fenics team mailing list archive
-
fenics team
-
Mailing list archive
-
Message #00077
two questions
I have two questions that pertain to whether or not my sw stack is working
properly.
QUESTION #1
The first one is relatively simple. I have PETSc configured with the
standard GCC compiler set but without MPI. When building the poisson demo, I
am generating the attached poisson.m file. The question is whether or not
the plotsolution.m and associated Octave specific M-files work for others.
On two different Linux boxes, for me, Octave goes to lala land and takes the
cpu with it to never return either with a plot or with a completion. MATLAB
does a little better but the pdemesh visualization produces an empty plot
although pdesurf does produce a plot.
QUESTION #2
The second question is more confusing. Since I am trying to get the whole
FEniCS/PETSc stack running under MSVC7, I was experimenting with different
configurations that would build given the tools I have. I was able to
successfully build PETSc with the MS compilers using the following
configuration:
--with-vendor-compilers=microsoft
--with-fc=0
--download-c-blas-lapack=1
--with-mpi=0
Here is the top of configure.log:
Starting Configure Run at Sun Dec 18 11:39:57 2005
Configure Options: --with-vendor-compilers=microsoft -with-fc=0
--download-c-blas-lapack=1 --with-mpi=0 --useThreads=0 --with-shared=0
-configModules=PETSc.Configure
Working directory: /home/Theo/petsc-2.3.0
Python version:
2.4.1 (#1, May 27 2005, 18:02:40)
[GCC 3.3.3 (cygwin special)]
And the tail:
Compilers:
C Compiler: /home/Theo/petsc-2.3.0/bin/win32fe/win32fe cl -MT -Z7
PETSc:
PETSC_ARCH: cygwin
PETSC_DIR: /home/Theo/petsc-2.3.0
Scalar type:real
Clanguage: C
BLAS/LAPACK: -L/home/Theo/petsc-2.3.0/externalpackages/f2cblaslapack/cygwin
-L/home/Theo/petsc-2.3.0/externalpackages/f2cblaslapack/cygwin -lf2clapack
-L/home/Theo/petsc-2.3.0/externalpackages/f2cblaslapack/cygwin
-L/home/Theo/petsc-2.3.0/externalpackages/f2cblaslapack/cygwin -lf2cblas
Since I don't have the rest of FEniCS running under MSDev, I figured I'll
use the same configuration on a linux box, that is, using GNU but without
Fortran, to see what FEniCS does on that configuration. And Murphy's law
applied: the poisson demo won't complete due to GMRES not converging. Here
is the log for that failure:
[tomtzigt@p4-28G-512M-ws1 poisson]$ ./dolfin-poisson
Computing mesh connectivity:
Found 289 nodes
Found 512 cells
Created 800 edges
Created 0 faces
Sorting mesh entities locally.
Initializing PETSc (ignoring command-line arguments).
Assembling system (matrix and vector) of size 289 x 289.
| Assembling matrix and vector (interior contributions) |
|-----------------------------------------------------------------| 0.0%
| Assembling matrix and vector (interior contributions) |
|======|----------------------------------------------------------| 10.2%
| Assembling matrix and vector (interior contributions) |
|=============|---------------------------------------------------| 20.3%
| Assembling matrix and vector (interior contributions) |
|===================|---------------------------------------------| 30.5%
| Assembling matrix and vector (interior contributions) |
|==========================|--------------------------------------| 40.6%
| Assembling matrix and vector (interior contributions) |
|=================================|-------------------------------| 50.8%
| Assembling matrix and vector (interior contributions) |
|=======================================|-------------------------| 60.9%
| Assembling matrix and vector (interior contributions) |
|==============================================|------------------| 71.1%
| Assembling matrix and vector (interior contributions) |
|====================================================|------------| 81.2%
| Assembling matrix and vector (interior contributions) |
|===========================================================|-----| 91.4%
| Assembling matrix and vector (interior contributions) |
|=================================================================| 100.0%
Maximum number of nonzeros in each row is 7 (estimated 21).
Applying Dirichlet boundary conditions.
Computing boundary:
Found 64 edges on the boundary.
Found 64 nodes on the boundary.
Boundary condition applied to 17 degrees of freedom on the boundary.
Setting up PETSc GMRES solver: (rtol, atol, dtol, maxiter) = (1.0e-05,
1.0e-50, 1.0e+04, 10000).
*** Error: GMRES solver did not converge. [GMRES.cpp:71: solve()]
My postulate would be that PETSc with the above configuration somehow gets
put into single precision mode and the atol=1.0e-50 doesn't stand a change.
However, I can't find this information (yet) in the PETSc log.
So, any known issues that explain the two issues here?
Theo
P.S. Both PETSc and FEniCS are a joy to work in. I love scripts that give
you enough feedback to resolve issues that the script ran into. So kudos to
all those who put in the sweat and tears. If I can just get over the
initial hump, then I can start contributing too.
points = [0.000000000000000 0.000000000000000
0.062500000000000 0.000000000000000
0.125000000000000 0.000000000000000
0.187500000000000 0.000000000000000
0.250000000000000 0.000000000000000
0.312500000000000 0.000000000000000
0.375000000000000 0.000000000000000
0.437500000000000 0.000000000000000
0.500000000000000 0.000000000000000
0.562500000000000 0.000000000000000
0.625000000000000 0.000000000000000
0.687500000000000 0.000000000000000
0.750000000000000 0.000000000000000
0.812500000000000 0.000000000000000
0.875000000000000 0.000000000000000
0.937500000000000 0.000000000000000
1.000000000000000 0.000000000000000
0.000000000000000 0.062500000000000
0.062500000000000 0.062500000000000
0.125000000000000 0.062500000000000
0.187500000000000 0.062500000000000
0.250000000000000 0.062500000000000
0.312500000000000 0.062500000000000
0.375000000000000 0.062500000000000
0.437500000000000 0.062500000000000
0.500000000000000 0.062500000000000
0.562500000000000 0.062500000000000
0.625000000000000 0.062500000000000
0.687500000000000 0.062500000000000
0.750000000000000 0.062500000000000
0.812500000000000 0.062500000000000
0.875000000000000 0.062500000000000
0.937500000000000 0.062500000000000
1.000000000000000 0.062500000000000
0.000000000000000 0.125000000000000
0.062500000000000 0.125000000000000
0.125000000000000 0.125000000000000
0.187500000000000 0.125000000000000
0.250000000000000 0.125000000000000
0.312500000000000 0.125000000000000
0.375000000000000 0.125000000000000
0.437500000000000 0.125000000000000
0.500000000000000 0.125000000000000
0.562500000000000 0.125000000000000
0.625000000000000 0.125000000000000
0.687500000000000 0.125000000000000
0.750000000000000 0.125000000000000
0.812500000000000 0.125000000000000
0.875000000000000 0.125000000000000
0.937500000000000 0.125000000000000
1.000000000000000 0.125000000000000
0.000000000000000 0.187500000000000
0.062500000000000 0.187500000000000
0.125000000000000 0.187500000000000
0.187500000000000 0.187500000000000
0.250000000000000 0.187500000000000
0.312500000000000 0.187500000000000
0.375000000000000 0.187500000000000
0.437500000000000 0.187500000000000
0.500000000000000 0.187500000000000
0.562500000000000 0.187500000000000
0.625000000000000 0.187500000000000
0.687500000000000 0.187500000000000
0.750000000000000 0.187500000000000
0.812500000000000 0.187500000000000
0.875000000000000 0.187500000000000
0.937500000000000 0.187500000000000
1.000000000000000 0.187500000000000
0.000000000000000 0.250000000000000
0.062500000000000 0.250000000000000
0.125000000000000 0.250000000000000
0.187500000000000 0.250000000000000
0.250000000000000 0.250000000000000
0.312500000000000 0.250000000000000
0.375000000000000 0.250000000000000
0.437500000000000 0.250000000000000
0.500000000000000 0.250000000000000
0.562500000000000 0.250000000000000
0.625000000000000 0.250000000000000
0.687500000000000 0.250000000000000
0.750000000000000 0.250000000000000
0.812500000000000 0.250000000000000
0.875000000000000 0.250000000000000
0.937500000000000 0.250000000000000
1.000000000000000 0.250000000000000
0.000000000000000 0.312500000000000
0.062500000000000 0.312500000000000
0.125000000000000 0.312500000000000
0.187500000000000 0.312500000000000
0.250000000000000 0.312500000000000
0.312500000000000 0.312500000000000
0.375000000000000 0.312500000000000
0.437500000000000 0.312500000000000
0.500000000000000 0.312500000000000
0.562500000000000 0.312500000000000
0.625000000000000 0.312500000000000
0.687500000000000 0.312500000000000
0.750000000000000 0.312500000000000
0.812500000000000 0.312500000000000
0.875000000000000 0.312500000000000
0.937500000000000 0.312500000000000
1.000000000000000 0.312500000000000
0.000000000000000 0.375000000000000
0.062500000000000 0.375000000000000
0.125000000000000 0.375000000000000
0.187500000000000 0.375000000000000
0.250000000000000 0.375000000000000
0.312500000000000 0.375000000000000
0.375000000000000 0.375000000000000
0.437500000000000 0.375000000000000
0.500000000000000 0.375000000000000
0.562500000000000 0.375000000000000
0.625000000000000 0.375000000000000
0.687500000000000 0.375000000000000
0.750000000000000 0.375000000000000
0.812500000000000 0.375000000000000
0.875000000000000 0.375000000000000
0.937500000000000 0.375000000000000
1.000000000000000 0.375000000000000
0.000000000000000 0.437500000000000
0.062500000000000 0.437500000000000
0.125000000000000 0.437500000000000
0.187500000000000 0.437500000000000
0.250000000000000 0.437500000000000
0.312500000000000 0.437500000000000
0.375000000000000 0.437500000000000
0.437500000000000 0.437500000000000
0.500000000000000 0.437500000000000
0.562500000000000 0.437500000000000
0.625000000000000 0.437500000000000
0.687500000000000 0.437500000000000
0.750000000000000 0.437500000000000
0.812500000000000 0.437500000000000
0.875000000000000 0.437500000000000
0.937500000000000 0.437500000000000
1.000000000000000 0.437500000000000
0.000000000000000 0.500000000000000
0.062500000000000 0.500000000000000
0.125000000000000 0.500000000000000
0.187500000000000 0.500000000000000
0.250000000000000 0.500000000000000
0.312500000000000 0.500000000000000
0.375000000000000 0.500000000000000
0.437500000000000 0.500000000000000
0.500000000000000 0.500000000000000
0.562500000000000 0.500000000000000
0.625000000000000 0.500000000000000
0.687500000000000 0.500000000000000
0.750000000000000 0.500000000000000
0.812500000000000 0.500000000000000
0.875000000000000 0.500000000000000
0.937500000000000 0.500000000000000
1.000000000000000 0.500000000000000
0.000000000000000 0.562500000000000
0.062500000000000 0.562500000000000
0.125000000000000 0.562500000000000
0.187500000000000 0.562500000000000
0.250000000000000 0.562500000000000
0.312500000000000 0.562500000000000
0.375000000000000 0.562500000000000
0.437500000000000 0.562500000000000
0.500000000000000 0.562500000000000
0.562500000000000 0.562500000000000
0.625000000000000 0.562500000000000
0.687500000000000 0.562500000000000
0.750000000000000 0.562500000000000
0.812500000000000 0.562500000000000
0.875000000000000 0.562500000000000
0.937500000000000 0.562500000000000
1.000000000000000 0.562500000000000
0.000000000000000 0.625000000000000
0.062500000000000 0.625000000000000
0.125000000000000 0.625000000000000
0.187500000000000 0.625000000000000
0.250000000000000 0.625000000000000
0.312500000000000 0.625000000000000
0.375000000000000 0.625000000000000
0.437500000000000 0.625000000000000
0.500000000000000 0.625000000000000
0.562500000000000 0.625000000000000
0.625000000000000 0.625000000000000
0.687500000000000 0.625000000000000
0.750000000000000 0.625000000000000
0.812500000000000 0.625000000000000
0.875000000000000 0.625000000000000
0.937500000000000 0.625000000000000
1.000000000000000 0.625000000000000
0.000000000000000 0.687500000000000
0.062500000000000 0.687500000000000
0.125000000000000 0.687500000000000
0.187500000000000 0.687500000000000
0.250000000000000 0.687500000000000
0.312500000000000 0.687500000000000
0.375000000000000 0.687500000000000
0.437500000000000 0.687500000000000
0.500000000000000 0.687500000000000
0.562500000000000 0.687500000000000
0.625000000000000 0.687500000000000
0.687500000000000 0.687500000000000
0.750000000000000 0.687500000000000
0.812500000000000 0.687500000000000
0.875000000000000 0.687500000000000
0.937500000000000 0.687500000000000
1.000000000000000 0.687500000000000
0.000000000000000 0.750000000000000
0.062500000000000 0.750000000000000
0.125000000000000 0.750000000000000
0.187500000000000 0.750000000000000
0.250000000000000 0.750000000000000
0.312500000000000 0.750000000000000
0.375000000000000 0.750000000000000
0.437500000000000 0.750000000000000
0.500000000000000 0.750000000000000
0.562500000000000 0.750000000000000
0.625000000000000 0.750000000000000
0.687500000000000 0.750000000000000
0.750000000000000 0.750000000000000
0.812500000000000 0.750000000000000
0.875000000000000 0.750000000000000
0.937500000000000 0.750000000000000
1.000000000000000 0.750000000000000
0.000000000000000 0.812500000000000
0.062500000000000 0.812500000000000
0.125000000000000 0.812500000000000
0.187500000000000 0.812500000000000
0.250000000000000 0.812500000000000
0.312500000000000 0.812500000000000
0.375000000000000 0.812500000000000
0.437500000000000 0.812500000000000
0.500000000000000 0.812500000000000
0.562500000000000 0.812500000000000
0.625000000000000 0.812500000000000
0.687500000000000 0.812500000000000
0.750000000000000 0.812500000000000
0.812500000000000 0.812500000000000
0.875000000000000 0.812500000000000
0.937500000000000 0.812500000000000
1.000000000000000 0.812500000000000
0.000000000000000 0.875000000000000
0.062500000000000 0.875000000000000
0.125000000000000 0.875000000000000
0.187500000000000 0.875000000000000
0.250000000000000 0.875000000000000
0.312500000000000 0.875000000000000
0.375000000000000 0.875000000000000
0.437500000000000 0.875000000000000
0.500000000000000 0.875000000000000
0.562500000000000 0.875000000000000
0.625000000000000 0.875000000000000
0.687500000000000 0.875000000000000
0.750000000000000 0.875000000000000
0.812500000000000 0.875000000000000
0.875000000000000 0.875000000000000
0.937500000000000 0.875000000000000
1.000000000000000 0.875000000000000
0.000000000000000 0.937500000000000
0.062500000000000 0.937500000000000
0.125000000000000 0.937500000000000
0.187500000000000 0.937500000000000
0.250000000000000 0.937500000000000
0.312500000000000 0.937500000000000
0.375000000000000 0.937500000000000
0.437500000000000 0.937500000000000
0.500000000000000 0.937500000000000
0.562500000000000 0.937500000000000
0.625000000000000 0.937500000000000
0.687500000000000 0.937500000000000
0.750000000000000 0.937500000000000
0.812500000000000 0.937500000000000
0.875000000000000 0.937500000000000
0.937500000000000 0.937500000000000
1.000000000000000 0.937500000000000
0.000000000000000 1.000000000000000
0.062500000000000 1.000000000000000
0.125000000000000 1.000000000000000
0.187500000000000 1.000000000000000
0.250000000000000 1.000000000000000
0.312500000000000 1.000000000000000
0.375000000000000 1.000000000000000
0.437500000000000 1.000000000000000
0.500000000000000 1.000000000000000
0.562500000000000 1.000000000000000
0.625000000000000 1.000000000000000
0.687500000000000 1.000000000000000
0.750000000000000 1.000000000000000
0.812500000000000 1.000000000000000
0.875000000000000 1.000000000000000
0.937500000000000 1.000000000000000
1.000000000000000 1.000000000000000]';
cells = [1 2 19
1 19 18
2 3 20
2 20 19
3 4 21
3 21 20
4 5 22
4 22 21
5 6 23
5 23 22
6 7 24
6 24 23
7 8 25
7 25 24
8 9 26
8 26 25
9 10 27
9 27 26
10 11 28
10 28 27
11 12 29
11 29 28
12 13 30
12 30 29
13 14 31
13 31 30
14 15 32
14 32 31
15 16 33
15 33 32
16 17 34
16 34 33
18 19 36
18 36 35
19 20 37
19 37 36
20 21 38
20 38 37
21 22 39
21 39 38
22 23 40
22 40 39
23 24 41
23 41 40
24 25 42
24 42 41
25 26 43
25 43 42
26 27 44
26 44 43
27 28 45
27 45 44
28 29 46
28 46 45
29 30 47
29 47 46
30 31 48
30 48 47
31 32 49
31 49 48
32 33 50
32 50 49
33 34 51
33 51 50
35 36 53
35 53 52
36 37 54
36 54 53
37 38 55
37 55 54
38 39 56
38 56 55
39 40 57
39 57 56
40 41 58
40 58 57
41 42 59
41 59 58
42 43 60
42 60 59
43 44 61
43 61 60
44 45 62
44 62 61
45 46 63
45 63 62
46 47 64
46 64 63
47 48 65
47 65 64
48 49 66
48 66 65
49 50 67
49 67 66
50 51 68
50 68 67
52 53 70
52 70 69
53 54 71
53 71 70
54 55 72
54 72 71
55 56 73
55 73 72
56 57 74
56 74 73
57 58 75
57 75 74
58 59 76
58 76 75
59 60 77
59 77 76
60 61 78
60 78 77
61 62 79
61 79 78
62 63 80
62 80 79
63 64 81
63 81 80
64 65 82
64 82 81
65 66 83
65 83 82
66 67 84
66 84 83
67 68 85
67 85 84
69 70 87
69 87 86
70 71 88
70 88 87
71 72 89
71 89 88
72 73 90
72 90 89
73 74 91
73 91 90
74 75 92
74 92 91
75 76 93
75 93 92
76 77 94
76 94 93
77 78 95
77 95 94
78 79 96
78 96 95
79 80 97
79 97 96
80 81 98
80 98 97
81 82 99
81 99 98
82 83 100
82 100 99
83 84 101
83 101 100
84 85 102
84 102 101
86 87 104
86 104 103
87 88 105
87 105 104
88 89 106
88 106 105
89 90 107
89 107 106
90 91 108
90 108 107
91 92 109
91 109 108
92 93 110
92 110 109
93 94 111
93 111 110
94 95 112
94 112 111
95 96 113
95 113 112
96 97 114
96 114 113
97 98 115
97 115 114
98 99 116
98 116 115
99 100 117
99 117 116
100 101 118
100 118 117
101 102 119
101 119 118
103 104 121
103 121 120
104 105 122
104 122 121
105 106 123
105 123 122
106 107 124
106 124 123
107 108 125
107 125 124
108 109 126
108 126 125
109 110 127
109 127 126
110 111 128
110 128 127
111 112 129
111 129 128
112 113 130
112 130 129
113 114 131
113 131 130
114 115 132
114 132 131
115 116 133
115 133 132
116 117 134
116 134 133
117 118 135
117 135 134
118 119 136
118 136 135
120 121 138
120 138 137
121 122 139
121 139 138
122 123 140
122 140 139
123 124 141
123 141 140
124 125 142
124 142 141
125 126 143
125 143 142
126 127 144
126 144 143
127 128 145
127 145 144
128 129 146
128 146 145
129 130 147
129 147 146
130 131 148
130 148 147
131 132 149
131 149 148
132 133 150
132 150 149
133 134 151
133 151 150
134 135 152
134 152 151
135 136 153
135 153 152
137 138 155
137 155 154
138 139 156
138 156 155
139 140 157
139 157 156
140 141 158
140 158 157
141 142 159
141 159 158
142 143 160
142 160 159
143 144 161
143 161 160
144 145 162
144 162 161
145 146 163
145 163 162
146 147 164
146 164 163
147 148 165
147 165 164
148 149 166
148 166 165
149 150 167
149 167 166
150 151 168
150 168 167
151 152 169
151 169 168
152 153 170
152 170 169
154 155 172
154 172 171
155 156 173
155 173 172
156 157 174
156 174 173
157 158 175
157 175 174
158 159 176
158 176 175
159 160 177
159 177 176
160 161 178
160 178 177
161 162 179
161 179 178
162 163 180
162 180 179
163 164 181
163 181 180
164 165 182
164 182 181
165 166 183
165 183 182
166 167 184
166 184 183
167 168 185
167 185 184
168 169 186
168 186 185
169 170 187
169 187 186
171 172 189
171 189 188
172 173 190
172 190 189
173 174 191
173 191 190
174 175 192
174 192 191
175 176 193
175 193 192
176 177 194
176 194 193
177 178 195
177 195 194
178 179 196
178 196 195
179 180 197
179 197 196
180 181 198
180 198 197
181 182 199
181 199 198
182 183 200
182 200 199
183 184 201
183 201 200
184 185 202
184 202 201
185 186 203
185 203 202
186 187 204
186 204 203
188 189 206
188 206 205
189 190 207
189 207 206
190 191 208
190 208 207
191 192 209
191 209 208
192 193 210
192 210 209
193 194 211
193 211 210
194 195 212
194 212 211
195 196 213
195 213 212
196 197 214
196 214 213
197 198 215
197 215 214
198 199 216
198 216 215
199 200 217
199 217 216
200 201 218
200 218 217
201 202 219
201 219 218
202 203 220
202 220 219
203 204 221
203 221 220
205 206 223
205 223 222
206 207 224
206 224 223
207 208 225
207 225 224
208 209 226
208 226 225
209 210 227
209 227 226
210 211 228
210 228 227
211 212 229
211 229 228
212 213 230
212 230 229
213 214 231
213 231 230
214 215 232
214 232 231
215 216 233
215 233 232
216 217 234
216 234 233
217 218 235
217 235 234
218 219 236
218 236 235
219 220 237
219 237 236
220 221 238
220 238 237
222 223 240
222 240 239
223 224 241
223 241 240
224 225 242
224 242 241
225 226 243
225 243 242
226 227 244
226 244 243
227 228 245
227 245 244
228 229 246
228 246 245
229 230 247
229 247 246
230 231 248
230 248 247
231 232 249
231 249 248
232 233 250
232 250 249
233 234 251
233 251 250
234 235 252
234 252 251
235 236 253
235 253 252
236 237 254
236 254 253
237 238 255
237 255 254
239 240 257
239 257 256
240 241 258
240 258 257
241 242 259
241 259 258
242 243 260
242 260 259
243 244 261
243 261 260
244 245 262
244 262 261
245 246 263
245 263 262
246 247 264
246 264 263
247 248 265
247 265 264
248 249 266
248 266 265
249 250 267
249 267 266
250 251 268
250 268 267
251 252 269
251 269 268
252 253 270
252 270 269
253 254 271
253 271 270
254 255 272
254 272 271
256 257 274
256 274 273
257 258 275
257 275 274
258 259 276
258 276 275
259 260 277
259 277 276
260 261 278
260 278 277
261 262 279
261 279 278
262 263 280
262 280 279
263 264 281
263 281 280
264 265 282
264 282 281
265 266 283
265 283 282
266 267 284
266 284 283
267 268 285
267 285 284
268 269 286
268 286 285
269 270 287
269 287 286
270 271 288
270 288 287
271 272 289
271 289 288 ]';
edges = [1;2;0;0;0;0;0];
u = [ 0.068508108463468 0.068331656343913 0.067787751802850 0.066842946337859 0.065453911247884 0.063571630686899 0.061144621166713 0.058121745108905 0.054454905180132 0.050101860283095 0.045029360637377 0.039216843732185 0.032661084700093 0.025382417919178 0.017433711813898 0.008914840610784 0.000000000000000 0.068682019070932 0.068511567288807 0.067981845618438 0.067056164060138 0.065689097618680 0.063830018692588 0.061426037890154 0.058424667334030 0.054776406221804 0.050437445914348 0.045372682116936 0.039559232390031 0.032990768751642 0.025683132959532 0.017681951251288 0.009073439456833 0.000000000000000 0.069189212589894 0.069032967207812 0.068538881900727 0.067662512923766 0.066352808468410 0.064554582235563 0.062210881660364 0.059265275909529 0.055664154432242 0.051359142689576 0.046309762391092 0.040486468622373 0.033874221634198 0.026476759656031 0.018321653315124 0.009465851305391 0.000000000000000 0.069996233164266 0.069859263842080 0.069414843912414 0.068608423467629 0.067380852111886 0.065670014622518 0.063412604270138 0.060545952156724 0.057009922414835 0.052748915679340 0.047714044124076 0.041865530219258 0.035175351540026 0.027630080494160 0.019233678786454 0.010009521207443 0.000000000000000 0.071059537469551 0.070945034156977 0.070559353229856 0.069836558852595 0.068707755605916 0.067102132841601 0.064948201747586 0.062175158357706 0.058714335706636 0.054500737594680 0.049474672817196 0.043583487080051 0.036783330452290 0.029040814819553 0.020334256340808 0.010653880869920 0.000000000000000 0.072329272799702 0.072239159324472 0.071917791966049 0.071287159327850 0.070267575997246 0.068778291924075 0.066738278798443 0.064067148886118 0.060686163932737 0.056519296083233 0.051494328163317 0.045543964571516 0.038606861368741 0.030628426546303 0.021561118701647 0.011363855168783 0.000000000000000 0.073751823078479 0.073687108835739 0.073433059756431 0.072899265820413 0.071994647877459 0.070627719738125 0.068706997950418 0.066141510831559 0.062841382412045 0.058718446723179 0.053686856482839 0.047663648761912 0.040569189025813 0.032327371902044 0.022865390463812 0.012112853829431 0.000000000000000 0.075271658825197 0.075232661153302 0.075046974853645 0.074611738421875 0.073824213311564 0.072581762578296 0.070781934318122 0.068322597970455 0.065102128732398 0.061019608505022 0.055974993866098 0.049869210485092 0.042604138923663 0.034082386384870 0.024206764686553 0.012879342818680 0.000000000000000 0.076832734467016 0.076819224228390 0.076701391875752 0.076364084093302 0.075692922376768 0.074574037853118 0.072893861465639 0.070538922462047 0.067395659734811 0.063350235590764 0.058288305457604 0.052094700753419 0.044653038555944 0.035845166986137 0.025550464930327 0.013644919214677 0.000000000000000 0.078379609035478 0.078390895705559 0.078339109444054 0.078097136924534 0.077539232927733 0.076540518732578 0.074976496197970 0.072722536079936 0.069653342863318 0.065642397997857 0.060561354191651 0.054279348072446 0.046662268816247 0.037571920236308 0.026865169858260 0.014393069989035 0.000000000000000 0.079858391048998 0.079893364574999 0.079904636839015 0.079753629916618 0.079303735322595 0.078419571726013 0.076966221326318 0.074808419781068 0.071809697431840 0.067831468785663 0.062732056392075 0.056365649244996 0.048581225060861 0.039221413886552 0.028121451997511 0.015108290718800 0.000000000000000 0.081217589672088 0.081274724363258 0.081344886358420 0.081278704374095 0.080929434498330 0.080151975453936 0.078801811119578 0.076733897371658 0.073801490087475 0.069854903027276 0.064740167110528 0.058297625836559 0.050360466255109 0.040753208725617 0.029290348837986 0.015775296145352 0.000000000000000 0.082408968082340 0.082486277626396 0.082609858164828 0.082620411717239 0.082362032105779 0.081680956375747 0.080424189782103 0.078438081984538 0.075566852617201 0.071651036558708 0.066525789523023 0.060019099409347 0.051949852880100 0.042125822956112 0.030341803441997 0.016378092590824 0.000000000000000 0.083388474300208 0.083483412574669 0.083653379071895 0.083730255683655 0.083550238765157 0.082952248127509 0.081776220790100 0.079861379373164 0.077044480088628 0.073157965615598 0.068027926091677 0.061471914022489 0.053296495516936 0.043294583472588 0.031242751573747 0.016898765465604 0.000000000000000 0.084117351619882 0.084226646695219 0.084433967999928 0.084563824385137 0.084446143196030 0.083914191228833 0.082802533475431 0.080945038831062 0.078172891810310 0.074312472850533 0.069182990882559 0.062593942079586 0.054342224327528 0.044208743943881 0.031954347680548 0.017315486612892 0.000000000000000 0.084563600609706 0.084682947448735 0.084915863217287 0.085081515184752 0.085005638096565 0.084517871730675 0.083449420065282 0.081630845352855 0.078889867420766 0.075049046395770 0.069923282807568 0.063317045877094 0.055020949706306 0.044807735867490 0.032427022120972 0.017598180772988 0.000000000000000 0.084704097454380 0.084827485869462 0.085070195165615 0.085249234592995 0.085188821797707 0.084717359837415 0.083664909179017 0.081860877935198 0.079131809750569 0.075299003275924 0.070175863232324 0.063565113721141 0.055255227329406 0.045016024705603 0.032592949048255 0.017698727956244 0.000000000000000; ]';
Follow ups