of submeshes employed in a domain-
decomposition method, or progressively finer meshes of a multilevel method. Each
chain of elements can be represented by a single stack point covered by the corre-
sponding mesh elements, residing in the cap of the stack. This additional structure
can be conveniently represented by setting this new stack into the base of the bun-
dle (recall that a stack is a sieve by inheritance), as illustrated in Figure 8. The
degrees of freedom at any support point are easily calculated as a composition of
cone operations: the result of the cone operation in the inner stack is used in the
input for the cone operation in the outer stack. To disambiguate the situation we
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Base = inner Stack
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Mesh

Supports

Fig. 8. Illustration of a nested stack bundle construction: the internal base stack contains supports
representing mesh element chains. Dashed arrows are the result of composition of the arrows from

two stacks – inner and outer (bundle) – and can be stored explicitly as a form of caching.

will refer to a base stack to denote the base of the bundle, and a base sieve to
denote the top of the base stack. If the base stack is in fact no more than a sieve,
the two notions coincide.

3.1 Refinement

It appears clear from the example above that the values of different cochain ele-
ments obtained by refinement of a root chain need not be independent. In fact,
these dependencies are encoded in the covering structure of the base sieve via the
restriction procedure. The nodes covering p presumably all obtained their values
from a single source, a cochain element at p, so we expect correlations between
them. This notion can be made precise if we consider iterated restrictions. Con-
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



Flexible Representation of Computational Meshes · 13

sider the following diagram

r

q1
�

q2

-

p
?�

-

(1)

The dashed vertical arrow denotes the composition of the diagonal sieve arrows
and is not necesserily present in the sieve. Still, we demand that there be a
unique restriction X(p) → X(r). Naturally, there are two candidates for the def-
inition of this restriction – the iterated restrictions X(p) → X(q1) → X(r) and
X(p)→ X(q2)→ X(r) obtained by following the two paths from r to p composed
of the explicitly stored sieve arrows. We now impose the requirement that the two
compositions be identical thereby defining the unique restriction from p to r. It fol-
lows that a restriction operator resp′′

p is defined for any pair of points connected by a
path of zero or more arrows p′′ → · · · → p satisfying the composition requirement5

p′′ → p′ → p ⇒ resp
p′′X{p} = resp′

p′′ ◦ resp
p′X{p}. (2)

In fact, in the example above, the proviso regarding the taking of horizontal closures
in order to determine the degrees of freedom residing at each cochain element
ensures that the restriction operator res respects the composition of covering arrows
in the base sieve, as expressed in Equation 2.

Returning to the Diagram 1, since r lies in the meet of q1 and q2, the just
introduced consistency requirement states that the cochain elements X(q1) and
X(q2) agree on the intersection in the sense that the cochain generated on the
points of the meet of q1 and q2 via refinement of X{q1} or X{q2} are independent
of the source and the path refinement takes. A cochain such as X{q1,q2} whose
elements agree on their meets is called a cocycle. In the simplest case, such as the
example in Figure 3, the related values are duplicated at each of the nodes with
nonempty intersections.

From the property of the restriction operator (2), it follows that cocycles are
preserved under refinements. Clearly, a cochain defined on the root chain of a sieve
is a cocycle, since roots have empty cones, and hence empty meets. If the base sieve
possesses a single leaf, such as in Figure 3, any cochain defined on it is a cocycle,
since clearly any cochain element agrees with itself. In fact, any cochain obtained
from such a singleton root cochain will be a cocycle.

5This gives the assignment of cochains to sieve nodes, with the restriction operators as described,

a functorial character.
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Fig. 9. Illustration of distinct P2 discretizations of scalar fields represented by sieved arrays over

a triangle boundary with identical refinements down to the vertex level.

3.2 Assembly

A fundamental feature of continuum6 fields is the equivalence of local and global
descriptions given by cocycles. Clearly, a global field over some open domain
D =

⋃
Di defines a cochain of fields with analogous properties (continous, smooth)

by restriction to a chain of open subdomains Di constituting a covering of D. Con-
versely, a cochain of local fields uniquely define a global field precisely because they
agree on overlaps, so that any cocycle is a refinement of a global field.

This characterizes continuous fields as a sheaf over the underlying domain, which
can be concisely rephrased as “a field is fully determined by its restrictions”. It
is a property of the restriction operator that is rooted both in the nature of the
fields, which are defined by their pointwise values, and the nature of the covering –
a set-theoretic covering by open sets, – which ensures that each point is represented
in at least one subdomain.

If the analogous sheaf property is to hold in the discrete case, a sieved array must
be uniquely defined by its refinement to the root chain of the base sieve. However,
this is not the case for the example in Figure 3: the cochain values at the finest
level reflect only 12 degrees of freedom, while the whole array is specified by 33!
Similarly, a piecewise quadratic representation of a continuous scalar field defined
at the boundary of a triangle can be represented by a sieved array with supports
at the nodes indicated in Figure 9. However, its refinement to the vertex level can
be obtain by restriction of a whole family of piecewise quadratic fields, since the
interior edge node is omited from the vertex-based description.

What went wrong? The main problem is a flawed geometric interpretation of
a purely syntactical construction represented by the mesh sieve. Indeed, when
attaching the degrees of freedom we identify the sieve nodes with mesh elements’
interiors, while when retrieving the cochain values the same nodes are identified
with the closures of the corresponding elements, and their coverings are identified
with the boundary during refinement. In short, the topology of the mesh sieve is
inadequate for a consistent defintion of this discrete field.

The situation can be rectified in various ways, but essentially all of them amount

6The adjective “continuum” in this context is used as the opposite of “discrete”.
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to supplying a better topology for the base of the sieved array. The basic structure
of coverings among mesh elements is sufficient to express only piecewise linear dis-
cretizations of continuum fields adequately, and mostly likely on simplicial meshes
only. Higher order methods typically attach degrees of freedom to element interiors
(except Hermite-based, perhaps), requiring a finer topology and a richer sieve, as
in the example above and Figure 9.

The simplest solution would be to cover each (nonroot) element e with a new
node e◦ representing the interior of e. A refined cochain would now be supported
on the boundary and the interior. Such an augmentation, however, would nearly
double the size of the base sieve while addiing essentially no new information about
the structure of the space – an interior node has exactly one arrow attached to it
and everything about it can be inferred from the element node.

3.3 Sifting

We can shift some of the complexity from the structure of the bundle to the func-
tionality of the interface controlling access to the array data, which we will term
a Sifter. A Sifter, whose function may be directly implemented by a sieved ar-
ray class, implements a particular sifting policy. The policy defines, among other
things, the inputs acceptable as indices into a sieved array, even though they may
not be present in the base stack. For example, assuming only positive (p,i) pairs
are used to label the base sieve nodes, a node labled by (-p,-i) may be recon-
gnized, within a given sifting policy, as the interior of a valid base node (p,i).
A cochain supported on (p,i) is then implicitly supported on (-p,-i) and the
corresponding cochain element contains the interior values only. Likewise, a sifter
may admit chains of base stack points as input to encode a finer indexing of cochain
data.

The main functions of a sifter, and the sifting policy it defines, is to define the
effect that the refinement (and restriction, on which refinement depends) and as-
sembly operators have on the array data. In the simplest, yet most ubiquitous
case, as in Figure 3, restriction amounts to reordering and gathering of data. More
broadly, restriction may involve interpolation or more general coordinate transfor-
mations on the data, when transfering it from one level of granularity to another.
For example, the underlying continuum field may take values in a topologically non-
trivial manifold, such as a sphere. The values of the corresponding global discrete
field can be stored in a sieved array in an arbitrary fashion. Upon refinement to
the level when each elements maps into a single coordinate system, restriction will
perform the appropriate coordinate transformations. The exact input sequences
indicating the coordinate system will be dictated by the sifting policy of the sieved
array.

A particularly simple, yet important, example of a coordinate transformation is
array component reordering. This may be necessary, among other situations, if the
user expects the output of cochain subscripting to be stored in some desired order.
For example, in using higher order finite element methods, say P2, retrieval of the
discrete field components supported at a mesh edge must reflect the interpolation
node order. There are 3 nodes per edge in this case: one per each of the two end-
points e0

1, e0
2 and on in the edge itself (interior) e1

1. The two orientations of the
edge can exactly specify the two corresponding order of retrieved components. An
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Fig. 10. A coordinate transformation of the cochain subsripting output consisting in reordering.
Indexing by the edge element outputs the data supported on its closure in an arbitrary ordering

(left). Indexing by cell-tuples forces a prescribed ordering (middle) and (right).

orientation can be unambiguously prescribed by a cell-tuple [Brisson 1989] consist-
ing of an endpoint and its supporting edge. Admitting element chains representing
such cell-tuples into the bundle structure (representing them by base points in the
bundle), or into the sifter interface (allowing as input) provides the user with the
capability to specify the desired output order, as illustrated in Figure 10.

In general, use of cell-tuples corresponding to paths through the mesh sieve allows
for a unique ordering of the faces of the mesh element at which the path terminates
[Brisson 1989], and hence for a unqiue ordering of the cochain data indexed by
that element. The idea behind this relies on the use of generalized barycentric
subdivisions for the specification of a unique coordinate system on each cell of a
complex. It is particularly transparent in the simplicial complex case: the origin
of the coordinate system specified by the initial vertex of the chain tuple, the first
coordinate direction from that point is along the edge following the vertex down the
chain. The second coordinate direction is any direction complementary to the edge
in the the triangle – the next element in the cell-tuple after the edge – containing
the edge, and so on. The simplest case of a two-dimensional simplicial complex
with the usual barycentric subdivision is illustrated in Figure 11.

Allowing nontrivial transformations of the cochain data during refinement, re-
striction and data retrieval makes sieved arrays suitable for the modeling of sections
of fiber bundles over base spaces with discretizations encoded by sieves in terms of
coverings. In fact, sieved arrays can be interpreted as local sections of fiber bundles
over the underlying sieves. In all of these situation, simple and complex, the only
common constraint placed on the restriction operator is expressed by Equation 2.

Assembly, on the other hand, is inextricably linked to restriction because, among
other things, it is the process of recovery of a coarser cochain from its refinement.
We may insist that both refinement and assembly be reversible and act as each
other’s inverses. As we have seen (e.g., in Figure 9 and Figure 3), this is impossible
in general, since the assembly operator is not epimorphic when acting on the values
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Fig. 11. An orientation on a simplex defined by an ordering of the vertices of a barycentric

subdivision, or, equivalently, by a path from a root node (0,1) to a to a leaf node (0,7) (enclosed,
nodes hatched).

of the fine cochain alone. We can weaken the inversion requirement to demand that
refinement is a left inverse of assembly. In other words, given a support chain c
and its complete covering by c′, c′ � c, if Rc

c′ is a refinement operator and Ac′

c is
the corresponding assembly operator, then

Rc′

c ◦Ac′

c = Ic′ . (3)

where Ic′ is the identity acting on the cochains supported on c′.
In practice, we do not expect refinement to discard data but simply to expose

the appropriate cochain representing the array at a certain level of granularity.
Therefore, since assembly acts on all of the sieved array, not only on the exposed
cochain, the ambiguity in the reconstruction of a coarser cochain array can be
removed, and the other inversion identity will hold:

Ac′

c ◦Rc
c′ = Ic (4)

This way assembly can be interpreted as an update of the sieved array from the
current representative cochain. Refinement can then be viewed as splitting a coarse
cochain into complementary parts, one of which, the refined cochain, is open for
query and updates, while the data over other is kept fixed. Then assembly of the
coarser cochain consists of reconstructing it from the two pieces, the updated and
the fixed.

In this light it appears particularly natural that the life cycle of a sieved array
should start at the coarsest level. In practice, however, a sieved array is refer-
enced at the same level of granularity throughout the computation7: it is refined
to the appropriate level and cochain elements indexed by the suitable elements of
the refined support are examined or assigned. Assembly is performed occasion-
ally to enforce the cocycle condition, and thus to produce a global field over the
totalSieve, followed by refinement back to the “working level” of granularity. To
encapsulate this commonly occuring sequence of operations we provide an equiva-
lent update(c) method, where assembly is done down to the level of chain c. An
empty chain is conventionally used to denote the totalSieve, and hence the “total
assembly”.

7A notable exception is furnished by multilevel methods.
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4. OPERATORS

The role of assembly is not merely reconstruction of coarse cochains from the cov-
ering cocycles. A more important function is the assembly of cochains that are not
cocycles (i.e., whose elements do not agree on the meets of the supports). This
situation arises commonly in application of operators to discrete fields. In a typical
continuum setting, a differential operator acts equally well on the global and local
fields generating the same pointwise values on output, which can then be trivially
assembled for any cocycle. Indeed, being local, a differential operator requires only
the data from an arbitrarily small neighborhood of a point, which is available in
full for any local field over an open subdomain.

4.1 Finite Difference sifting

In a typical discrete setting, the situation is markedly different. A discrete operator
P arising as a discretization of a differential operator acting on a local portion of
a discrete field X defined over a subdomain of a mesh, can generate only partial
data for the resulting discrete field Y . If finite-difference discretizations are used,
the operator can only compute values of Y at “interior” points – a designation
depending on the stencil being used – with the rest computed on different subdo-
mains and designated as “ghosts”. The refinement procedure in this case consists of
replacement, where a single process (e.g., with the lowest rank) containing a given
mesh element e in the interior of a locally structured grid block scatters its local
cochain element X(e) to all other processes storing the same data.

4.2 Finite Element sifting

Finite element methods are more symmetric in the sense that operators discretized
this way typically contribute output data for any input degree of freedom. However,
the input data and the output contribution correspond only to the components of
X and Y along the local basis elements supported on the local subdomain. The
output contributions must be incorporated (e.g., added) from each subdomain to
obtain a complete representation of the result in the finite element basis. When
representing this situation in terms of sieved arrays, the refinement-assembly pair
of operators act as a partition of unity, resolving a field, usually using projections,
into components supported at a given covering of the domain by subdomains, and
then assembling results, usually by addition, in general using a linear map.

This discussion demonstrates that assembly must be general enough to assemble
cochains that are not cocycles, while on cocycles it must reproduce the expected
results (i.e., the array whose restrictions generate the cocyle). This property can be
nicely expressed using the update operator introduced above. Denoting the support
of a sieved array by c′, the update operator by Uc′

c = Rc′

c ◦Ac
c′ and comparing with

(3) we conclude that Uc′

c reduces to the identity operator on c′-cocycles, while all
other chains are “projected” on this cocycle space.

4.3 General linear sifting

We can admit into refinement-assembly pairs the restriction-prolongation operators
of multilevel methods. Here different supports of a sieved array may correspond to
meshes of different resolution with covering arrows encoding the relations between
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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the elements at different levels. This can be conveniently represented using stacks
with the base and the cap being sieves representing meshes at different levels (see
Figure 12). A sieved array defined over such as stack would represent a field at
different levels of resolution at once. Clearly, in this case we cannot insist on a
unique reconstruction of a fine state from a coarsened state, although as mentioned
before, if assembly is viewed as an update, it is possible in practice. Similarly we
can deal with the assembly of sieved arrays defined over nonconforming meshes
as in Figure 13. In both of the above cases the construction of the refinement
and assembly operators involves nontrivial choices, such as the interpolation or
averaging methods, which are highly problem dependent.

Together the refinement and assembly operations define the sifting policy imple-
mented by the sifter, which can be thought of as representing a particular class or
space of sieved arrays with operators acting on the appropriate spaces only. Op-
erators themselves can be easily represented by sieved arrays. Indeed, if the local
action of an operator, application to a chain at a given support node generating
the values of a chain at the same node, depends on some numerical values, such
as local matrix coefficients (Jacobi matrix in the FEM case), they can be stored in
another chain with the same support. The application of an operator X

P−→ Y then
consists in refinement of a sieved arrays representing X, Y and P to the necessary
level, local calculations of Y values followed by assembly, if necessary, as illustrated
in Figure 4.3.

The assembly of a fully distributed field proceeds as an assembly from any cov-
ering. The totalSieve can be viewed as a sieve node covered by the localSieve
support points residing on different processes with the same sifting policy applied
on the meets of local sieves when assembling the chain supported at the total sieve
node, the coarsest array state.

Figure 15 illustrates different assembly procedures. At the top of the figure a
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Fig. 14. Illustration of an action of a sieved operator P on a sieved array X producing a sieved

array Y , all sharing the same base sieve. The refinement-assembly resolution of identity intervenes

at stage 1 (refinement), and at stage 3 (assembly) after the local operator application generates a
refined Y in stage 2.

cochain of two matching scalar fields discretized using piecewise-linear elements. If
those values disagree, they must be coerced to produce a consistent field, which is
illustrated at the bottom of Figure 15.

If we think in terms of the old contiguous vector approach to FEM, we can liken
the approach embodied in sieved arrays to indexing into the storage using mesh
elements rather than integers. In fact, the common domain decomposition approach
to parallelism, used in the Portable Extensible Toolkit for Scientific computing
(PETSc), can be seen as a special case of refinement. The field is refined to a
collection of subdomains, serial calculations are done, and the results are combined
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Fig. 15. Illustration of assembly of a sieved array over a doublet mesh. A cochain over the triangles
matching on the intersection (top), and not matching (middle). In order to define a field on the

total mesh, the non-matching cochain must be coerced by one cochaing taking precedence (bottom
left), or averaging (bottom right).

along the parallel interface.

5. MESH

Now we have defined all of the ingredients of a flexible mesh representation. The
topology of a mesh is represented by a sieve. The boundary submesh can be im-
plemented as a stack with the bottom containing the subsieve representing the
boundary with the induced covering relations, the top being the mesh itself, and

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



22 · Matthew G. Knepley and Dmitry A. Karpeev

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	


 
 
 
 


 
 
 
 


 
 
 
 


 
 
 
 


 
 
 
 


� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

    
    
    
    
    

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

31 32 3328 29 3025 26 2722 23 2416 17 1813 14 1510 11 12321

0,0

19 20 219874 65

A B Z

13 14 15321 4 65 987 19 20 21 28 29 3016 17 18

0,10

CA B

22 23 2410 11 12 31 32 3325 26 2719 20 219874 65

0,11

X ZY

0,10

13 14 15321 4 65 987 19 20 21 28 29 3016 17 18

A B Z

22 23 2410 11 12 31 32 3325 26 2719 20 219874 65

0,11

A B Z
Assembly

Refinement

Update

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	


 
 
 
 


 
 
 
 


 
 
 
 


 
 
 
 


 
 
 
 


� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

     
     
     
     

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

13 14 15321 4 65 987 19 20 21 28 29 3016 17 18

0,10

CA B

22 23 2410 11 12 31 32 3325 26 2719 20 219874 65

0,11

X ZY

31 32 3328 29 3025 26 2722 23 2416 17 1813 14 1510 11 12321

0,0

19 20 21987

22 23 2410 11 12 31 32 3325 26 2719 20 219874 65

0,11

0,10

4 65

13 14 15321 4 65 987 19 20 21 28 29 3016 17 18

Assembly

Refinement

Update

A+X B+Y C+Z

A+X B+Y C+Z

C+ZB+YA+X

Fig. 16. Illustration of array assembly and update implementing the replacement policy (top) and
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the vertical arrows identifying the elements of the boundary with their embedding
into the full mesh. The boundary elements in the full mesh are easily identified as
the vertical support of the total boundary sieve.

Analogously we can represent any subsets of a mesh or its partition into subdo-
mains, which makes discussion of field restrictions to those subdomains particularly
simple, using the SievedArray interface. We feel this is superior to the represen-
tation of boundaries and subdomains using markers, since it eliminates having to
sift through the element space by hand, identifying the boundary or subdomain
elements by marker examination; using sieves it is accomplished by a single cone
or support operation, which can be efficiently implemented, both in serial and in
parallel.

As mentioned in the Introduction, it is common to include geometry in the def-
inition of the mesh itself. For instance, Triangle [Shewchuk 2005] assumes that
vertices alone carry geometric information. Other mesh formats allow coordinates
to be associated with other parts of the mesh, but tend to store this information as
part of the mesh data structure. This seems counterintuitive since a given topology
can be embedded in many different spaces and in many different ways into the
same space. Thus the geometry appears as an external property, imposed on the
mesh from outside, and subject to change. It is therefore natural to separate the
geometric information of the embedding from the topological information of the
mesh itself.

In fact, the geometry of the mesh can simply be implemented as a field repre-
sented by a sieved array. If the embedding is done into a nontrivial space (e.g., a
sphere or a torus to emulate periodic geometry), coordinate transformations that
were discussed above may be necessary. In fact, the fields may take values in es-
sentially arbitrary target spaces amenable to computational representation (think
of fiber bundles with specific typical fibers). Thus it may represent tensor fields
(representation of operators in Section 4 is an example of this), discrete markers
and even fields with values in object classes.

The mesh generator, refiner and coarsener may now be merged into a single
interface acting on a stack representing the embedding of the boundary into the
mesh. A stack with an empty top indicates the request to generate the mesh from
the boundary data. Its geometry can be supplied separately as a sieved array, or
as a full mesh object referencing the bottom of the stack. Likewise, the refinement
or coarsening constraints on the mesh can be easily implemented as sieved arrays
attaching, for example, the maximal or minimal volumes to the elements to be
refined.

5.1 Implementation

We provide a reference implementation of the interfaces discussed above. The core
algorithms are implemented in C/C++ on top of PETSc (see [Balay et al. 2005])
and the Message Passing Interface (MPI) (see [MPI Forum 2005]). This ensures a
high level of performance and scalability of the core sieve and array code.

To ensure interoperability and the ease of code deployment we employ a lan-
guage interoperability environment ASE developed at Argonne National Labora-
tory [Knepley et al. 2005] and providing interfaces to the core capabilities in various
languages. At the moment C/C++ and Python are supported, although we plan
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to support Fortran and Matlab interfaces in the future.

6. HOW DOES IT STACK UP?

6.1 Value of Abstraction

In short, the Sieve abstraction retains a minimum of structure to ensure the greatest
possible expressivity. For example, although the connectivity, or incidence, infor-
mation is not explicitly specified in a sieve-based description of mesh topology, it
can be recovered through an application of a concise and elegant algorithm (see
Section 7.2). Moreover, even basic topological information such as the dimension
and shape of an element, though not explicitly preserved, can be recovered through
simple sieve operations. However, the absence of this information in the objects and
especially in the operations over a sieve make it possible to write algorithms that
are independent of these extraneous details, as demonstrated throughout Section 7.

6.2 Triangle

The most common scheme for representing a computational mesh is exemplified in
the format used by the Triangle [Shewchuk 2005] mesh generator. Vertices are first
identified by their spatial coordinates, and then faces are specified by the collection
of vertices they contain; edges are left implicit. This is also the strategy employed
by the TSTT interface [Brown et al. 2005]. Here the geometric information is
embedded directly into the mesh description rather than being expressed separately,
as in our fibre bundle construction. In fact, material attributes are also allowed
using another mechanism, when they could be handled in an identical manner using
bundles. Moreover, explicit distinctions are made between topological elements of
differing dimension and shape. Our sieve construction, on the other hand, treats
all elements equally. This approach simplifies greatly the task of coding algorithms
that are independent of the intrinsic dimension of the mesh.

6.3 Incidence Relations

We initially formulated the covering relations in terms of an equivalent incidence
relation graded by dimension. Thus, the user could ask for all incident elements
of dimension d rather than the cone or composition of cones. Restriction was
similarly expressed in the interface, but its duality to the covering category was
obscured and it still possessed unnecessary distinctions in dimension. The user
interfaces presented here are similar; however, the basic structures are much simpler
in the Sieve case and extend much more readily to other scenarios, such as parallel
partitioning. Furthermore, the underlying implementation was vastly simplified by
using sieves.

6.4 Ramifications and Further Applications

The Sieve concept is much more general than the traditional mesh structures com-
monly used for numerical solution of PDEs, and it can represent many more struc-
tures commonly implemented separately. Using sieves, we can easily define quad-
and oct-tree decompositions used in fast evaluation of integral operators, such as
the Fast Multipole Method. Such global computational space decompositions ex-
ploit the decay properties of integral operator kernels to agglomerate the effects of
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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interaction of a point with a whole subdomain, if the two are sufficiently separated.
Such structures map well on global physical network topologies, such as the tree
network of the BlueGene/L (BGL) architecture.

Another example of nonlocal interactions can be found in metabolic networks,
whose degree distribution follows a power law resulting in many highly connected
nodes. Recently decomposition algorithms have been proposed for separation of
such graphs into a locally connected (mesh-like) part and a global “shortcut”
graph [F. Chung 2004]. Using sieves, we can model this situation and investi-
gate different mappings of the nonlocal portions of the networks onto BGL-like
communication topologies. This could open a computational avenue to problems
on metabolic, or more broadly scale-free, graphs.

In general, we expect many applications of sieve-based algorithms well beyond
mesh representation. We view the Sieve concept as a general tool for “geometriza-
tion” of computational problems by viewing computational objects in terms of
coverings by more elementary parts. The Sifter becomes the central programmable
part that must be overloaded to accomodate exotic applications; however, most
users will find the basic sifting policies mentioned above sufficient.

In micromagnetics, modeled by the Landau-Lifschitz-Gilbert equations, the mag-
netic spin does not take values in a Euclidean vector space, but rather on the sphere.
A consequence of the global topology is that a single coordinate chart cannot cover
the entire space. When retrieving values in the overlap between charts, it may
be necessary to perform a coordinate transformation before returning the values.
This complication is reflected in our formalism by changing the sifting policy of the
sieved array providing the values.

The computational use of fiber bundle ideas by itself raises several interesting
points. For example, the computation of fields may require changes to the base
sieve. Assume that for the sieved array in Figure 3 after a computational step
the local field over (0,10) no longer “fits” into the given coordinate chart. Such as
situation is quite possible in certain applications, such as micromagnetics. The only
way to deal with this situtation may be to refine the base mesh and to generate a
finer field mapping each element into a single coordinate chart.

The Finite Element Tearing and Interconnecting [Klawonn et al. 2005] method
is an iterative substructuring method using Lagrange multipliers to enforce the
continuity of the finite element solution across the subdomain interface. As such,
degrees of freedom that lie on the interface itself are treated independently on either
side of the interface, and in the calculation phase we use vectors containing both
as global degrees of freedom. This can easily be accommodated by again changing
the sifting policy so that on subdomain boundaries values are not reduced, but
are returned independently. The interpolants do not yet match, or are cochains,
preventing us from extending to a global function across both elements. However,
after the solve has been accomplished, values along the interface do match, pushing
the entire domain into the sheaf, and allowing us to revert to the familiar insertion
sifting policy.
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Fig. 17. Point insertion into a triangular face

7. EXAMPLES

7.1 Simple Mesh Surgery Operations

One common operation involves splitting a triangular face by point insertion. Sup-
pose that we insert a vertex inside an existing face (0, 0), as shown in Figure 17.
The existing sieve may be simply altered to incorporate the new face. First we will
add the new faces,

addCone([(0,8), (0,1), (0,9)], (0, 11))
addCone([(0,9), (0,2), (0,10)], (0, 12))
addCone([(0,10), (0,3), (0,8)], (0, 13))

then the new edges,

addCone([(0,5), (0,7)], (0, 8))
addCone([(0,6), (0,7)], (0, 9))
addCone([(0,4), (0,7)], (0, 10))

noticing that the vertex will be added automatically. The old face may be elimi-
nated by using removePoint((0,0)), or it can be retained to preserve the refine-
ment history. For instance, we could add it explicitly to the topology sieve.

addSupport((0,0), [(0,11), (0,12), (0,13)])

However, this would probably be better preserved in another “refinement” sieve or
a stack so that all faces continue to possess height zero.

Another common operation is the edge flip, often used in Delaunay triangulation
algorithms. Here the edge dividing two triangles is removed, and a new edge is
inserted joining the opposite vertices, as shown in Figure 18. Two operations on
the sieve are necessary to perform the flip. First, the cone of the flipped edge
becomes the two opposite vertices of the quadrangle, in this case (0,7) and (0,10).
Next, the triangle cones must swap a pair of opposite edges, in this case we choose
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(0,3) and (0,6). If we had chosen the other pair,(0,2) and (0,5), it would merely
have placed (0,0) on the bottom. This latter change is more easily carried out by
adding and deleting the individual arrows rather than by setting whole cones.

7.2 Constructing the Dual Graph

An example illustrating the power and simplicity of the Sieve construct is the forma-
tion of the essential part of a dual mesh, or element connectivity graph, in parallel.
This is typically required to compute a mesh partition using graph partitioning
algorithms such as those implemented in ParMetis [Karypis et al. 2005]. Consider
again the doublet mesh divided between two processes, shown in Figure 2. As evi-
dent from the serial sieve on the left of Figure 2, the two simplices (0,10) and (0,11)
are adjacent as they share the edge (0, 7). In the partitioned sieve on the right,
however, this determination cannot be made on either process separately.

To make the adjacency determination in parallel, we use the support completion
operation. We only use the part of the parallel doublet mesh sieve from Figure 2
(right) representing edges and triangles, as it is sufficient for triangle adjacency de-
termination. Clearly the local support for (0, 3) contains a single element. However,
we can use supportCompletion and add to construct the completed sieve on each
process, shown at the top of Figure 19; the completion portion is dashed. Both
processes now contain the two triangles (0,6) and (1,5) covered by a single edge
(0, 5). The edge separates adjacent triangles, and this fact is recorded in the trian-
gle adjacency graph, illustrated at the bottom of Figure 19. This process can be
carried out for any mesh, producing the triangle connectivity graph. Other types of
connectivity data structures can be computed in an exactly analogous manner. In
particular, using completion methods we can compute the dual mesh with an edge
between the two members of any face with support of size two8. Figure 20 contains
Python code to construct the dual mesh. Notice that no part of this code refers to
the dimension of the mesh or any element, nor to the shape or connectivity of any
element, and thus will work for any general mesh.

7.3 Partitioning in Parallel

Since partitions are merely collection of mesh elements, we may view a partition
as covered by the elements it contains, and thus enlarge our sieve to include the
partitions themselves. The cone of each partition point is now the set of elements
in that partition. Using this construction, we may redistribute the mesh using only
the cone completion operation.

First we consider the case of distributing a serial mesh that has been partitioned.
The initial process will contain the full mesh sieve and an assignment of elements
to processes in a partition sieve. The other processes will add the partition node
corresponding to that process, for example, the prefix given by the size of the
communicator and index by the process rank as in the top diagram of Figure 21.
In the case of the doublet mesh used in the figure, it is sufficient to partition
the triangles – elements of highest dimension – into disjoint sets corresponding
to processes. Then all of the covering elements of each triangle are added to the
corresponding set, possibly duplicating lower order elements on different processes.

8Recall that in a mesh sieve each cell of codimension 1 can be shared by at most two other cells.
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Fig. 18. The edge (0,4) is flipped.
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Fig. 19. One stage in the construction of a mesh connectivity graph from a (partial) distributed

mesh sieve. Without completion adjacency of nodes (0,6) and (1,5) cannot be derived.

dualTopology = ALE.Sieve.Sieve()

dualTopology.setComm(comm)

completion, footprint = topology.supportCompletion(footprintTypeSupport)

for face in topology.heightStratum(1):

support = topology.support(face)

if len(support) == 2:

dualTopology.addCone(support, face)

elif len(support) == 1 and completion.capContains(face):

dualTopology.addCone((support[0], completion.support(face)[0]), face)

Fig. 20. Python code to create the dual mesh

Such a partitioning strategy is sufficient to retain all information about a serial
sieve after its distribution.

After the initial setup, cone completion will transfer the entire cone of each
partition element to the remaining processes, which consists of all elements in that
partition, and that completion is merged into the sieve (see middle diagram in
Figure 21); on all processes other than root, the cap of the completed sieve is a
duplicate of the base of the topology sieve. A second completion will transfer all the
covering relations to the other processes. Finally, the local sieve on the root process
is pruned of all elements whose support does not contain its partition element (see
the bottom diagram in Figure 21). In the case of fully parallel rebalancing, each
process creates partition nodes and cones exactly as the first process in the serial
case, and then the partitioning proceeds exactly as in the serial case. Notice that
the code in Figure 22 is again independent of dimension and element connectivity.

Upon cone completion, the full topology will be available on all processes; how-
ever, the element ownership will still appear as it was prior to the partition. We can
renumber the elements to reflect the partition by completing the sieve once more,
thereby putting all shared elements into the completion. Then a simple tie-breaking
rule can be used to divide up shared elements. This method will be used to create
variable numberings in Section 7.5; however, element identity is immaterial for this
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Fig. 21. Three states of sieves involved in doublet mesh partitioning. Initial state of the parti-
tioning (P) and the topology (T) sieves (top); after completion of P (middle); after completion of

T (bottom).
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completion, footprint = topology.coneCompletion(footprintTypeCone)

topology.add(completion)

for point in topology.cone((-1, rank)):

topology.addBasePoint(point)

completion, footprint = topology.coneCompletion(footprintTypeCone)

topology.add(completion)

topology.restrictBase(topology.cone((-1, rank)))

Fig. 22. Python code to partition a mesh

so we will not bother to carry it out.

7.4 Meshing in Parallel

The strategy for meshing in parallel is now quite similar to that for partitioning.
We use a serial mesh generator to generate a mesh on each individual process,
using an initial boundary communicated to all processes. These meshes may dis-
agree on the boundary; however, we will construct a cover of the original edges by
any edges produced by splitting. Then, using cone completion, we can construct
a complete covering of the boundary. We must then resolve incommensurate cov-
erings of each boundary edge either by merging two close points or by introducing
another edge between the two. Any newly introduced boundary edges are incorpo-
rated into the existing process mesh. As a final step, we may run a parallel mesh
improvement algorithm, without topology change, to smooth out any distortions
caused by merging [Munson 2004]. This procedure will result in a mesh that may
be artificially refined along process boundaries, but this effect becomes negligible
as the mesh grows, and we would argue that it is far outweighed by the simplicity
of the algorithm itself.

We also note that a serial mesh generator can be used to construct periodic
meshes. Just as in the parallel mesh example, we must merge a boundary, in this
case the identified periodic boundary. This merge is accomplished in exactly the
same manner, resulting in a fully periodic mesh.

7.5 Constructing a Finite Element

We have remarked above that the restriction and prolongation operations are ex-
actly the mechanism responsible for finite element assembly. Here we demonstrate
this in detail for a higher-order Lagrange element on multiple fields. The restric-
tion of a continuum field to an element T is what we approximate using our finite
element space P . For our Lagrange element, we use a nodal basis, meaning that
the basis {φi} for P and the basis of functionals {Lj} for its dual P ′ satisfy

Lj(φi) = δij .

Thus, the restriction process can be thought of as a selection of the coefficients
for basis functions in P that are nonvanishing on T , and each coefficient can be
identified with the particular Lj which does not annihilate that basis function.
Furthermore, each Lj is identified with a certain topological piece of the element.
In the case of point evaluations, this is merely the piece on which the evaluation
point occurs.
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Fig. 23. Third-order Lagrange element

Consider the third-order Lagrange element on a triangle. In Figure 23, the cir-
cles represent the point evaluation functionals that form a basis or P ′. If we, for
instance, restrict to e2, then we will require the four coefficients associated with
(v0, v1, e2). Restricting to T , we need the coefficients from all the labeled topolog-
ical elements, which we can recognize from above as the cone of f0.

In traditional finite element code, one represents the discretized field by an array
of basis function coefficients. This approach forces the user to construct a number-
ing on the basis functions and then select the correct indices for each element. Thus,
the code is more complicated, and its relation to the mathematics is obfuscated.
In our paradigm, we replace the integers in indexing with the topological elements
themselves, and selection occurs through the cone construction. In addition, when
we consider the problem of representing multiple discrete fields over the mesh, we
realize the full power of the Stack as lattice operations are incorporated. We can
represent degrees of freedom as points in a discrete sieve (i.e., a sieve without ar-
rows). Variables may be associated with topological elements via vertical arrows
with the topology as the base. However, we would like a mechanism to segregate
variables in each field. Each field is represented by a point in an auxiliary sieve,
which is then used as the base of a stack whose vertical arrows connect to the degree
of freedom sieve. The cone over each field point is the set of variables in the field,
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Fig. 24. Illustration of degrees of freedom for multiple fields

elements = [FIAT.Lagrange.Lagrange(FIAT.shapes.TRIANGLE, 2),

FIAT.Lagrange.Lagrange(FIAT.shapes.TRIANGLE, 3)]

ranks = [1, 0]

dim = mesh.getDimension()

dof = ALE.Sieve.Sieve()

dof.setComm(comm)

numbering = ALE.Stack.Stack()

numbering.setComm(comm)

numbering.setTop(dof)

numbering.setBottom(topology)

Fig. 25. Initial specifications for the finite elements

as depicted in Figure 24, and the degrees of freedom from a given field over a given
element are simply the meet of the cones in the corresponding base points. This
approach also allows us to order the degrees of freedom in a manner suitable for
a given application, or even reorder them for different stages of the computation,
without affecting the retrieval code.

As a concrete example, we create a numbering for two fields over the doublet
mesh. The first is a P2 vector field and the second a P3 scalar field. Figure 25
shows these initial choices and the creation of the numbering stack. In Figure 27
we present the numbering algorithm itself.

We loop over all elements in the topology, and if the element is present on more
than one process, only the lowest-rank process will create degrees of freedom over
it. We then loop over each field and decide how many degrees of freedom the
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Fig. 26. DOF Stack for the trial discretization over a doublet mesh

completion, footprint = topology.supportCompletion(footprintTypeSupport)

index = 0

for p in topology.space():

if completion.capContains(p):

neighbors = footprint.support([p]+list(completion.support(p)))

if [0 for processTie in neighbors if processTie[1] < rank]:

continue

indices = []

for field in range(len(elements)):

scalarDof = len(elements[field].dual_basis().getNodeIDs(topology.depth(p))[0])

entityDof = scalarDof*max(1, dim*ranks[field])

if entityDof:

var = [(-(rank+1), index+i) for i in range(entityDof)]

indices.extend(var)

index += entityDof

dof.addCone(var, (0, field))

numbering.addCone(indices, p)

completion, footprint = numbering.coneCompletion(footprintTypeCone)

Fig. 27. Python code to create a variable ordering

field possesses on that element. FIAT can provide the size of the dual space on
an element of that dimension, and we equate dimension with depth in the sieve.
Finally, we assume that tensor fields have dimension equal to the dimension of the
mesh. We add these new degrees of freedom to the cone of the current field and
then add the collective degrees of freedom for the current element to its vertical
cone in the numbering stack. Lastly, the stack is completed over vertical arrows so
that ghost degrees of freedom are available. The full stack is shown in Figure 26.

If we let f and K be the local element vector and matrix, F a global discrete
field, and J its Jacobian, the code in Figure 28 will assemble the function and its
Jacobian.

Using both sieves and stacks, we have been able to provide routines that partition
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elements = mesh.topology.space()

elemU = u.restrict(elements)

# Loop over highest dimensional elements

for element in mesh.topology.heightStratum(0):

# We want values over the element and all its coverings

chain = mesh.closure(element)

# Retrieve the field coefficients for this element

coeffs = elemU.getValues([element])

# Calculate the stiffness matrix and load vector

K, f = self.integrate(coeffs, self.jacobian(element, mesh, space))

# Place results in global storage

elemF.setValues([chain], f)

elemJ.setValues([[chain], [chain]], K)

F = elemF.assemble([])

J = elemJ.assemble([])

Fig. 28. Python code to assemble the linear system. The sifting policy identifies elements with

their interiors and admits closure chains as input denoting the corresponding geometric closure.

a mesh in parallel, calculate the finite element variable ordering, integrate the weak
form, and assemble the operator. These routines are independent of the mesh
dimension, global topology, element shapes, and finite element.

8. CONCLUSIONS

A key conclusion of this effort is that better mathematical abstractions in software
bring concrete benefits. In current FEM simulation packages, reusability rarely
goes beyond linear algebra level. The reason is a lack of effective mathematical ab-
stractions for hierarchically structured data and operations that adequately reflect
the modeled problem. Components cannot be shared when operations are inextri-
cably linked in the implementation. Furthermore, the complexity of the existing
hierarchical solvers written without the benefit of these abstractions increases very
quickly, creating inpenetrable and unmaintainable code. This low-level approach
to implementation has also greatly hindered generalization of these algorithms, for
instance to regions with nontrivial global topology.

However, many of these difficulties can be rectified by using the Sieve construct
and sieved array structures. Discarding the explicit dimensionality and shape in-
formation in the algorithms not only reduces the complexity but also results in
much greater generality. All operations are expressed in terms of a single cover-
ing relation, which captures the ubiquitous notion of a decomposition of objects
into more elementary parts. With only a single routine with parallel communi-
cation, optimization and portability also become much easier. Furthermore, since
this approach assumes much less about the structure of the problem, sieves can be
more easily incorporated into existing PDE frameworks, and perhaps frameworks
for other problems as well. Moreover, the generality of the interface enhances the
capabilities of existing PDE solvers. Sieves can seamlessly handle hybrid meshes,
complicated global topologies as in micromagnetics, and intricate structures em-
bedded in the mesh such as fault systems in seismic modeling.
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9. GLOSSARY

chain: A set of sieve points, often identified with a set of topological mesh
elements.
cochain: A set of points in a dual sieve, often identified with a set of functions
over toplogical mesh elements.
cocycle: A cochain satisfying consistency conditions on the meet of the elements,
often identified with the agreement along element intersections of functions de-
fined on the elements.
covering: A relation between two sieve points, expressed by a sieve arrow. The
notion can be extended to a relation between two chains.
complete covering: A chain covering which includes every member of the cone
of each member of the base chain.
localSieve: An artificial sieve point added to cover all the leaves on the process.
sieve: A directed acyclic graph which expresses a covering relation between
points, meant to encode an étale topology.
stack: A sieve which has another sieve for both its cap and base. Sieve operations
operate only over arrows between these sieves, not inside them.
sieved array: Storage structured according to the covering relations of a sieve.
totalSieve: An artificial sieve point added to cover all the leaves in the sieve.
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