--- Begin Message ---
------------------------------------------------------------
revno: 5154
committer: Marie E. Rognes <meg@xxxxxxxxx>
branch nick: dolfin-test
timestamp: Wed 2010-09-01 21:09:26 +0200
message:
Change from a(v, u) to a(u, v) in all documented pde demos. Have not
regenerated .h/.cpp files.
If someone copies these to the fenics-doc, I will make sure that the
documentation matches.
modified:
demo/pde/biharmonic/cpp/Biharmonic.ufl
demo/pde/biharmonic/python/demo.py
demo/pde/cahn-hilliard/cpp/CahnHilliard2D.cpp
demo/pde/cahn-hilliard/cpp/CahnHilliard2D.ufl
demo/pde/cahn-hilliard/cpp/CahnHilliard3D.cpp
demo/pde/cahn-hilliard/cpp/CahnHilliard3D.ufl
demo/pde/cahn-hilliard/python/demo.py
demo/pde/hyperelasticity/cpp/HyperElasticity.ufl
demo/pde/hyperelasticity/python/demo.py
demo/pde/navier-stokes/cpp/PressureUpdate.ufl
demo/pde/navier-stokes/cpp/TentativeVelocity.ufl
demo/pde/navier-stokes/cpp/VelocityUpdate.ufl
demo/pde/poisson/cpp/Poisson.ufl
demo/pde/poisson/python/demo.py
--
lp:dolfin
https://code.launchpad.net/~dolfin-core/dolfin/main
Your team DOLFIN Core Team is subscribed to branch lp:dolfin.
To unsubscribe from this branch go to https://code.launchpad.net/~dolfin-core/dolfin/main/+edit-subscription
=== modified file 'demo/pde/biharmonic/cpp/Biharmonic.ufl'
--- demo/pde/biharmonic/cpp/Biharmonic.ufl 2010-08-31 23:13:38 +0000
+++ demo/pde/biharmonic/cpp/Biharmonic.ufl 2010-09-01 19:09:26 +0000
@@ -3,9 +3,9 @@
# Licensed under the GNU LGPL Version 2.1.
#
# First added: 2009-06-26
-# Last changed: 2009-06-26
+# Last changed: 2010-09-01
#
-# The bilinear form a(v, u) and linear form L(v) for
+# The bilinear form a(u, v) and linear form L(v) for
# Biharmonic equation in a discontinuous Galerkin (DG)
# formulation.
#
@@ -14,9 +14,9 @@
# Elements
element = FiniteElement("Lagrange", triangle, 2)
-# Test and trial functions
+# Trial and test functions
+u = TrialFunction(element)
v = TestFunction(element)
-u = TrialFunction(element)
f = Coefficient(element)
# Normal component, mesh size and right-hand side
@@ -28,10 +28,10 @@
alpha = Constant(triangle)
# Bilinear form
-a = inner(div(grad(v)), div(grad(u)))*dx \
- - inner(avg(div(grad(v))), jump(grad(u), n))*dS \
- - inner(jump(grad(v), n), avg(div(grad(u))))*dS \
- + alpha('+')/h_avg*inner(jump(grad(v),n), jump(grad(u),n))*dS
+a = inner(div(grad(u)), div(grad(v)))*dx \
+ - inner(avg(div(grad(u))), jump(grad(v), n))*dS \
+ - inner(jump(grad(u), n), avg(div(grad(v))))*dS \
+ + alpha('+')/h_avg*inner(jump(grad(u), n), jump(grad(v),n))*dS
# Linear form
-L = v*f*dx
+L = f*v*dx
=== modified file 'demo/pde/biharmonic/python/demo.py'
--- demo/pde/biharmonic/python/demo.py 2010-09-01 16:18:18 +0000
+++ demo/pde/biharmonic/python/demo.py 2010-09-01 19:09:26 +0000
@@ -44,9 +44,9 @@
u0 = Constant(0.0)
bc = DirichletBC(V, u0, DirichletBoundary())
-# Define test and trial functions
+# Define trial and test functions
+u = TrialFunction(V)
v = TestFunction(V)
-u = TrialFunction(V)
# Define normal component, mesh size and right-hand side
h = CellSize(mesh)
@@ -58,13 +58,13 @@
alpha = Constant(8.0)
# Define bilinear form
-a = inner(div(grad(v)), div(grad(u)))*dx \
- - inner(avg(div(grad(v))), jump(grad(u), n))*dS \
- - inner(jump(grad(v), n), avg(div(grad(u))))*dS \
- + alpha('+')/h_avg*inner(jump(grad(v),n), jump(grad(u),n))*dS
+a = inner(div(grad(u)), div(grad(v)))*dx \
+ - inner(avg(div(grad(u))), jump(grad(v), n))*dS \
+ - inner(jump(grad(u), n), avg(div(grad(v))))*dS \
+ + alpha('+')/h_avg*inner(jump(grad(u),n), jump(grad(v),n))*dS
# Define linear form
-L = v*f*dx
+L = f*v*dx
# Create variational problem and solve
problem = VariationalProblem(a, L, bc)
=== modified file 'demo/pde/cahn-hilliard/cpp/CahnHilliard2D.cpp'
--- demo/pde/cahn-hilliard/cpp/CahnHilliard2D.cpp 2010-08-31 22:27:39 +0000
+++ demo/pde/cahn-hilliard/cpp/CahnHilliard2D.cpp 2010-09-01 19:09:26 +0000
@@ -3677,7 +3677,7 @@
{0.188409405952072, 0.023931132287081, 0.787659461760847},
{0.455706020243648, 0.455706020243648, 0.088587959512704},
{0.295266567779633, 0.295266567779633, 0.409466864440735},
- {0.106170269119576, 0.106170269119577, 0.787659461760847},
+ {0.106170269119577, 0.106170269119577, 0.787659461760847},
{0.102717654809626, 0.808694385677670, 0.088587959512704},
{0.066554067839164, 0.523979067720101, 0.409466864440735},
{0.023931132287081, 0.188409405952072, 0.787659461760847}};
@@ -3866,7 +3866,7 @@
{0.188409405952072, 0.023931132287081, 0.787659461760847},
{0.455706020243648, 0.455706020243648, 0.088587959512704},
{0.295266567779633, 0.295266567779633, 0.409466864440735},
- {0.106170269119576, 0.106170269119577, 0.787659461760847},
+ {0.106170269119577, 0.106170269119577, 0.787659461760847},
{0.102717654809626, 0.808694385677670, 0.088587959512704},
{0.066554067839164, 0.523979067720101, 0.409466864440735},
{0.023931132287081, 0.188409405952072, 0.787659461760847}};
=== modified file 'demo/pde/cahn-hilliard/cpp/CahnHilliard2D.ufl'
--- demo/pde/cahn-hilliard/cpp/CahnHilliard2D.ufl 2010-09-01 17:13:12 +0000
+++ demo/pde/cahn-hilliard/cpp/CahnHilliard2D.ufl 2010-09-01 19:09:26 +0000
@@ -2,9 +2,9 @@
# Licensed under the GNU LGPL Version 2.1.
#
# First added: 2006
-# Last changed: 2010-08-31
+# Last changed: 2010-09-01
#
-# The linearised bilinear form a(v, u) and linear form L(v) for
+# The linearised bilinear form a(du, v) and linear form L(v) for
# the Cahn-Hilliard equation.
#
# Compile this form with FFC: ffc -l dolfin -O -f split CahnHilliard2D.ufl
@@ -12,8 +12,8 @@
P1 = FiniteElement("Lagrange", "triangle", 1)
ME = P1*P1
+du = TrialFunction(ME)
q, v = TestFunctions(ME)
-du = TrialFunction(ME)
u = Coefficient(ME) # current solution
u0 = Coefficient(ME) # solution from previous converged step
@@ -35,8 +35,8 @@
f = 100*c**2*(1-c)**2
dfdc = diff(f, c)
-L0 = q*c*dx - q*c0*dx + dt*dot(grad(q), grad(mu_mid))*dx
-L1 = v*mu*dx - v*dfdc*dx - lmbda*dot(grad(v), grad(c))*dx
+L0 = c*q*dx - c0*q*dx + dt*dot(grad(mu_mid), grad(q))*dx
+L1 = mu*v*dx - dfdc*v*dx - lmbda*dot(grad(c), grad(v))*dx
L = L0 + L1
a = derivative(L, u, du)
=== modified file 'demo/pde/cahn-hilliard/cpp/CahnHilliard3D.cpp'
--- demo/pde/cahn-hilliard/cpp/CahnHilliard3D.cpp 2010-08-31 22:27:39 +0000
+++ demo/pde/cahn-hilliard/cpp/CahnHilliard3D.cpp 2010-09-01 19:09:26 +0000
@@ -5171,7 +5171,7 @@
{0.238563056650491, 0.030301481174276, 0.026133252286735, 0.705002209888498},
{0.485731727037113, 0.061696018609146, 0.379578230280591, 0.072994024073150},
{0.342156357895961, 0.043459555653802, 0.267380320411884, 0.347003766038352},
- {0.154572667042115, 0.019633302935485, 0.120791820133903, 0.705002209888498},
+ {0.154572667042115, 0.019633302935485, 0.120791820133902, 0.705002209888498},
{0.174656645238399, 0.022184302640820, 0.730165028047632, 0.072994024073150},
{0.123030632529655, 0.015626939257902, 0.514338662174092, 0.347003766038352},
{0.055580358392082, 0.007059631139555, 0.232357800579865, 0.705002209888498},
@@ -5183,13 +5183,13 @@
{0.087102984988800, 0.087102984988800, 0.120791820133902, 0.705002209888498},
{0.098420473939609, 0.098420473939609, 0.730165028047632, 0.072994024073150},
{0.069328785893778, 0.069328785893778, 0.514338662174092, 0.347003766038352},
- {0.031319994765818, 0.031319994765819, 0.232357800579865, 0.705002209888498},
+ {0.031319994765819, 0.031319994765819, 0.232357800579865, 0.705002209888498},
{0.095219879841715, 0.749664528221693, 0.082121567863443, 0.072994024073150},
- {0.067074241752058, 0.528074388273447, 0.057847603936143, 0.347003766038352},
+ {0.067074241752059, 0.528074388273447, 0.057847603936143, 0.347003766038352},
{0.030301481174276, 0.238563056650491, 0.026133252286735, 0.705002209888498},
{0.061696018609146, 0.485731727037113, 0.379578230280591, 0.072994024073150},
{0.043459555653802, 0.342156357895961, 0.267380320411884, 0.347003766038352},
- {0.019633302935484, 0.154572667042115, 0.120791820133903, 0.705002209888498},
+ {0.019633302935485, 0.154572667042115, 0.120791820133902, 0.705002209888498},
{0.022184302640820, 0.174656645238399, 0.730165028047632, 0.072994024073150},
{0.015626939257902, 0.123030632529655, 0.514338662174092, 0.347003766038352},
{0.007059631139555, 0.055580358392082, 0.232357800579865, 0.705002209888498}};
@@ -5467,7 +5467,7 @@
{0.238563056650491, 0.030301481174276, 0.026133252286735, 0.705002209888498},
{0.485731727037113, 0.061696018609146, 0.379578230280591, 0.072994024073150},
{0.342156357895961, 0.043459555653802, 0.267380320411884, 0.347003766038352},
- {0.154572667042115, 0.019633302935485, 0.120791820133903, 0.705002209888498},
+ {0.154572667042115, 0.019633302935485, 0.120791820133902, 0.705002209888498},
{0.174656645238399, 0.022184302640820, 0.730165028047632, 0.072994024073150},
{0.123030632529655, 0.015626939257902, 0.514338662174092, 0.347003766038352},
{0.055580358392082, 0.007059631139555, 0.232357800579865, 0.705002209888498},
@@ -5479,13 +5479,13 @@
{0.087102984988800, 0.087102984988800, 0.120791820133902, 0.705002209888498},
{0.098420473939609, 0.098420473939609, 0.730165028047632, 0.072994024073150},
{0.069328785893778, 0.069328785893778, 0.514338662174092, 0.347003766038352},
- {0.031319994765818, 0.031319994765819, 0.232357800579865, 0.705002209888498},
+ {0.031319994765819, 0.031319994765819, 0.232357800579865, 0.705002209888498},
{0.095219879841715, 0.749664528221693, 0.082121567863443, 0.072994024073150},
- {0.067074241752058, 0.528074388273447, 0.057847603936143, 0.347003766038352},
+ {0.067074241752059, 0.528074388273447, 0.057847603936143, 0.347003766038352},
{0.030301481174276, 0.238563056650491, 0.026133252286735, 0.705002209888498},
{0.061696018609146, 0.485731727037113, 0.379578230280591, 0.072994024073150},
{0.043459555653802, 0.342156357895961, 0.267380320411884, 0.347003766038352},
- {0.019633302935484, 0.154572667042115, 0.120791820133903, 0.705002209888498},
+ {0.019633302935485, 0.154572667042115, 0.120791820133902, 0.705002209888498},
{0.022184302640820, 0.174656645238399, 0.730165028047632, 0.072994024073150},
{0.015626939257902, 0.123030632529655, 0.514338662174092, 0.347003766038352},
{0.007059631139555, 0.055580358392082, 0.232357800579865, 0.705002209888498}};
=== modified file 'demo/pde/cahn-hilliard/cpp/CahnHilliard3D.ufl'
--- demo/pde/cahn-hilliard/cpp/CahnHilliard3D.ufl 2010-09-01 17:13:12 +0000
+++ demo/pde/cahn-hilliard/cpp/CahnHilliard3D.ufl 2010-09-01 19:09:26 +0000
@@ -2,9 +2,9 @@
# Licensed under the GNU LGPL Version 2.1.
#
# First added: 2006
-# Last changed: 2010-08-31
+# Last changed: 2010-09-01
#
-# The linearised bilinear form a(v, u) and linear form L(v) for
+# The linearised bilinear form a(du, v) and linear form L(v) for
# the Cahn-Hilliard equation.
#
# Compile this form with FFC: ffc -l dolfin -O -f split CahnHilliard3D.ufl
@@ -12,8 +12,8 @@
P1 = FiniteElement("Lagrange", "tetrahedron", 1)
ME = P1*P1
+du = TrialFunction(ME)
q, v = TestFunctions(ME)
-du = TrialFunction(ME)
u = Coefficient(ME) # current solution
u0 = Coefficient(ME) # solution from previous converged step
@@ -35,8 +35,8 @@
f = 100*c**2*(1-c)**2
dfdc = diff(f, c)
-L0 = q*c*dx - q*c0*dx + dt*dot(grad(q), grad(mu_mid))*dx
-L1 = v*mu*dx - v*dfdc*dx - lmbda*dot(grad(v), grad(c))*dx
+L0 = c*q*dx - c0*q*dx + dt*dot(grad(mu_mid), grad(q))*dx
+L1 = mu*v*dx - dfdc*v*dx - lmbda*dot(grad(c), grad(v))*dx
L = L0 + L1
a = derivative(L, u, du)
=== modified file 'demo/pde/cahn-hilliard/python/demo.py'
--- demo/pde/cahn-hilliard/python/demo.py 2010-08-31 22:27:39 +0000
+++ demo/pde/cahn-hilliard/python/demo.py 2010-09-01 19:09:26 +0000
@@ -48,9 +48,9 @@
V = FunctionSpace(mesh, "Lagrange", 1)
ME = V*V
-# Define test and trial functions
+# Define trial and test functions
+du = TrialFunction(ME)
q, v = TestFunctions(ME)
-du = TrialFunction(ME)
# Define functions
u = Function(ME) # current solution
=== modified file 'demo/pde/hyperelasticity/cpp/HyperElasticity.ufl'
--- demo/pde/hyperelasticity/cpp/HyperElasticity.ufl 2010-08-31 14:41:10 +0000
+++ demo/pde/hyperelasticity/cpp/HyperElasticity.ufl 2010-09-01 19:09:26 +0000
@@ -2,9 +2,9 @@
# Licensed under the GNU LGPL Version 2.1.
#
# First added: 2009-09-29
-# Last changed: 2010-08-21
+# Last changed: 2010-09-01
#
-# The bilinear form a(v, u) and linear form L(v) for
+# The bilinear form a(du, v) and linear form L(v) for
# a hyperelastic model.
#
# Compile this form with FFC: ffc -l dolfin -feliminate_zeros -fprecompute_basis_const -fprecompute_ip_const HyperElasticity.ufl
@@ -12,9 +12,9 @@
# Function spaces
element = VectorElement("Lagrange", "tetrahedron", 1)
-# Test and trial functions
+# Trial and test functions
+du = TrialFunction(element) # Incremental displacement
v = TestFunction(element) # Test function
-du = TrialFunction(element) # Incremental displacement
# Functions
u = Coefficient(element) # Displacement from previous iteration
=== modified file 'demo/pde/hyperelasticity/python/demo.py'
--- demo/pde/hyperelasticity/python/demo.py 2010-08-31 21:39:02 +0000
+++ demo/pde/hyperelasticity/python/demo.py 2010-09-01 19:09:26 +0000
@@ -38,8 +38,8 @@
bcr = DirichletBC(V, r, right)
# Define functions
+du = TrialFunction(V) # Incremental displacement
v = TestFunction(V) # Test function
-du = TrialFunction(V) # Incremental displacement
u = Function(V) # Displacement from previous iteration
B = Constant((0.0, -0.5, 0.0)) # Body force per unit mass
T = Constant((0.1, 0.0, 0.0)) # Traction force on the boundary
=== modified file 'demo/pde/navier-stokes/cpp/PressureUpdate.ufl'
--- demo/pde/navier-stokes/cpp/PressureUpdate.ufl 2010-08-31 19:13:39 +0000
+++ demo/pde/navier-stokes/cpp/PressureUpdate.ufl 2010-09-01 19:09:26 +0000
@@ -2,9 +2,9 @@
# Licensed under the GNU LGPL Version 2.1.
#
# First added: 2010-08-30
-# Last changed: 2010-08-31
+# Last changed: 2010-09-01
#
-# The bilinear form a(v, u) and linear form L(v) for the pressure
+# The bilinear form a(u, v) and linear form L(v) for the pressure
# update step in Chorin's method for the incompressible Navier-Stokes
# equations.
#
=== modified file 'demo/pde/navier-stokes/cpp/TentativeVelocity.ufl'
--- demo/pde/navier-stokes/cpp/TentativeVelocity.ufl 2010-08-31 19:13:39 +0000
+++ demo/pde/navier-stokes/cpp/TentativeVelocity.ufl 2010-09-01 19:09:26 +0000
@@ -2,9 +2,9 @@
# Licensed under the GNU LGPL Version 2.1.
#
# First added: 2010-08-30
-# Last changed: 2010-08-31
+# Last changed: 2010-09-01
#
-# The bilinear form a(v, u) and linear form L(v) for the tentative
+# The bilinear form a(u, v) and linear form L(v) for the tentative
# velocity step in Chorin's method for the incompressible
# Navier-Stokes equations.
#
=== modified file 'demo/pde/navier-stokes/cpp/VelocityUpdate.ufl'
--- demo/pde/navier-stokes/cpp/VelocityUpdate.ufl 2010-08-31 19:13:39 +0000
+++ demo/pde/navier-stokes/cpp/VelocityUpdate.ufl 2010-09-01 19:09:26 +0000
@@ -2,9 +2,9 @@
# Licensed under the GNU LGPL Version 2.1.
#
# First added: 2010-08-30
-# Last changed: 2010-08-31
+# Last changed: 2010-09-01
#
-# The bilinear form a(v, u) and linear form L(v) for the velocity
+# The bilinear form a(u, v) and linear form L(v) for the velocity
# update step in Chorin's method for the incompressible Navier-Stokes
# equations.
#
=== modified file 'demo/pde/poisson/cpp/Poisson.ufl'
--- demo/pde/poisson/cpp/Poisson.ufl 2010-01-02 16:26:46 +0000
+++ demo/pde/poisson/cpp/Poisson.ufl 2010-09-01 19:09:26 +0000
@@ -2,19 +2,19 @@
# Licensed under the GNU LGPL Version 2.1.
#
# First added: 2005
-# Last changed: 2009-09-08
+# Last changed: 2010-09-01
#
-# The bilinear form a(v, u) and linear form L(v) for
+# The bilinear form a(u, v) and linear form L(v) for
# Poisson's equation.
#
# Compile this form with FFC: ffc -l dolfin Poisson.ufl.
element = FiniteElement("Lagrange", triangle, 1)
+u = TrialFunction(element)
v = TestFunction(element)
-u = TrialFunction(element)
f = Coefficient(element)
g = Coefficient(element)
-a = inner(grad(v), grad(u))*dx
-L = v*f*dx + v*g*ds
+a = inner(grad(u), grad(v))*dx
+L = f*v*dx + g*v*ds
=== modified file 'demo/pde/poisson/python/demo.py'
--- demo/pde/poisson/python/demo.py 2010-08-31 21:39:02 +0000
+++ demo/pde/poisson/python/demo.py 2010-09-01 19:09:26 +0000
@@ -34,12 +34,12 @@
bc = DirichletBC(V, u0, boundary)
# Define variational problem
+u = TrialFunction(V)
v = TestFunction(V)
-u = TrialFunction(V)
f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)")
g = Expression("sin(5*x[0])")
-a = inner(grad(v), grad(u))*dx
-L = v*f*dx + v*g*ds
+a = inner(grad(u), grad(v))*dx
+L = f*v*dx + g*v*ds
# Compute solution
problem = VariationalProblem(a, L, bc)
--- End Message ---