HelenOS networking

Table of Contents

IR 011 €00 1 [o o SO OSPS 3
1.1. Goals and achievements Of the ProjECEccceevveie e 3
2. HEleNOS ArChItECIUINE OVEIVIEWWocuiiiiriiiiiiiieiieee ettt b e bbbt e et s e b e sbenreas 4
28 O | TSP 4
2.2. HElenOS networking arChiteCtUIEccvoeeveeecesie et 4
2.3. Devide Driver Framework (DDF) ..o ee sttt sne s 5
2.4, MemOry MaNAGQEIMENTcoiiieieiieeeiieeerieeesire e st e ste e e sbe e e sse e e sabe e s ssbe e e ssseesaseeessseesbeeesneeennnes 6
3. NIC Framework arChiteCIUIeoooiiiiiiiceee et 7
3.1, Framework OVEIVIEIWcooiiuiriiieieiesie sttt ettt ettt ne e 7
3.2, NIC INtErfaCe IN DDF ..o ettt st b b 7
3.3. NIC INterface MENOUSoiiriiiieee et b e 9
3.4. NIC driver structure and lHDNICcoooveiiiiiiicee s 12
R B (A< g ot V7 o] USSP P PP 16
4. DIMA INEEITACE ..ottt bbbt bbbt e et e b e e et st esbe bt nneenes 17
g T 1 0 L8 o1 o o USRS PPN 17
4.2. Userspace methods and SYSCallSccoveiriieieie et 17
G T (= 1 1= I =T S 19
4.4, DMA MEIMOTY SEIVELoeiiiiiieiiieesieeesiteesssteesssaeessseeesseeesseeesseesssseesasseesasseesasseesaseeesseessases 22
4.5. DMA controller FrameWOIKcooieiiiiiiseseseseeee et e 25
4.6. Writing basic driver using DMA DUS MASENNGcccecueveereeiienieseeiee e eee e e eee s 27
4.7. Writing driver using SCatter/gatherccceiveie e 27
5. Implemented and INtEGrated ArVEN'Sccveceeiieie et re e sreeee e 29
o300 R 0o o] o o QUSSR 29
5.2, REAITEK RTLBL39 ...ttt bbbttt e et st ne e ne e 29
TG 11 (= =i 000 PSSP P PR 31
5.4. NOVEI NE2000cooiiiiiriiitisiesieeieeie ettt ss et sa b bt e et e e e bt sbesbesneenes 32
T a0 K30 =< Lo 0= S 33
6.1. NIC configuration Utility = NICCONTceiieiiee e 33
6.2. NIC testing tOO] = NICIESEcceeiieeeeiiesie et e e aeeneesreeneeneens 34
(GG I o [To TS U o oo g (R 37
7. Changes Not related 10 NICE ... re e 38
7.1, PlO IMPIOVEMENLSocveeiieeieiieesieeieseesteeeesseesseesesseesseessesseesseessssseessesssesseesseensessenssesnsessesns 38
7.2. DDF callback device added()coovevereerieiesiese et 38
7.3. Hardware reSOUICES PArSINGcccueeuereesieeieseesseessesseesseessessesssesssessesssesssessssssesssessesssesssesseens 38
A o O 141 1= 1 F=ot USRS TP 38
7.5. ILAummy NEWOrK MOTUIEcovieeiieeeie ettt e e e e nnn 39
8. HOW 10 WITE @ NIC OIIVES ..ottt bbbt nne e 40
S 300 IR O 09T o] > 1o o SRS 40
8.2. CONfIGUIAiON TIIES ...eeiieeeee e e s e reeneesreenneennens 40
8.3. DDF and NICF INTEGIalioncccueieeieriesiesieeieeseesieseesreeseeseesseeseesseesseesseseesseessessessseensenns 41
8.4. SeNAING AN FECEIVING ...ecuviiuieieeiesiereeieseeste e e ste et e e teeeesreesseesaesseesaeeseesreesseeneesneensens 44
LSRN AN 0 \VZ=Ta or='s B0 0= = 1 o 1SS 46
LS I I AV g (= 11 o 48
S0 Ao | ST RPRR 48

HelenOS networking

S A o 1 o]0 12" o P 48
LSRG T N o (= PSPPSR 48
10. USEr dOCUMENTALIONeveiieiieiieiesie ettt sttt e b e bbb e bt et e e s et e benbesaenre e 51
10.1. SUPPOItEd PIALFOIMISeeeiececeee ettt re e sneens 51
10.2. CDROM CONEENEooiueiiieesieieieesee et e s e e e e s e e ssseesseesareesneesnneesneesmreesneesnneesseesnneesneesnnes 51
10.3. SysStemM COMPIBLIONocviieieiecieciese e e et e e e ae e esne e reeneesneeneens 51
10.4. Running the system in QEMUooviiiiiiieeececeee et 52
10.5. NICCONT ULHITY vvenveeeee ettt ae e sre e seennesneenneennens 53
O N o (= ST 53
11, FULUrE dEVEIOPMENTooiece ettt ettt et et e s re e s e e e e e neenne et e sneenreenne e 54
O Yo = [AV SRR 54
11.2. DMA framework future develOpMENTccoiiiiiiiere e 54
11.3. Support for MUILIPOIT NICSoceeeeceece et e s re e re e 54
11.4. POWEr MANAGEIMENTeeiiiiieiiiieesteeesiteesstteessie e e sbee e sbe e s ssbe e e ssbe e e satessseeesseeesseeesnseeesnneeensnes 54
11.5. REMOVADIE NICS ...ttt sttt st b bbb nneas 54
F N NN O T 10 £ = o= ST PPRR 55
B. NICF Default handlers SUMMEBIYcocvecieieiieie et see e e sae e sreenaesneesseeneesneens 58
(O o o= 1 0= 11 T S SPSTSO 60

HelenOS networking

1. Introduction

Thismanual describes the support for writing network interface controllers (aka NIC's) in HelenOS
operating system. It isintended mainly for devel opers who want to write NIC drivers or software
tightly cooperating with lower layers of network stack (such as firewalls or the networking stack
itself). This manual aso contains the description of DMA support developed by part of NIC
development support.

1.1. Goals and achievements of the project

HelenOS is microkernel operating system which means the kernel itself tends to be as small as
possible and the tasks including device drivers should run in userspace. The networking support isthe
important part of the modern operating system. By the time when this project started HelenOS already
featured partly functional networking stack with basic TCP, UDP, ARP and I P protocols support as
well asasimple Novell NE2000 NIC driver ported from the Minix operating system. However this
driver operated only through basic port 1/0 and lacked any higher functionality.

The completion of this project provided a unified way how to easily write NIC drivers with DMA
support. We have proved the concept by developing a driver for Realtek RTL8139 network card
with full exploitation of its abilities, including hardware packet filtering, autonegotiation support
and another features. We have also developed afully operational driver for Intel E1000 and ported
existing Novell NE2000 driver to the NIC framework.

The new DMA interface allows privileged processes to allocate memory from various physical ranges
or query information about already allocated parts of memory.

All significant operating systems like Linux, BSD family, MINIX or GNU Hurd contains the DMA
memory support, functions for making development of the network controller devel opement and
several network interface controllers drivers, the HelenOS obtains this abilities by this project.

We have completely meet the goals of project’s submission including the optional parts.

Uhttp:/helenos.org

http://helenos.org

HelenOS networking

2. HelenOS Architecture Overview

This section provides an overview about NIC and DMA related architecture existing in HelenOSin
the time of the project start

2.1. IPC

In HelenOS microkernel operating system drivers are userspace processes, which are divided from
kernel. It means, when adriver of adevicefails, it can be replaced by a new running instance without
system restart. But because this division of drivers from kernel, there must be a method, how to pass
data between two processes.

In HelenOS the way, how to pass data between processes, is passing messages. For this passing is
used IPC framework. It is asynchronous, it means, process which passes a message does not wait until
itisdelivered and can continue it’s work. Of course thereis away, how to wait for answer to sent
request.

2.2. HelenOS networking architecture

Unlike most monolithic operating systems the network stack in HelenOS is not a part of the kernel.
Asamatter of fact it is distributed between several processes, one for each layer and protocol - these
are called modules in the network stack architecture. Originally there was an option to bundle some
of the modulesinto processes together for the sake of higher performance but this option was already
abandoned, although some parts of code can suggest its previous existence.

Figure 1. Modulesin sent/received packet processing in HelenOS

Application

IL (ip) «~— NIL (eth) +~—— NIC

It is worth mentioning that both the overall design of the network stack and the actual implementation
are not meeting HelenOS quality standards and are subject to change in near future but the
interconnection between networking stack and NIC framework should prevail.

Aside from apparent modules for network protocols (as TCP or UDP) thereis a central service/ srv/
net called NET further in this documentation. This service starts protocol’ s modules and reads both
common and NIC device' s configuration from the/ cf g/ net / directory (in sources thisisfound under
/ uspace/ srv/ net/ cf g/). This service manages the configuration and distributes it between modules
which query for it. The assignment of the configuration file to the interface is based on the devices
hardware path.

The packet is represented by packet _t structure. Its instances are allocated by the NET server and
distributed by memory sharing through al the system. The packets are identified by whole system
unique identificator system and there is native support for storing packets in packet queues linked
by itsidetificators. This attitude allows to pass more than one packet in time but it also leads to the
system inconsistency danger.

More detaizled description of the HelenOS networking can be found in the master thesis of Lukas
Mejdrech <.

2LukasM gjdrech: Networking and TCP/IP stack for HelenOS system; 2009; http://www.helenos.org/doc/theses/Im-thesi s.pdf

4

http://www.helenos.org/doc/theses/lm-thesis.pdf

HelenOS networking

2.3. Devide Driver Framework (DDF)

In HelenOS neither the drivers are running in kernel mode but these take the form of common
userspace processes, communicating with other tasks through IPC. Kernel intervention is required
only for certain privileged operations such as interrupt handling, port 1/0 enabling or physical
memory allocation.

As amatter of fact, there are still some driversin the kernel because moving them into userspace
would be impractical but these are only few and these will be not discussed here. NIC drivers, which
are of our interest, are completely userspace processes, although trusted ones (these possess some
higher privileges than common tasks).

The DDF architecture is deeply described in the master thesis written by Lenka Trochtova 3 the
overview of partsrelated to project follows.

Services and driver starting

Device Driver Framework consists of the central Device Manager service (aka DevM an) and the very
driverslocated inthe/ dr v/ directory. When DevMan boots it probes which drivers areinstalled in
the system and which devices these drivers support. Thisis done through . ma files associated with
each driver identifying the supported devices. Each linein the . na file contains identificator priority
(how good is the driver for such device) and hardware identificator (match id). The match id for the
PCI device containsits vendor id and device id, the example of configuration line for PCI device with
the vendor id 10ec and deviceid 8139 isin Example 1, “Configuration line for PCI device’.

Example 1. Configuration linefor PCI device

10 pci/ven=10ec&dev=8139

After getting the informations from the . ma files the DevM an starts the root hardware driver and
virtual device driver. Busdrivers report child devices to the DevM an which chooses the best
suitable driver based on given match id. If the driver is not running the DevM an startsit and invokes
add_devi ce() callback on the driver side by IPC message. Then the driver initializes the device and
informs DevM an about success/unsuccess by the callback return value.

Communication with the device

Starting the driversis only afirst part of DDF functionality. The second one isto provide a uniform
way how to communicate with the devices.

Each device isidentified by a URI-like path, called hardware (HW) path or DDF path later in this
manual. Task which wants to communicate with the device' s driver sends this path to DevM an and
this responds with a phone to the driver already associated with the particular device.

Example 2. Hardwar e path of the PCI device

/ hw/ pci 0/ 00: 03. 0/ port O

3Lenka Trochtova: Device drivers interface in HelenOS system; 2010; http://www.helenos.org/doc/theses/It-thesi s.pdf

http://www.helenos.org/doc/theses/lt-thesis.pdf

HelenOS networking

Communication on the phone should follow the DDF interface supported by the device. Thisis
asimple set of RPC methods that can be called on the device. Unfortunately the RPC stubs and
skeletons (code packing and unpacking the method must be written manually. However it isnot a
responsibility of driver’s author to write this code, it is aready provided in libraries (1 i bc on client
sideand | i bdrv ondriver side).

Interrupt handling

The interrupts are mostly processed in the userspace. In the case of level triggered devicesthereis
anecessity of handling the interrupt before leaving the kernel - the device must clear the interrupt
before kernel enables the interrupts again. The interrupt handling is divided to two parts - kernel
part defined by pseudocodeini r q_code_t structure instance and userspace handler, both passed
to DDF and kernel by r egi st er _i nt errupt _handl er () function. The driver must include <ddf /
i nterrupts. h>fromlibdrv toincludeinterrupt handling part of DDF.

2.4. Memory management

Kernel memory management consists of two basic layers - frame allocator and virtual memory
manager.

The HelenOS uses the buddy allocator for frame allocation, the allocation is possible by the power of
two chunks of frames only.

The virtual address spaceis divided into continuous address space areas represented by as_ar ea_t
structure. The different areas needs different management thus memory backend is assigned to each
area. The backend is responsible for the page faults handling, proper sharing, resizing or destroying
whole area. The example of such backend is anonymous space area backend (anon_backend)
implemented in the ker nel / generi ¢/ sr c/ backend_anon. ¢ handling common memory without
specific requirements for physical addresses.

The memory sharing isinvoked by the IPC communication between the participated processes, the
kernel waits until the sharing is confirmed and crates new memory area managed by the same backend
asthe areain the original process. The backend is notified about area sharing during the first sharing
request and it should initialize structure containing the memory sharing information.

HelenOS networking

3. NIC Framework architecture

NIC Framework evolved from the former network stack architecture exploiting the merits of the
Device Driver Framework. Its first objective was to design and implement the DDF interface for
network interface controllers and setup the existing drivers for DDF. Another objective was to identify
the code common for most drivers and extract it to the library - for example the driver does not need
to implement all setters/gettersfor various settings, the driver implements only the change event
handler. The general conception was to keep the driver minimalistic, only controlling the hardware
and to concentrate all added-value features into the library.

3.1. Framework overview

The framework consists of the NIC interface added to the Device Driver Framewor and | i bni ¢
library which contains default handlers for the most of NIC and DDF interface parts and supporting
functions for the NIC driver development. The structure of driver implemented by using NIC
framework is shown in Figure 2, “ Driver structure overview”.

Figure 2. Driver structure overview

DDF
General driver . libnic
T NIC interface supporting
] ! functions
Default action implementations
] libdma

Driver hand written code

== direct communication NIC framework and libdma part

One god of the framework was the reduction of hand written driver code thus the default
implementations were added to all possible interface functions. The NIC interface will be described
in Section 3.2, “NIC interface in DDF” and Section 3.3, “NIC Interface methods” , the libnic will be
described in Section 3.4, “NIC driver structure and libnic”.

The DMA support library and other tools will be described in Section 4, “DMA interface”.

3.2. NIC interface in DDF

Hereisabrief example how is application request - procedure call - translated into |PC and back into
procedure call on the driver side. Requests which send and receive multiple arguments and blocks

of data are more complicated, of course. The overall functionality is a part of the Device Driver
Framework but the actual implementation of the RPC stubs was required during the NIC Framework.
Detailed description of concrete methods in the interface will follow in Section 3.3, “NIC Interface
methods’, the table of default handlers and its requirementsisin the Appendix B, NICF Default
handlers summary.

HelenOS networking

Application side

All IPC communication encapsulation was added to | i bc to the <devi ce/ ni c. h>. The function
marshalls argumentsinto an |PC call together with the interface (DEV_I FACE_I D(NI C_DEV_| FACE))
and method identifiers (NI C_SEND_MESSAGE in the example below). Then it verifies that the return
code is correct (otherwise it returns EPARTY) and unmarshalls the output arguments.

The example method below has no output arguments, therefore nothing needs to be unmarshalled
back. Many methods also send or receive blocks of data - in these cases the stub is rather more
complicated.

Example 3. Application-side function implementation

i nt nic_send_nessage(int dev_phone, packet id_t packet _id)

{
int rc = async_req_2_ 0(dev_phone, DEV_|FACE | D(NI C DEV_I FACE),
NI C_SEND MESSAGE, packet id);
if (rc 1= EOK & rc = EINVAL && rc != EBUSY) {
return EPARTY;
}
return rc;
}
Driver Side

The driver side of interface contains two tightly related structures. remote interface and nic
interface. The remoteinterfaceishardcoded inthel i bdr v whilethe nic interfaceis provided by
driver, although usualy partialy filled with default methods provided from the NICF.

When a IPC request comes the service routine is picked from the remote interface. Thisroutineis
responsible for IPC communication, decoding parameters and obtaining all request-related data and
calling the proper callback from nic interface. The remote interface functions will be referred as
remote functionsin further text.

Both interfaces were added to 1 i bdr v to the uspace/ | i b/ dr v directory. Remoteinterfaceis
defined inuspace/ i b/ drv/ generic/rempte_nic.c andit consistsof remote_nic_iface
instance of r enot e_i nst ance_t structure containing array of callbacks to remote wrappers and the
implementation of these wrappers.

Example 4. Remote function implementation

static void renbte _ni c_send nessage(ddf fun_t *dev, void *iface,
ipc callid t callid, ipc_call_t *call)

{
/* Get the interface of call backs */
nic iface t *nic_iface = (nic_iface t *) iface;
/* Decode cal |l back argunment fromthe | PC nessage */
packet id t packet id = (packet _id t) |IPC GET_ ARX(*call);
/* Call the proper high-Ievel callback */
int rc = nic_iface->send _nessage(dev, packet id);
/* Return the result */
async_answer _O(callid, rc);
}

HelenOS networking

Thenic interfaceisdefined in structureni c_i face_t declaredin <ops/ nic. h>inlibdrv. The
interface consists from some mandatory and optional functions - the mandatory callbacks (as
send_nessage()) must be implemented by driver. Inlots of cases the default implementation of the
callback can be used to decrease amount of hand written code. The functionality descriptions as the
default implementation will be described in following sections.

3.3. NIC Interface methods

The NIC interface is designed to allow to use the most of features the network controller offers.

Initialization

The deviceitself does not know which NIL (network interface layer) module will be used for the
device. Theconnect _to_ni | () calback isresponsible for connecting driver to the NIL service given
as parameter.

Device states

The device can be in one of following state: active (NI C_STATE_ACTI VE), down (NI C_STATE_DOWN)
and stopped (NI C_STATE_STOPPED). The states diagram with possible transitionsisin the Figure 3,
“NIC states diagram”.

Figure 3. NIC statesdiagram

driver

—arn— Stopped Active

T~ Down —

In the stopped and down states the device does not transmit nor receives packets. The difference
between these states is that the device sets all propertiesto its defaults when entering to stopped state
and keeps the settings when enters down state.

The interface part for the state changing isthe get _st at e() andset _st at e() callbacks, both
mandatory.

Packet sending and receiving

The packet sending and reception is alowed only in active state.
The mandatory send_nessage() callback must be implemented for sending packets to the network.

When a packet comes from network it is reported to NIL layer through an IPC message - this goes out
of scope of the NIC interface provided by DDF. Packet reception is expected to be done either upon
an interrupt or through device polling. Severa device polling modes can be set by optional interface
part - pol | _set _nmode(), pol | _get _node() and pol | _now() . The available modes with description
are described in Table 1, “Available polling modes’. The device polling should do all the staff asthe
interrupt would do, no interrupts are expected in on demand and softwar e periodic modes.

HelenOS networking

Table 1. Available polling modes

Mode |Enumeration value Description
immediate|NI C_POLL_I MVEDI ATE The device polling isinvoked by interrupt
immediately after packet reception
on NI C_POLL_ON_DEMAND The device polling isinvoked explicitly by

demand pol I _now() callback

periodic (NI C_POLL_PERI ODI C The device polling isinvoked in specific periodic
intervals

software [Nl C_POLL_SOFTWARE_PERI CDI C The same as periodic but the period isinvoked by

periodic software

MAC address

The NIC address can be changed by optional set _address() callback, theget _address() callback
for obtaining the MAC address is mandatory.

Filtering

The driver can set what kind of packets are accepted. This functionality is optional, the promiscuity
mode (accept whatever comes) is supposed in the case the driver does not support thisinterface
parts. The filtering of unicast packets should be set by uni cast _set _node() and obtained by

uni cast _get _node() . The possible modes are in Table 2, “Unicast filter modes”

Table 2. Unicast filter modes

Mode |Enumeration value Received unicast packetstar get

blocked |NI C_UNI CAST BLOCKED None accepted

default |NI C_UNI CAST_DEFAULT sent to devices physical address

list NI C_UNI CAST_LI ST devices physical address or the address from the list

promisc [Nl C_UNI CAST_PROM SC all unicast packets

The multicast and broadcast filters can be set by the same way as the unicast - by

mul ti cast _set _node() and nul ti cast _get _node(), resp. br oadcast _set _node() and

br oadcast _get _node() . The multicast modes arein Table 3, “Multicast filter mode”, the broadcast
mode can be either accepting (Nl C_BROADCAST_ACCEPTED) or blocking (NI C_BROADCAST _BLOCKED).

Table 3. Multicast filter mode

Mode Enumeration value Recelved multicast packetstarget
blocked |NIC_MULTI CAST_BLOCKED |None accepted
list Nl C_MULTI CAST_LI ST one of multicast addressin the list

promisc |NI C_MULTI CAST_PROM SC |all multicast packets

The possibility to block packets from some sources can be enabled by implementing
bl ocked_sour ces_set () and bl ocked_sour ces_set () - no packets with the source address on the

10

HelenOS networking

list should be accepted. Some defective packet reception (bad CRC or runt packets (shorter than 60B))
can be set and detected in def ecti ve_set _node() and def ective_get node() calbacks. If not
implemented, no such packets should be received. The possible defective packet types are set as bits
defined by NI C_DEFECTI VE_ macrosin <net / devi ce. h> header in| i bc.

Operation mode, flow control and autonegotiation

The NIC controllers can set its speed, duplexity (full/half duplex) and role (master or slave, gigabit
ethernet only), which can be either set by hand or autonegotiated. The autonegotiation is the
preferred way and the driver should enable it by default if supports, but thisis only recommendation.
Implementation of this functionality isonly optional.

The callback for manual settingisset _oper ati on_node() , the mode can be obtained by

get _oper ati on_node() . The autonegotiation can be enabled by aut oneg_enabl e() callback,
disabled by aut oneg_di sabl e() , new autonegotiation isforced by aut oneg_restart () and the
current autonegotiation setting can be obtained from aut oneg_pr obe() . If the autonegotiation is
enabled, the manual setting is discarded and replaced by the autonegotiated, if the manual setting is
forced, autonegotiation should be disabled automatically.

The autonegotiation advertisement is passed by bitmask of ETH AUTONEG macros

defined in <net / et h_phys. h>inli bc. For example ETH_ AUTONEG 10_BASE T_HALF |

ETH AUTONEG 10_BASE T_FULL isused for forcing autonegotiation of 10MBit half and full duplex
modes. The zero advertisement means "all supported by driver”. The driver should return error value
if some unsupported mode is requested rather than silently enable unsupported mode.

The flow control can be also set manually or be autonegotiated. In some autonegotiated modes

the controller can allow setting flow control modes. The flow control setting should not disable
autonegotiation, error code should be returned instead. The flow control setting can be taken by

get _pause() callback, it can be set by set _pause() callback. When forced time of pause packet is
not supported by the controller (but the pause packet transmition can be enabled), the nearest possible
time supported should be set. The time value O lets driver choose the best suitable time.

Device statistics and information

The device should keep and updated statistics in the instance of ni c_devi ce_stats_t structure. The
statistics can be requested by get _st at s() callback.

Another useful informations, like supported ethernet physical layers or supported autonegotiation
modes, can be requested by get _devi ce_i nf o() callback. The actual status of cable connection
should be obtained by get _cabl e_st at e() callback.

Implementation of all these callbacksis optional.

Offload computing

Computation of IP, TCP and UDP checksums requires massive CPU sources. Some NIC' s are trying
to ease the CPU and verify the checksum automatically, displaying the result in asingle bit and filling
the checksums into transmitted packets.

Ability to do this can be probed through of f | oad_pr obe() callback and requested mode set through
of f1 oad_set () . Then the driver can fill in the verification result into the offload info through
packet _set _of f1 oad() and higher layers may consider the bits.

11

HelenOS networking

VLAN support

Some cards have the possibility to automatically tag and untag frames by a 12-bit identifier, called
VLAN tag. This behaviour can be controlled through vl an_set _t ag() callback. The presence of
desired tag (maybe stripped) should be indicated in the offload field of the packet.

Similarly, the packets can be just filtered according to the tag. Because the 12-bit identifier space
is pretty narrow, the filtering can be perfectly specified through a 512-byte mask. See callbacks
vl an_set _mask() andvl an_get mask().

Wake-on-LAN

NIC interface considers also NICs which offer the possibility to wake the computer up. There are
multiple types of frames that can cause the wake up - these are called WOL virtues. Combinations

of virtues are sometimes complicated. The currently allowed combination of virtues can be
determined up by calling thewol _vi rtue_get _caps() . New virtues are added or removed through
wol _virtue_add() andwol _virtue_renove() calbacks, currently active virtues are listed through
wol _virtue_list() and their type and parameters through wol _vi rt ue_pr obe() . When the
computer boots after a wakeup event, some information about the frame that has woken the computer
can be loaded through wol _I oad_i nf o() .

3.4. NIC driver structure and libnic

Thel i bni c library was developed for the NIC controller drivers development. It contains some
helper stuff and default implementation of the NIC interface functionalities. Its source root directory is
uspace/ | i b/ ni c. The header file the driver should include is <ni c. h> where all functions supposed
to be used by driver are defined. The rest of headers is considered library-internal and compilation
fails upon including them in the driver.

Themain structureinthel i bni c isni ¢_t definedin<ni c_dri ver. h>. This structure contains

data needed by general NIC driver like MAC address currently assigned, connections to the DDF
structures, phones to other parts of networking (NET server, NIL layer). The structureis not directly
accessible by the driver for safety reasons, framework functions must be used for the structure

mani pulation, more information about the ni ¢_t access can be found in the section called “ Accessing
the nic_t structure”.

One important part of thel i bni c library are the default handlers for NIC and DDF interface requests.
The handlers provides the preprocessing and postprocessing of the request data and the hand written
code is needed only for the parts where hardware cooperation is expected, some of the default
handlers are able to provide whole request.

The description of default handlersis placed in the feature support description. The framework
convention is that the default handler of "cal | back() " isimplemented by "ni c_cal | back_i mpl ()"
infileuspace/ 1i b/ ni c/ generi ¢/ ni c_i mpl . c. The brief summary of the default handlers
requirements can be found in Appendix B, NICF Default handlers summary.

Driver Initialization Support

Thel i bni ¢ containsfunction ni c_dri ver _i ni t () which should be called when the driver starts
- itinitializesinternal i bni ¢ structureslike internal logging and initializes packet manager. Next

12

HelenOS networking

the driver should initialize all DDF interfaces and call ni ¢_dri ver _i npl ement () function which
replaces unimplemented functions by default implementations if possible.

Device Initialization Support

Deviceinitialization should be done in add_devi ce() calback. Theni c¢_t instance should be
created by ni c_creat e_and_bi nd() function, which also initializes it and connectsto the DDF
device structures, From this moment the conversion between ni ¢_t, ddf _fun_t and ddf _dev_t
can bedone by ni c_get _from ddf _dev(), nic_get_fromddf_fun(), nic_get_ddf_fun() and
ni c_get _ddf dev().

The device can set pointer to its private data structure by ni c_set _speci fi c(), the pointer

can be obtained by ni ¢c_get _speci fi c() method. Theni c_t instanceisthe owner of the

assigned private data memory, the memory will be deallocated together with ni ¢_t instance. The

ni ¢c_unbi nd_and_dest roy() removesni c_t structure from the DDF infrastructure and deall ocates
the memory.

The device should report its default MAC address by ni c_r eport _address() to the framework to
allow proper checking of request validity, this should also be done together with all MAC address
changes.

Asthefinal step the device should connect itself to the NET server and APIC controller
by calling ni c_connect _to_servi ces() and register itself into DDF structures by
nic_register_as_ddf _fun().

In the following devi ce_added() callback the device should call theni c_ready() to notify NET
service that the driver is prepared to work. The default implementation for devi ce_added() callback
provide this notification.

Device state handling

The state handling is provided by default implementations of set _st at e() and get _stat e()
handlers.

Theget _st at e() default handler just returns the current device state stored inni c_t structure.
Theset _st at e() handler notifies the driver about the change by calling on_acti vat ed(),
on_st opped() Or on_goi ng_down() callback

When moving to the stopped state the framework resets all the settings to its defaults and calls

the proper callbacks to propagate the settings to the driver. In the on_st opped() state the driver
should reset the controller. When moving to the down state the driver can turn the device off but the
controller settings must be restored when activating again.

Packet transmition support

The packets to send are given to the framework by send_message() callback by ID of the first packet
in the queue to send. The default implementation of this callback checks the device state, then goes
through the queue, checks each packet validity, obtainsits data from the NET server in packet _t
structure, and goes through all packetsin the queue to send and callswr i t e_packet () callback

13

HelenOS networking

assigned to the device. The implementation of wri t e_packet () callback is send the checked packet
to the network through hardware.

Thewrite_packet () callback must be assigned to the device by
ni c_set _write_packet handl er () function during the device initialization.

If the driver is not able to send more packets because of full transmition buffers, it can set the
"Transmitter busy" sign by ni c_set _t x_busy() function, the default implementation will discards
packets until the busy signis cleared (set to 0).

After the packet transmition isfinished, theni c_r el ease_packet () should be call to release the
packet from the system. It is not done by default implementation because sometimes the packet cannot
be released until the interrupt comes to confirm its transmission. Here should be the packet released in
the interrupt handler long after the send_message() callback has been served.

Packet reception

The driver must process the received data, store them to the he instance of packet _t structure and
send it to the NIL layer.

The packet representation structure is obtained by the NET server, theni c¢_al | oc_packet ()
encapsul ates the communication with the server. The most of controllers receive more than one
packet during one poll event. The received packets are stored in ni c_f rame_t structure (further
referenced as packet frame) containing the packet _t field and the connection to linked list of
received packets. The whole linked list of packetsis represented by ni c_frame_| i st _t type, the
nic_alloc_frame_list() andnic_frame_list_append() encapsulatesthe work with thelist.

The packet frame can be allocated by ni c_al | oc_frame() - thisfunction also obtains the empty
packet from the NET server. In the case of error the packet frame is expected to be released by

ni c_rel ease_franme() which aso releases the allocated packet. Theni c_r el ease_packet () should
be used to release standalone packet _t structure (e.g. allocated by ni c_al | oc_packet ())

After copying received packets data to the packet representation the ni c_r ecei ved_() function
family should be used to pass the packets to the framework filtering layer described in the
following section. This layer also sends the packets to higher networking layers. Single packet
can be passed by ni c_r ecei ved_packet (), single packet frame by ni c_r ecei ved_f rane() , the
ni c_received_frame_list() should be used to pass wholelist of packet frames.

Packet filtering and statistics

First layer of filtering isdirectly in the hardware. Driver is notified when the filtering mode changes
through callback handlersin the ni c_t structure. Then it reports how perfectly isthe hardware able to
implement the filtering mode back to the NIC framework.

When aframeisreceived, it is passed to framework’ sfiltering layer. Thislayer checksif the packets
should be really received according to the current filters settings. No software filtering is required in
driver itself.

Note: Thefiltering layer drops al packetsif the device is not in the active state.

14

HelenOS networking

Figure 4. Packet filtering in driver

packet
NICF Hand «
NIL IPC B received frame written HW packet
7 ~ “€6de” ~ Siters
checlking B received _frame packet
- 1 q_q ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Thefilters are controlled through uni cast _set _node(), nul ti cast _set_node(),

br oadcast _set _node(), bl ocked_sources_set () andvl an_set _mask() . The framework
checks the requested setting and if valid the driver is notified to do the hardware setting by

on_uni cast _node_change(),on_nul ti cast _node_change(), on_broadcast _node_change(),
on_bl ocked_sour ces_change() and on_vl an_mask_change() settings. These handlers are set by
ni c_set _filtering_change_handl ers() during theinitialization phase.

The simplest way how the driver can handle these callbacks is to set the device to the
promiscuous mode, the framework filtering will do all filtering in software. If the driver sets the
hardware filtering in the callbacks it should report the filtering precision to the framework by

ni c_report_hw filtering() method - if the driver provides exact filtering as requested the
software filtering will be skipped by the framework.

The current filtering setting is returned by default implementations of uni cast _get _node(),
mul ticast _get node(), broadcast _get _node(), bl ocked_sources_get () andvl an_get _mask()
functions, no code in driver isrequired.

Device polling

The framework supports device polling by default handlers of pol | _set _node(), pol | _get _node()
and pol | _now() actions.

The pol I _now() default handler just checksif the manual polling is allowed (the on demand polling
mode) and callsthe on_pol | _request () callback.

Thepol | _set _nmode() default implementation checks the validity of the requested mode and notifies
driver about new mode by on_pol | _node_change() callback. Theimmediate and on demand
modes should be supported by driver. If the periodic or softwar e periodic is not supported by driver,
the framework tries to switch the driver to on demand mode by on_pol | _node_change() request
and start fibril which periodically calson_pol | _request () on the device.

The default pol | _get _nmode() handler just returns last mode set successfully.

Theon_pol | _nmode_change() and on_pol | _request () callbacks must be set during the
initialization.

Driver could report current polling mode by calling ni c_report_pol | _node() . Thisisuseful for
setting default polling mode during the initialization.

Accessing the nic_t structure

Theni c_t structureis considered internal part of 1i bni ¢ library and therefore it cannot be directly
accessed from the driver. However, there may come a necessity to write another implementation of
some callback handler which needs to accessit.

15

HelenOS networking

Such functionality should be encapsulated into separate file, considered as an extension for the

l'i bni c itself. Y ou can define the macro LI BNI C_I NTERNAL just for this single source and then you
can include also the private libnic’s headers (mainly <ni c_dri ver . h>). Please keep this extensions
separate from your driver’s code to ensure clean design of the code.

3.5. Driver activation

Originally the NIC drivers (loopback and Novell NE2000) used the network stack architectural model,
these had taken the form of modules sharing the structure with protocol (TCP, UDP, IP...) modules.
Drivers were started directly by the NET service and each required its own service identifier. This
was aworking but insufficient temporal solution.

Currently is the activation process rather complicated. The DevMan and NET services start in
parallel, DevM an spawning the drivers and NET the protocol modules. NET service probes directory
/ cf gl net (/uspace/ srv/ net/cfg/ insources) and loads the configuration for network interfaces,
used in higher layers of network stack. Meanwhile the NIC driver obtains resources for the device
from parent bus, registers device in DevMan and informs the NET service that the device is ready

for operation. NET spawns appropriate link-layer (NIL) protocol module (ETH asfor Ethernet) and
this requests backward connection and device' s address. After that the deviceis set to the active state
(see below), notifying higher layers of network stack about a new possible routing path through this
device. When the device is activated, interrupts from the device (as a hardware) are enabled.

The process is summarized in the Figure 5, “ Activation sequence diagram”.

Figure 5. Activation sequence diagram

SCHEME OF DRIVER ACTIVATION
This scheme is driver-centric, some comunication between other services is hidden
| NET | ‘ NIL | | Driver ‘ | BUS (ISNF‘CI)| | IRC | | DevMan |
T T T T T T
| | | ‘ | |
| | &
load configuration | | ! 52 ‘wn l;‘
from /cfginet | | L‘_l found device i
: | I spawn ! L'_|
| | L|J | register driver ; |
| ! | - } add device !
I I <
| I et resources | |
| |
N =
| [l;‘ I
| : | addto class |
I | [
I | -—————— = m——————==- i
! 1
e Bty kbbb >
: | | | device added T
T
| driver teady L|J | | |
t
spawn | | } } }
: | | | |
device request o | : ! } |
Ll | |
connect to NIL | ‘ } |
S —— } ! 1
|
et address I } | 1
|
P 1 i ‘ i
|
- I I
set state ACTIVE - ! | } |
\ enable interrupts |
L \ L] !
| e _:. _________ | | |
I I I | .

16

HelenOS networking

4. DMA Interface

4.1. Introduction

DMA interface is newly introduced set of syscalls, procedures closely bound to them, DMA server
with communication framework and DMA driver interface. For using basic DMA framework it is
necessary to include <dma. h> and for writing drivers using DMA controller interface <devi ce/
dma_control |l er. h>.

4.2. Userspace methods and syscalls

Userspace memory allocation

Userspace interface of DMA framework (except DMA controller driver) is defined in <dma. h> and
contained inl i bc.

First operation before using DMA framework should beit’ sinitialization. There is a procedure
dma_al | ocat or _i nit (), whichinitializes all internal structures and waits for connection to DMA
server. In current implementation it is not necessary to call when driver uses only syscall wrappers.

For allocating continuous memory areas usable for basic DMA transfer we have introduced basic
syscall dma_al | ocat e() . It alocates continuous physical memory area. From this memory is created
amemory area at passed virtual address.

Because Intel architectureis specific by it’s backward compatibility, even modern systems may
contain devices using ISA bus. ISA bus has 24-bit wide address space, so it can reaches only lowest
16 MiB of physical memory. Most devices are stationed on the PCI bus, which is 32 or 64 bit wide,
depending on it’s version. That’s why the memory is zoned and why the DMA memory may be
allocated from different ranges. 64-hit range (this range is by default common for all platforms, not
only Intel), 32-bit range and 24-bit range.

Another important fact is that memory allocated by dma_al | ocat e() Syscall isaready mapped and is
safely accessible for device. Pages mapped this way to virtual memory area must not be remapped to
another memory range by the swapping process (currently not implemented in HelenOS).

Function dna_al | ocat e() isquite lowlevel, so thereisawrapper dma_al | ocat e_anonynous() . It
has almost the same functionality as the syscall described above. However, there are two differences:
it searches also suitable virtual address (here comes the suffix anonymous) and it’s arguments are
wrapped into the structure dma_mem t , which contains virtual address, variables describing the type of
memory allocation and of course physical address of beginning of the allocated area.

Deallocation of amemory areais possible by simple destroying the memory area, but for consistency
with other DMA functions there isawrapper dma_unmap() which destroys memory area passed in
argument.

Memory locking

Allocation part of framework is useful only when all memory area sizes and properties are known
beforeit’s creating. (So thisis useful in drivers or applications like sending network packets with
known maximal size.) But very often is necessary to pass to device a (sometimes very large) area of

17

HelenOS networking

memory combined from small discontinuous areas of physical memory. This problem is solved by
two syscalls.

First of themisdma_l ock() which returns largest suitable area of continuous physical memory
mapped from passed virtual memory area. The address is also registered in kernel and the swapping
mechanism cannot do anything with such locked area. This syscall does not work over memory area
bounds and after any destroy of memory area the pages are automatically unlocked.

The second syscall dma_unl ock() pairswith the previous one - it again enables already locked
memory area for swapping.

Below are few examples how the above mentioned functions should be used. Asfirst the framework
should be properly initialized:

#i ncl ude <dnmma. h>

int main(int argc, char * argv[])

{

/[* Initialize DVA franework */
dme_al | ocator _init();

}

Hereis an example how to lock larger area combined from multiple smaller physical areas.
Remember, dna_I ock() canlock only single memory area.

#i ncl ude <dma. h>

/* Lock whol e area */
int dev_|ock area(void * vaddr, void * paddr[], size_t size)

{
size_ t count = size;
size t currently | ocked;
size_t index;
for (index = 0; count > 0; ++index){
i f(dma_| ock(vaddr, &paddr[index], count, ¤tly |ocked) != ECK)
/* Handl e error */
if (currently | ocked == 0)
/* Handl e error - no page has been | ocked*/
count -= currently | ocked;
vaddr = (void*)(((uintptr_t)vaddr) + currently |ocked * PAGE Sl ZE)
}
return EOK
}

Sometimes it is necessary to work with directly allocated and mapped memory:

#i ncl ude <dma. h>

int dev_do direct stuff(...)

{
unsi gned | ong num of pages;
dma_nemt nenory;

/* Do sone stuff and count sizes etc. */

18

HelenOS networking

menory. si ze = num of _pages;
menory. mappi ng_fl ags = AS AREA READ | AS AREA WRI TE;

/* Allocate area num of pages large, with flags
* AS AREA READ | AS AREA WRI TE and from any address
* range (the paranmeter 0) */
if ((dme_al |l ocate_anonynous(&renory, 0)) != EOK)
/* Handl e error */

/* Use the allocated nenory */

/* Unmap the area and free the nmenory */
if (dma_free(&renory) != EOK)
/* Handl er error */

/* Do other stuff */
}

Very often it is necessary to work with virtual memory area obtained randomly from other parts of
system. Thismethod usesdev_| ock_ar ea() from example above.

#i ncl ude <dma. h>
int dev_do_indirect stuff(...)
/* Get a buffer with unknown origin */

void * area = dev_get area(...)

void ** paddr = dev_get paddrs(...);

size t in_size = deg get area size(...);

size_t out_si ze;

if (dev_|l ock area(area, &paddr, size in, &size out) != ECK)
/* Handl e error */

/* Do sonme stuff with | ocked area */

/* Unl ock the nenory */
if (dnma_unl ock(area, size in, &size out) != EOK)
/* Handl er error */

/* Al menory is again rel eased and kernel structures are clean */

}
4.3. Kernel changes

Because of missing suitable kernel memory allocation strategy the kernel required several important
changes. New optional allocator interlayer between buddy allocator and memory management has
been introduced.

This allocator asks the buddy kernel allocator for buddy block. When the request is smaller than
the buddy block, the rest is saved and prepared to satisfy another request. Here is used the "best fit"
strategy for satisfying request from remainder of other buddy.

In normal cases this strategy leads to many little unusable remainders, but we supposed that most
required requests would be one page large requests for network packets, so thiswould not be a
problem. It leads to reduced time for searching suitable block as well.

19

HelenOS networking

Kernel DMA allocator

Handling buddies

Allocated buddies are stored in AVL tree (specia generic type of AVL tree wasintroduced to
HelenOS). They are split to used parts and unused rests. Unused parts are stored in two AVL trees:
one sorted by size for searching block to satisfy allocation request and second sorted by physical
address for merging with freed block.

When a block of DMA memory is freed the tree of possible neighbours is searched at first. If this
contains freed block’ s neighbour which forms a buddy with the freed block these are merged. This
procedure is repeated until some neighbour exists. If it does not, two cases are possible:

» 1) Thereis some allocated and used block, so merged block isinserted back to remainders, ready to
be allocated.

» 2) Just merged blocks together are one allocated buddy. The tree containing already allocated
buddiesis searched and if it contains the buddy it is returned back to kernel buddy frame allocator.

Zoning memory

As some devices on Intel architecture use I SA bus, these can use only 24-bit address space. However,
in Pentium Pro and newer processors the physical address space can be even larger than 32 bits. This
results in some parts of memory being unreachable from some devices. This problem can be solved by
charging restrictions on the allocated memory.

When kernel physical memory zones are created, the creating procedure assigns flags to them
according to their placement in physical memory. Allocating process can restrict which memory
wants to allocate. Upon the request for DMA memory the areas are scanned from the highest suitable
one towards lower ones. Memory problem is reported only if even the lowest area has insufficient
memory.

Thisworks for Intel architecture, but other architectures could have another restrictions. It isup
to developer of other platforms to adapt zones creating on them. At this time memory at all other
platforms is marked as zone with 64-bit range.

Some structures for holding free areas in DMA interlayer allocator have to be tripled to hold proper
ranges, which also complicates the design.

20

HelenOS networking

Figure 6. Scheme of kernel DM A memory allocator

Searching for free rest

DMA allocation request

L

DMA frame allocator

Kernel buddy allocator Request for memory buddy

Allocator speed

Because of used data structures, searching (and allocating) of a suitable block internally in DMA
allocator is always logarithmic with number of already done allocations. Freeing the DMA memory is
again logarithmic al with the same number.

Handling memory areas

Direct memory backend
There are several requirements that must hold for the DMA memory:

» 1. When page fault occurs, the mapped frame must correspond to the offset from beginning of the
area

» 2. Theareamust not be swapped out
» 3. The frames must be freed by the DMA memory allocator, not directly to the buddy allocator

These demands are applied through the new memory backend. Each block has counter meaning how
many areas are holding this block in their parts of paging tables. Here are few rules describing the
behaviour:

* When new areais created, it isfully populated by simulating page faults.

* When apageisremoved from area, f rane_f ree() callback decrements the counter.
* When the counter reaches O, the area is deallocated.

» When sharing structure is created, one next reference is added to that area.

Thelast ruleisimportant in the situation, when sharing has been started but the source areais
destroyed and the destination area has not incremented the counter. In this case the physical memory
would be freed, what would lead to system inconsistency.

21

HelenOS networking

It was also necessary to introduce a new callback in memory backend share_fi ni sh() notifying that
the share structure has been removed. In this situation the counter should be decremented by one.

Memory locking and unlocking

The above described functionality iswell suitable if the buffer size is known before the transfer is
requested. When a driver should fill memory area provided by aclient application, there are three
problems:

» 1. Anonymous memory areain userspace does not contain information about physical frames
mapped to it.

* 2. Memory may be incontinuous and in worse case even not present.

» 3. Anonymous memory area can be swapped - in fact thisis not actual in HelenOS today (swapping
is not implemented) - but we have to think ahead.

So the HelenOS kernel has been enhanced with the possibility to pin anonymous memory to physical
one - to lock it. Userspace process can ask kernel to search physical address of begin of the areaand
look forward, how long is the continuous physical memory area. If there are some missing frames the
kernel ssimulates page faults and populates this space by physical memory.

Implementation

At this moment there is no swapping mechanism implemented in HelenOS. Therefore in fact the
locking mechanism is not necessary and simple lookup for physical memory addresses would be
sufficient for DMA purposes. However, swapping is core feature of operating system and we already
implemented away how to mark some pages as unswappable.

Each locked page is registered in atree (implemented as generic AVL tree) in its memory area and
its frame is registered in another kernel-wide tree (B-tree in this case), respectively a counter for this
framein thistreeisincreased.

The unlocking operation traverses through tree containing virtual addresses and removes areas, which
should be unlocked. It al'so decrements counters to their physical frames. When the counter reaches
zero, it means that the frame is not used by any locked area and is removed from the tree.

The further swapping mechanism will have to traverse the maps mentioned above before swapping the
page out.

4.4, DMA memory server

DMA memory server function

On memory area destroy (e.g. termination of process by afailure) pages allocated for DMA transfer
and locked for swapping are unlocked and returned to kernel memory alocator. Then they can be
reused for another process.

If the device with terminated driver still holds physical memory reclaimed in the process above them,
it can rewrite them. This behaviour should be evaded using a memory server which can share memory
areas with other processes and this way protect them from deall ocating.

22

HelenOS networking

The server islaunched on bootstrap of HelenOS and is bound as a service. Clients connect to

it and identify themselves by unique strings (e.g. hardware paths of devices). After connecting
server searchesit’s memory structure for residual areas owned by preceding instance of the same
identificator. If there are no such areas, it generates new unique integer id and returnsit to calling
process. In other case the old instance of the same identificator was not correctly terminated. The
old id isreturned and now the new instance has chance to reinitialize the device and then destroy all

mapping.

The fact of returning old or new id is not reported to client - it should always initialize the device and
call cleanup for the old memory (release all memory owned by it’sidentifier). After connecting to the
DMA server the identification of client is done only by it’suniqueid.

When the client is connected it can share memory to server (let the server guard the memory) and stop
the sharing (when the memory is no longer used by the device).

For sharing is necessary address of shared memory area, offset from begin of first page which

should be also locked at server to protect possible swapping out and number of really locked pages.
Unsharing memory is easier, client only sends request for unlocking the memory and physical address
of first really locked page.

DMA server API:

The APl of DMA server isdeclared in <dma. h>inli bc

Table4. DMA server functions

Function Description
dma_cli _register Establishes client’ s connection to server.
dma_cli _unregi ster Unregisters client from server. Unregistration is successfully done

only when al memory already shared by calling process has been
successfully released.

dma_cli _set _ownership Shares memory areato server and queries for locking described
Subarea.

dma_cli _cl ear _ownership Stops sharing the memory and queries the server to unlock the
area.

dma_cli _cl eanup Queries the server to release al memory already allocated with the
client.

Here is an example of driver code using the DMA server:
#i ncl ude <dma. h>

int dev_init_procedure(....)
{
[* Qotain handl e from server */
int rc = dnma_cli_register("ny unique device identifier", & d);
if (rc = ECK)
[* Handl e error */

/* Do device initialization, so it does not need any nmenory buffers */

23

HelenOS networking

dev_initialize first_stage();

[* Tell the server, it can free all shared nmenory by this id */
rc = dma_cli_cl eanup(& d);
if (rc = EOK)

/* Handl e error */

/* Do other stuff */
dev_initialize next_stage();

}

When the driver runs, it should share buffers of device with the DMA server:

#i ncl ude <dnmm. h>

int dev_work stuff procedure(...)

{

/[* Obtain nenory area */

size_t nunber _of pages;

size_ t of fset_in_pages;

void * area = dev_get_nenory_area(...);

int rc = dna_cli_set _ownershi p(area, offset _in_pages, nunber_of pages, & d);
if (rc = OK)
/* Handl e error */

dev_func(area,);
[* If the menory is no nore needed, release it */
int rc = dna_cli_cl ear_ownershi p(paddr, &id);
if (rc = OK)
/* Handl e error */

}

On exit the driver should stop the device and release all memory, which is still held by server and
unsubscribe from the server:

#i ncl ude <dma. h>

void dev_stop(...)

{
/* Stop the device */
int rc = dma_cli_cl eanup(&id);
if (rc = K
/* Handl e error */
int rc = dma_cli_unregister (& d);
if (rc = K
/* Handl e error */
}

DMA server implementation

DMA server contains two main memory structures: both of them are AVL trees. They contain
structuresdma_cl i ent _tree_t. Thisstructure is used to describe areas shared from one identificator
to the server. First AVL treeis sorted by string identifiers. Thistree is used only when client without
knowledge of i d logs into the server. Then the server assignsto it integer id and from this moment

24

HelenOS networking

is used second tree sorted by thei d. This solution has been chosen because of speed of comparing
strings and integers and speed of passing integers and string via |PC. Chosen structures are again
generic AVL trees because they can simply implement comparison of string keys.

Each logged in identifier has a set of locked areas. The set is again implemented as a generic AVL
tree. Here the tree is sorted by physical address of first locked page from described area. Thisis
because it is most ssmple way of passing data between client and server. Both of them knows this
address and it is not necessary to pass some other datafrom server to client.

Figure 7. Internal request servicingin DMA server

Log in request

Memory operation request

Tree of
locked

areas \

Tree sorted by
Ids

Tree sorted by
strings

4.5. DMA controller framework

The device using DMA transfers needs to provide data transfer to the memory without CPU support.
The device with bus mastering mode support can provide the transfer on its own, other devices must
use DMA controller device - this device locks the memory bus and does the transfer. The DMA
controller framework provides the simple way for cooperation between device driver and DMA
controller.

The framework contains the set of I|PC stubs and skeletons used by DDF framework. It is used for
driving access to DMA controller driver. The framework is divided into four basic parts - driver
capabilities oriented call, channel oriented calls, device transfer oriented calls and memory oriented
calls. Theinterface is declared in the <devi ce/ dma_cont rol | er. h> libc header file.

Driver capabilities oriented call

Calls oriented to driver capabilities allow to detect which features are supported by the
DMA controller (memory-memory operations, transfer requests queue,...). The procedure
dma_query_driver _capabilities() canbe used to obtain thisinformation.

25

HelenOS networking

Channel oriented calls

DMA channel is an entity representing slot for transfers. They can be physical oriented (e.g. Intel
8237 4), where each channel has wires in the bus. HelenOS DMA framework expects even logical
channels, which are created by software (the DMA controller driver). It is possible to imagine a
channel like a queue (even with maximal length 1), where the transfers are inserted. DMA controller
driver exports these channels to client application and the application can use allocated channels. They
are represented by structure dma_channel _t and it’sinternal structure is not important for user.

Procedure dma_quer y_channel s() queries server for alist of all channels available for transfers.
When client has list of all channels, it can call dna_occupy_channel () to ask server to alocate
specified channel to it. Every driver should use only channels allocated this way. When a channel is
not needed anymore dna_r el ease_channel () should be called. It marks at server the channel asfree
and usable for other processes.

Device transfer oriented calls

The device can request the DMA controller to perform the transfer. Each such transfer isidentified
by thedma_t ransfer_i d_t identificator and it must be requested on the channel previously reserved
by channel oriented calls. The request must contain the physical address of the memory used in the
transfer.

The transfer from the memory to the device can be requested by drma_set _read_t ransfer ()

or dma_add_read_transfer() cals thedna_set _wite transfer() and
dma_add_write_transfer() requeststhe deviceto memory transfers. The transfers requested by
set _() family are started immediately, the currently processed transfer should be terminated. The
transfers requested by add_() family are added to the end of transfer request queue on the channel.

The transfer status can be obtained by dma_check_t ransf er _st at us() method. When the transfer
isfinished, server should deallocate the transfer and it is not possible to check it’s status again. The
transfer can be cancelled by dma_cancel _transfer () - therunning transfer is terminated, queued
transfer is removed from the waiting queue and deallocated.

Memory oriented calls

Because some devices like Intel 8237 supports copy operation from memory to memory. This
functionality can be useful for many purposes, so here are two additional calls. Their parameters
are ranges of physical memory where the transfer should be done. It is necessary to manage these
transfers, so the call also returns handle to transfer (typedma_transfer _t).

Here are two procedures: First, the dma_set _nmem cpy_t ransfer () setstransfer from physical
memory to physical memory on any suitable channel, overwrites any transfer possibly running on this
channel, so it is very dangerous to use this call. On the other hand drma_add_mem cpy_t ransfer ()
adds transfer from physical memory to physical memory to any suitable channel. When someone
triesto rewrite this transfer, the rewriting is delayed until the transfer is completed or the rewritten
transfer is sent to another channel, or if it is permitted by flag the rewritten transfer is delayed until
rewriting transfer finishes. Of course thistransfer can be explicitly cancelled by user. It is strongly
recommended to use this call instead.

4http://zet.al uzina.org/images/8/8c/I ntel -8237-dma.pdf

26

http://zet.aluzina.org/images/8/8c/Intel-8237-dma.pdf

HelenOS networking

DMA controller driver interface

DMA controller driver interface is server part of communication protocol between device driver
and DMA controller driver. Itisplaced in|i bdrv. a and definition of the interfaceisin <ops/
dma_control |l er. h>and <renote_dna_control | er. h>,

Server at initialization of new device instance should fill new instance of dna_i f ace_t with
proper callbacks and behave as a drive in other ways. Prototypes of that callbacks arein <ops/
dnma_control |l er. h>.

4.6. Writing basic driver using DMA bus mastering

Basic driver does not use scatter/gather technology, when you are writing so driver, follow these
points:

1. Initialize the DMA framework (by calling dma_al | ocat or _i nit())

2. Initidlize the device and then call dnma_cl i _cl eanup() .

3. Allocate continuous buffers by dma_al | ocat e() .

4. The buffers should be shared to the DMA server.

5. If thedriver uses DMA with external bus transfer driver, it should connect to proper driver.
6. Obtain list of available channels.

7. Select proper channel and tell to server that this channel is occupied.

8. Usethedevice, it is possible to allocate new DMA memory areas and deallocate old and send
requests do DMA transfer driver. Memory, which is not released by application and server is
unusable for further usage.

9. Release DMA channedl.

10.Disconnect from servers. Before it, al shared memory should be freed so when unsure, whether
thereis not any area shared to server, call dma_cl i _cl eanup() and then dma_unregi ster().

4.7. Writing driver using scatter/gather

scatter gather memory access is the most common way of using DMA at modern systems containing
PCI bus. Theway of using DMA framework is similar to preceding case, but little differs.

1. Initialize the DMA framework (calling dma_al | ocator _init())
2. Initidlize the device and then call dma_cl i _cl eanup() .

3. Allocate continuous areas of physical memory with dma_al | ocat e() or lock partsof it's
virtual address space by dma_I ock() . When the locked memory is not needed anymore, call
dma_unl ock() .

4. Share device buffersto the memory DMA server.

27

HelenOS networking

. If the driver uses DMA with external bus transfer driver, connect to proper driver.
a. Obtain list of available channels.
b. Select proper channel and tell to server that this channel is occupied.

. Usethe device, it is possible to allocate new DMA memory areas and deallocate old and

send requests do DMA transfer driver. When shared memory areais destroyed, server
remembersit until it obtains explicit request to free it. Memory, which is not released by
application and server is unusable for further usage. The DMA transfer driver can be polled by
renote_dma_check _transfer_status().

. Release DMA channd if it has been all ocated.

. Disconnect from servers. Beforeit all shared memory should be freed so when unsure, whether
thereis not any area shared to server, call dma_cl i _cl eanup() and then dma_unregi ster().

28

HelenOS networking

5. Implemented and integrated drivers

The framework alone would be useless without any working drivers. Implementing example drivers
for it provides both functional and mainly architectural testing, proving framework’ s correctness and
good design. This section describes several drivers we have implemented or ported to NICF.

5.1. Loopback

In fact the loopback driver is not necessary. All packets that should be send through the loopback

virtual device are immediately received by the same device and sent back up to the network stack.
It does not use Ethernet module but its own special Nildummy module, which isjust asimplified

Ethernet module, so the looping could be done already in the Nildummy module.

However, the architecture can be more symmetric with loopback as separate driver, there are no
exceptions needed for having loopback as a network interface. For example statistics are counted here
using the NIC framework and any task can get them in the same way as from usual physical NIC. The
design is cleaner at the expense of minor performance hit and that’ s the way HelenOS is going.

Note: Currently thereis abug in network stack causing all packets going to loopback to be sent twice.
Thisisnot abug of the driver itself but probably an error in ip module. That’swhy if you try to pi ng
127.0.0. 1 and thenni cconf 10 --stats youwill see8 packetsto be sent and received instead of 4,
what you would expect.

5.2. Realtek RTL8139

RTL8139 isthe network interface controller from the late 90’ s operating on 10/100M Ethernet.

The advantage of this controller isits big availability and its emulation in QEMU (although there
some differences between real hardware and QEMU emulator behaviour). The driver implements all
features the NIC interface allows, the default framework implementations are used when possible, the
hardware settings are used if possible to avoid unnecessary software emulation.

Although the controller supports DMA, too strong restrictions exists. The transmition buffer must

be aligned to 4B boundary, unfortunately the packets obtained from the higher layers are not aligned
properly thus copying to internal properly aligned buffer is used. For receiving only one huge buffer
is used and the driver must copy the packet contents by itself. The both buffers are allocated by DMA
library and the controller reads/write the packet memory directly.

The development of the RTL8139 driver was tightly related to the development of NIC framework
and some parts of code were moved to thel i bni c.

Controller Documentation Sources

The driver implementation is based primarily on the RTL8139 datasheets % and RTL8139
programming guide 6 published by Realtek company. Unfortunately the official documentation is
targeted to the register description rather than functionality description and lacks some important
important information (e.g. header of received datais mentioned only in the source examplesin the

®The datasheets for RTL8139B(L), RTL8139C(L) and RTL8139C(L)+
6RTL8139(A/B) Programming guide: (V0.1)

29

HelenOS networking

Programming Guide, packet header value during the DMA processing is hot documented,...), the
OsDev wiki /, QEMU sourcefiles 8 and the source files of Linux ° and FreeBSD 1° driver were used
for studying unclear parts of controller functionalities. The final code of packet reception is based on
FreeBSD driver code.

Implementation

The driver implementation isin uspace/ drv/ rt| 8139 and consist of general sourcesin
rt18139_general . [ch], register constants definitioninrt18139_defs. [ch] and the driver
implementationinrt1 8139 _driver. [ch] . The general sources contains the functions used in rtI8139
implementation not related to the hardware and can be simply moved to the more general library in
the future.

The driver uses NIC framework structures, rtl8139 specific data are stored ininstance of rt 1 8139 _t
structure defined inrt18139_dri ver. h. The implementation boldly uses the default implementations
of interface functions of the framework and implements only the callbacks which needs to touch
hardware registers. The default callback implementation is used when it is possible, only those parts
which needs to work with registersitself are implemented.

The callbacksfor NIC interface are assigned inrt 1 8139_ni c_i f ace instance of ni c_i f ace_t
structure, default implementation is used for others and it’ s callbacks are assigned through framework
interfaceinrt| 8139_create_dev_dat a() called during device initialization in add_devi ce()
callback of general driver interface in DDF.

The driver usesinternal locks for transmitter t x_I| ock and receiver r x_I ock part of code, the policy
locking t x_I ock first and r x_| ock second was used for deadlock prevention.

The packet transmitionisprovidedinrt18139 write_packet () function set as callback to

ni c_send_message_i npl () providing packet preprocessing. In the controller. For the packet
transmittion the four buffers are used in the cyclic order. The driver assignes the 2kB to each
descriptor, the data are coppied from the packet to the buffer and the controller provides data transfer
by PCI bus mastering. If thereis no buffer free, the transmitter busy mark is set in NIC framework. In
the interrupt handler all previously used descriptors are checked for transfer completion and marked as
free, the transmitter busy is unset if some descriptor was released.

Thereceptionisprovidedinrt1 8139 recei ve_packet s() . The controller copies the packets to the
cyclic buffer allocated by driver, if the buffer end is reached the writing continues from the buffer
start. When processing new packets the driver obtains the last processed position in the buffer and the
last position in the buffer written by the controller and processes all data between this positions. All
frames read in one processing are sent to NIC framework where the software filtering is provided. The
hardware filtering is used to prefilter packets before its software processing to decrease CPU work.

Other callbacks are implemented mostly by reading/writing controller registers, the periodic polling
mode is implemented by using internal timer increasing by external PCI clock ticks.

The driver was successfully tested on RTL8139B, RTL8139C and RTL8139D controller versions.

"http://wiki.osdev.org/RTL 8139

8http://wi ki.gemu.org/Download

%ri vers/ net/ 8139t 00. ¢ inlinux kernel source tree
10http://fxr.Watson.org/fxr/source/pci/if_rI .c

30

http://wiki.osdev.org/RTL8139
http://wiki.qemu.org/Download
http://fxr.watson.org/fxr/source/pci/if_rl.c

HelenOS networking

5.3. Intel E1000

E1000 driver was written for 8254x family of gigabit ethernet controllers from Intel. It was tested
on 82541PI controller and virtual €1000 device in Qemu 0.14. These controllers operates on
10/100/21000M Ethernet.

Controller Documentation Sources

The driver implementation is based on 8254x Family of Gigabit Ethernet Controllers Software
Developer's Manual

Implementation

The driver implementation isin uspace/ dr v/ e1000 and consist of general sourcesin e1000. ¢ and
hardware representation structures and constants definitionsin e1000_def s. h.

Device registers are memory mapped. PO functions are used for accessing them same way as 10
ports. EERD registersis used for reading device EEPROM. Because EERD description differson
some devices PCI device_id isused for determining which variant to use.

For using interrupts manual mapping needs to be created. See PCl improvements section. Interface
could work without this mapping only in software periodic or on demand polling mode.

The driver usesfour internal locks. t x_I ock for transmitter and r x_| ock receiver part of code.
ctrl _l ock guards accessto CTRL register and eepr om | ock guards access to eeprom. The policy
locking in this sequence: r x_I ock, t x_| ock, ctrl _I ock and eepr om | ock was used for deadlock
prevention.

No interrupts are used for transmitting. Packet physical address locked by dma_I ock() iswritten into
transmit ring. Device uses 64 bit long address. No packet copying is used. The packet transmition is
provided in e1000_wri t e_packet () function

Packet is preallocated before receiving and it’s physical addressislocked by dma_| ock() and filled
into receive descriptor ring. Once the packet is received, new empty packet is allocated. No packet
copying is necessary here either. Possible improvement could be to postpone allocation of some
packets to avoid memory consumption. Question is whether it isworth the risk of losing some
packet. For example while receiving alot of small packets. The packet reception is provided in
€1000_r ecei ve_packet s() function.

It is possible to limit interrupt frequency (periodic polling mode) or disable interrupts by using
software polling. Default is at least 250 micro seconds between interrupts.

Thereis 16 register array for receive address filtering. The first one must be filled with interface
address. In this driver top registers are used for unicast addresses and the bottom registers are used
for multicast addresses. Border between them is variable. When there is not enough space in receive
address array the device is switched into unicast or multicast promiscuous mode and NIC framework
does the filtering. For multicast there is possibility for using multicast array to prefilter traffic for
framework. Thiswas not implemented yet.

11http://downl oad.intel .com/design/network/manual §/8254x_GBe SDM .pdf

31

http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf

HelenOS networking

Device supports adding and stripping VLAN tags. It is also possible to filter specified VLAN tags
while receiving.

5.4. Novell NE2000

HelenOS already featured a driver for Novell NE2000 ported from Minix as a part of the Lukas
Mejdrech’ sthesis (HelenOS network stack). This driver was not working very well under stress
conditions and the code was not fitting to HelenOS, therefore Martin Decky had rewritten the driver
from scratch in HelenOS mainline.

Both the Minix version (in the beginning of the project) and MD’s version were inserted into NIC
Framework, removing the duplicated parts. This driver was also extended with filtering support,
support for MAC address change and tweaked to better work under stress conditions.

Although this driver isfully integrated to the NIC framework, it does not exploit the capabilities of
DMA. This NIC' s documentation (datasheets) describes DMA access only on chip’slocal bus (thisis
rather confusing indeed), all communication with this device can be done only through port I/O. This
hardly limits the speed of this NIC’ s operation and causes high CPU utilization.

32

HelenOS networking

6. Tools developed

There were several tools devel oped both for user (system administrator) and drivers authors.

6.1. NIC configuration utility - nicconf

Although the main purpose of NIC’sisto send and receive messages, the interface is much richer.
The NIC can range several states, its address can be changed and there are various settings that can
be queried and modified. Thistool is communicates with the lowest level of network stack, with the
network interface card drivers. It can also report current settings for other layers (1P configuration...)
but thisis provided just because there is currently no other tool in HelenOS that could display it. This
feature is about to be removed in the future.

Its functionality is similar (but not identical) to those of i f confi g and et ht ool in Linux.

Nicconf commands to follow one of these formats:

ni cconf gl obal action
ni cconf interface interface_action

The interface is name of the network interface as stated in its configuration file (in/ cf g/ net /
directory) under the NAME property. If al | is used as the interface name the actions specified are
applied on al currently present interfaces. By default, the ni cconf command isequal to ni cconf al |
--state --config --stats.

Global actions

Currently the only supported global actionis- h or - - hel p - the request for displaying help for the

ni cconf command. For information for concrete action type net conf - - hel p action where action is
the long name of the action (without the two dashes, e.g. net conf --hel p confi g forthe--config
action).

Interface actions

Specifying action without arguments only displays information about current settings, those actions
which allow changing the settings require an argument.

-a --autoneg Display/set current autonegotiation state. The argument (if applied) must be one
of these: enabl e/di sabl e/aut o.

-c --config Display current configuration obtained from the NET service - binding to
another servicesin network stack, current MAC address and DDF path as well as
IP configuration. This option is deprecated.

-i --info Display device' s description and list its capabilities.

-m - - mac Display/set MAC address for the device. The address must be specified
as six two-digit hex numbers separated by hyphens (-) or colons (3), e.g.
12: 34: 56: AB: CD: EF.

33

HelenOS networking

-0 --opnode Display/set operation mode for the device. The argument (if applied) must bein
form speed, dupl ex, r ol e, where speed isthe desired speed in Mbps, dupl ex is
eitherfull orhal f androl e iSmaster, sl ave Or aut o.

-p --pollnode Display/set device's polling mode. The argument (if applied) must be
either i medi at e (default mode triggering interrupts when a new event
is detected), on_denmand (some application manually polls the NIC for
new events), peri odi ¢, seconds, ni cr oseconds (either the card or
NICF automatically polls with period specified as the arguments) or
sof t war e_peri odi ¢, seconds, mi cr oseconds (Same as periodic, no hardware
interrupts).

-s --state Display/set NIC' s state - one of these: act i ve/down/st opped. act i ve iSthe
usual operation state, down state keeps settings but all communication (both
outcomming and incomming) is disabled and going to the st opped state results
in acomplete restart of the NIC.

-t --stats Display statistics for the device.

-u --pause Display/set pause mode. The argument (if applied) must have format
rec_node, trans_node[, ti me] wherethe modes must be on or of f and the
ti me isa16-bit number.

-v --vl ant ag Set VLAN tag and its automatic adding/stripping. The argument has form
t ag, add, stri p wheret ag is number between 0 - OxFFF and add and stri p are
eithery or n.

6.2. NIC testing tool - nictest

Application ni ct est should provide away to both manually and automatically test NIC driver’s
functionality. Y ou can specify filters configuration - thisis not available in the ni cconf command
because the filters should be set up by another application (firewall) through NICF external API rather
than by user manually. Nictest can send messages with fake source and arbitrary destination, receive
messages from the NIC and perform several types of automatic tests, described below.

Because of poor architecture of current network stack, nictest cannot work with usual network settings
- it's not possible to eavesdrop or fork the communication between layers. Therefore the internet layer
(IL) must be instead of by the I P module implemented by our module, called | Ldummy. Thisis done

by specifying
I L=i | dummy

inthe NIC’s configuration file located in/ uspace/ srv/ net / cf g/ directory. With this settings are the
usual applications (pi ng etc.) not working.

| Ldummy does not modify packets that should be sent to the network, the source and destination
are left asthey are and the packet is handed over to the ETH module. This module just copies the
addresses and frame type to the packet header and then is the packet handed to our NIC driver.

When a packet is received (from the NIC through the ETH module) it is placed into a queue in the
ILdummy module. If thisqueueisfull (it'slimited to 16 packets) the oldest packet is released (and
the most recent is placed on the end of the queue). The number of such discarded packets can be
gueried from the module. When nictest is ready to receive a packet, it pollsthe | Ldummy module and
simply fetches the oldest packet from the queue.

34

HelenOS networking

During the development you would probably develop the driver on an emulator rather than on
physical hardware. There is a nice step-by-step tutorial how to bridge gemu emulator to real network
on HelenOS wiki. When the bridge is set up you can see the communication using tcpdump or
wireshark on the host computer or bridge two instances of HelenOS and send messages between them.

Commands

Nictest has similar syntax of commands to the nicconf:

ni ctest interface command [argunents]

Hereisalist of possible commands with their arguments:

Command and arguments Description
send Send frame
to MAC Destination MAC address (default: broadcast)
from MAC Source MAC address (all zeros = default: NIC’ s address)
dunp Dump all received frames until keypress
uni cast Setup NIC’ s unicast settings
bl ock Block all unicast frames
def aul t Pass only frames with NIC’'s MAC as destination
list MACs... Pass frames with NIC's MAC or any MAC from the list as
destination
proni sc Promiscuous mode (all unicast is received)
info Display info about current unicast settings
ncast Setup NIC’ s multicast settings
bl ock Block all multicast frames
list MAGs... Pass frames with any MAC from the list as destination
proni sc Promiscuous mode (all multicast is received)
i nfo Display info about current multicast settings
bcast Setup NIC'’ s broadcast settings
bl ock Block broadcast frames
accept Accept broadcast frames
info Display info about current broadcast settings
bl ocksour ce Setup blocked source addresses
set MAGCs... Set blocked source address from the list
cl ear Remove all blocked sources
info Display info about current blocked sources settings
pol | Poll the device
test _master Start automatic testing as master
stat es Do automatic testing of states transitions and behaviour
filters Do automatic testing of filtering modes

35

HelenOS networking

Command and arguments Description

stress Do stress test

t hr oughput Benchmark NIC’ s network throughput

addr ess Do automatic testing of address changes
test_sl ave Start automatic testing as slave (no arguments)

Automatic testing

This variant of testing requires two bridged (either virtually or connected with a cable) instances of
HelenOS compiled for the same architecture. On one machine you start the master part of the test,
on the second one the slave part. Slave does not require any argument, everything is sent through the
network by the master.

States test

NIC' s behaviour in each state is strictly defined. It should transmit and receive messages only in the
active state, going to the stopped state means that all settings must be reset etc. This test controls that
this behaviour is correct and that the NIC is operable after every possible transition.

Filter test

Nictest defines several configurations of filters with test packets and information which of them
should be accepted or refused. For each configuration the master sends requested filters settings to
the slave and after the slave confirms that the filters have been set up, it sends the test packets. After a
timeout slave sends a response with alist of received packets to the master. Master then compares the
list with correct result and prints out the report.

Stress test

There are two parts of thistest. In the first part the master just starts sending alot of (32 000) packets
to the dave. After the slave does not receive any new packet for afew seconds, it sends areport

how many packets were received by nictest and how many were discarded in ILdummy. The

results are printed out on the master. In the second part the slave confirms each received packet by
another acknowledgement packet to the master. Master sends the test packets and polls ildummy

for acknowledgements. After all (again 32 000) test packets are sent master waits 15 seconds for
acknowledgements that are yet pending and then reports how many packets were acknowledged.

Throughput test

Thistest issimilar to the first phase stresstest - it is only using the longest possible frames (by defauilt,
you can also set lower lengths), and measuring how much time it takes to send them. The slave also
measures how long it took to receive all test messages and reports the number of received bytes and
the time to the master.

Address test

The address can be changed either directly by calling ni c_set _addr ess() or implicitly by restarting
the NIC (going to the stopped state and back to active). Thistest tries both ways and verifies that
packets are received only for the set up address.

36

HelenOS networking

6.3. Logging support

Logging is acommon useful debugging technique. However, there was no logging service in HelenOS
- the only possibility was st dout and st der r redirected to kernel log displayed on kernel console and
backed up in afile. Moreover, there was a bug causing the log file to be strongly corrupted. Because
currently HelenOS does not have utilitieslike gr ep or sed, evenif the file was not corrupted the
filtering could not be done directly in HelenOS.

The necessity of some logging system was found in the USB team as well approximately in the

same time as we have. They have developed much simpler system just as awrapper to printing into
separated file. This may be sufficient for logging actions of single process but because the network
stack is scattered across many processes, we have decided to create a standalone service called

Logger (/srv/1ogger), Similar to e.g. sysl og in UNIX-like systems. This service gathers log records
through 1PC from multiple processes and stores them in single file together. Thisfile uses binary
format in order to allow easy filtering and faster seeking through that file. The logs can be probed
through application | ogvi ew rather than by raw accessto thefile.

Because of name-clash with USB team’ s logging support functions from our login system use prefix
nl og_ instead of simplel og_.

With each message is recorded its severity (the levels were adopted from sysl og), time, source

task ID and labels associated with the record. These labels are added to the record automatically -
there is one default and possibly more optional profilesin each task, with the |abels recorded in the
profile. Labels should form a hierarchy, for example for each driver’slogs are tagged with labels

net wor ki ng/ ni ¢ and dr v/ ni ¢/ dri ver _name. Then you can filter for example only records with label
net wor ki ng, showing both records from the driver, NET service etc.

Although the logging is working well for debugging, in stress tests it revealed to be radically slowing
down. That’swhy the driver can easily suppress unimportant records (with low level of severity) both
at runtime and also at compile time by defining appropriate macros, completely removing the logging
overhead. This can be also useful for example if you wan't to suppress debugging records from the
libnic library but use your own messages at debug level in the driver itself.

Above mentioned application logview allows three modes of viewing the records:
* dump: simple print out logged records
* continuous: print out logged records and continue periodically polling the logger for new messages

* interactive: browsing the records forward or backward and jumping through the records (controlled
by the user)

Naturally it allows filtering messages according to source task, severity and labels and modifying the
print-out format.

37

HelenOS networking

/. Changes not related to NICF

7.1. PIO improvements

pi 0_<si ze> read() andpi o_<si ze>_write() functions could now be used for accessing device
memory and 1O ranges. Thisis useful for devices with memory mapped registers.

This functions are used in interrupt pseudocode. Unfortunately before using them thereit isalso
necessary to have address mapped in kernel space. Since current HelenOS version has some memory
limitations (see issue #3 and #343 from the HelenOS mainline bug tracker 12 13) mapping is added
manually in ker nel / ar ch/ (and64| i a32) / src/ nm page. c files. In |A32 architecture, identical
mapping is used. PA2KA() mapping is used for AMDG64 architecture.

7.2. DDF callback device added()

Originally the DDF specified only single callback for driver, called when anew device is discovered
and should be registered in the driver - thisis called add_devi ce() . However, the processis finished
only after the user-defined callback returns.

The NET service needs to be notified at the moment when the NIC is operable, which is not until the
add_devi ce() returned. That’swhy the optional devi ce_added() callback was added to the DDF
interface. This alows the driver to do some post-initialization operations, in case of NIC to notify the
NET service.

7.3. Hardware resources parsing

The driver can ask its parent device (the bus where it is connected) about the hardware resources
assigned to the device (interrupt number, I/O ports area of the device). The original DDF interface
passes the resources in as the (in general case) unsorted array of the C unions (interrupt number,
memory range or 1/O ports range). The layer which splits the resources according to the array was
added to thel i be. It isimplemented inuspace/ | i b/ ¢/ src/ devi ce/ hw_r es_par sed. ¢ and can be
included by <devi ce/ hw_r es_par sed. h> header file.

The new interface alows to parse resources list obtained by the parent by hw res_1i st _parse()
function or obtain the parsed list of resources from the parent device directly by
hw res_get |ist_parsed() function.

7.4. PCl interface

During development of drivers the need of PCI configuration space access occurred, the interface for
reading and writing PCI configuration space registers was added. Unfortunately the similar interface
was developed and merged to the mainline during the USB device driver devel opment. Because of the
interface similarities the change to using mainline version will be trivial.

Lhttp://trac.helenos.org/ticket/3
Bhttp://trac.helenos.org/ticket/343

38

http://trac.helenos.org/ticket/3
http://trac.helenos.org/ticket/343

HelenOS networking

7.5. ILdummy network module

Testing of NICs required simpler behaviour of network stack. The IP and higher layers can be
bypassed to the ILdummy network module, lying on the IL layer but communicating directly with
the testing application, without any abstraction of sockets. More about ILdummy’s functionality is
described in Section 6.2, “NIC testing tool - nictest” section.

39

HelenOS networking

8. How to write a NIC driver

This tutorial should teach you how to integrate an ethernet card driver into HelenOS and use the
existing libraries and services. It should help you both with writing a new driver from scratch or
porting an existing one. The details regarding the actual implementation of driver’'s businesslogic are
up to you, of course.

8.1. Compilation

HelenOS drivers are just usual userspace executables. However, in order to categorize the executables
these are separated into / app/ , / srv/ and/drv/ directories. Your driver should be located in the last
one. Here are the stepsto do that:

1. Create anew directory with your driver’s name under / uspace/ drv/ , €.g. / uspace/ dr v/
nydriver/.

2. Writesimple mai n. ¢ file and Makef i | e and put them into the directory. The Makef i | e can look as

this:
USPACE PREFI X = .. /..
Bl NARY = nydri ver
SOURCES =\

mai n. ¢

i ncl ude $(USPACE_PREFI X) / Makefi | e. conmon
1. Add another file, called nydri ver. ma to the directory. Y ou can leave it empty for now.
2. Open/ uspace/ Makefi| e and add dr v/ nydri ver tothe DI RS variable (for appropriate platforms).

3. Open/ boot / arch/ your-driver-pl atforn Makefil e. i nc and add your driver name to the
RD_DRVS variable.

Now build HelenOS and run it. The driver will be not started yet (it is not associated with the device),
however, you can run it manually from the/ dr v/ nydri ver/ directory.

8.2. Configuration files

Thefilenydri ver. ma isresponsible for associating the driver with the devices for whose is your
driver suitable. Each line describes one devicein aform of mat ch- score mat ch-i d pair, separated by
whitespace.

Match ID specifiesthe device itself - the exact manner how this string is generated is bus-specific, e.g.
on the PCI bus this follows the form pci / ven=VENDOR | D&ev=DEVI CE_I D. Match score specifies
how suitable the driver isfor the device - usual valueis 10. For example the RTL8139 driver uses. ma
file with this content:

10 pci/ven=10ec&dev=8139

Another important file you have to writeislocated in the/ uspace/ srv/ net / cf g/ directory - you
should call it mydevi ce. ni ¢ . Actually only the. ni ¢ extension is really important, the filename

40

HelenOS networking

just must be unique in the directory. The contents of thisfileisin standard HelenOS CFG format
(key=val ue pairs). There are two keys (properties) important from the driver perspective:

* NAME: thisisthe identificator under which will be the device known through the system
* HWPATH: (DDF path) binds the configuration file to the particular device.

Other properties configure network stack settings and their exact meanings are out of scope of this
document. Here is an example of such configuration file:

My driver configuration
NAME=mydri ver
HWPATH=/ hw/ pci 0/ 00: 03. 0/ port O

NI L=et h

I L=ip

ETH MODE=DI X
ETH DUMW=no

| P_CONFI G=static

| P_ADDR=10. 0. 2. 15

| P_ROUTI NG=yes

| P_NETMASK=255. 255. 255. 240
| P_BROADCAST=10. 0. 2. 255

| P_GATEWAY=10. 0. 2. 2

ARP=ar p

Mru=1492

In order to insert thisfile into HelenOS image (not only into the sources), you have to add path to this
fileto the NET_CFGvariablein/ boot / arch/ your-dri ver - pl at f or mi Makefil e.inc.

8.3. DDF and NICF integration

Aside from common | i bc which isincluded by default each NIC driver uses three libraries:
* |ibdrv:the DDF library

* |ibnet: library for cooperation with the network stack

* |ibnic: NIC framework library

Y ou have to set these to be linked in the Makef i | e - add these lines before including the
Makefi |l e. comon:

LI BS += $(LI BDRV_PREFIX)/libdrv.a
LI BS += $(LI BNET_PREFI X)/ | i bnet.a
LIBS += $(LIBNIC_PREFIX)/libnic.a
EXTRA CFLAGS += - | $(LI BDRV_PREFI X)/i ncl ude
EXTRA CFLAGS += -1 $(LI BNET_PREFI X)/i ncl ude
EXTRA CFLAGS += -1 $(LI BNI C_PREFI X)/i ncl ude

In your mai n. c file you have to include several header files from these libraries:

#i ncl ude <ni c. h> /1 NICF library (includes nmost of DDF library internally)
#i nclude <ddf/interrupt.h> // Part of DDF library handling the interrupts

Y ou may aso find handy to include the <nl og. h> for comfortable logging. See Section 6.3, “Logging
support” for details.

41

HelenOS networking

Each driver has to setup several structuresdri ver _t, driver _ops_t and after initializing global

data, run the main message loop which isimplemented in the ddf _dri ver _mai n() function. The
driver _t structure just specifies the name and sets pointer to thedri ver _ops_t structure. Regarding
thedri ver _ops_t structure, you haveto fill only the add_devi ce field. It specifies a handler to your
function, where you initialize the driver structures for a newly discovered device.

Other processes communicate with drivers via DDF interface. For ethernet card drivers, thisis
provided through ni c_i f ace_t structure - you can see the specification in/ uspace/ | i b/ dr v/

i ncl ude/ ops/ ni c. h file. Some of the functions (methods) specified in the interface are mandatory,
some of them are just optional. NICF provides default implementations for some of these methods
- you just haveto call theni c_dri ver _i nmpl ement () function and these are automaticaly filled

in. Of course, if you need your own specific implementation, you can specify them manually in the
ni c_i face_t structure and theni c_dri ver _i npl enent () function will keep them as you set.

Hereis aexcerpt of the mai n. c file with these structures:

static ddf _dev_ops_t nydriver_dev_ops;
static nic_iface_t nydriver_nic_iface;

static driver_ops_t mydriver _driver_ops = {
.add_devi ce = nmydriver _add_devi ce

s

static driver_t mydriver_driver = {
. hame = "nydriver"
.driver_ops = &mwydriver_driver_ops

s
int main()
{
nic _driver_init("mdriver");
nic_driver _inplenment(&rydriver_driver_ops, &nydriver_dev_ops,
&nydriver _nic_iface);
nlog info("Starting ny driver");
return ddf _driver_mai n(&rydriver _driver);
}

Now some common procedure that should be used in the add_devi ce() function:

1. Create anew structureni c_t using theni c_creat e_and_bi nd() function. Thisisthe main NICF
structure associated with each device.

2. If you need your own structure for the driver, you should alocate it and fill into theni c_t structure
using the ni c_set _speci fi c() function.

3. Fill your handlersto the nic_t structure using ni c_set _ sonet hi ng _handl er () functions.
Actually, the only mandatory handler iswri t e_packet ().

4. Query the hardware resources provided by the parent driver (see function ni c_get _r esour ces()).
5. Enable port 1O (function pi o_enabl e()) and prepare your device for operation.

6. Inform the NICF about your device’'s MAC address - useni c_r eport _address() .

42

HelenOS networking

7. Setup DDF interfaces and create a new DDF function for the device - function
nic register_as_ddf fun().

8. Connect to the NET and IRC service using ni c_connect _t o_servi ces() . The NIL service will
be bound later.

9. If everything went OK, return ECK as the return value.

Here is an example implementation of this function:

static int nydriver_add_devi ce(ddf_dev_t *dev)
{ .
int rc;
/* Allocate NIC structure for the device. */
nic t *nic_data = nic_create_and _bi nd(dev);
if (nic_data == NULL) {
return ENOVEM
}

nic set wite packet handl er(nic_data, nydriver wite packet);
ni c_set state change handl ers(nic_data, mydriver_on_activating, NULL
nydri ver _on_st oppi ng) ;

/* Allocate your own data */
nydriver data t *ny _data = mal | oc(sizeof (nydriver _data t));
if (my_data !'= NULL) {
nenset (ny_data, 0, sizeof(nydriver data t));
ni c_set specific(nic_data, ny data);
} else {
/* Do cl eanup: see nic_unbind _and destroy() */
return ENOVEM

}

/* Get HWresources */
hw res |ist _parsed t hw res parsed
hw res |ist_parsed_init(&wres parsed);
rc = nic_get resources(nic_data, &w res parsed);
if (rc = EOX) {
/* Do cl eanup */

}
/* Check if the resources are correct (IRQ nunber, |I/O port range... */
/* Fill in the resources into your data structure */

hw res |ist_parsed _cl ean(&w res_parsed);

/* Enable port /0O */

i f (pio_enabl e(ny_data->port, my_data->range_size, &y _data->port) != EOK) {
/* Do cl eanup */
return EADDRNOTAVAI L;

}

/* Initialize your device here */

/* Report MAC address to the NIC framework */
rc = nic_report_address(nic_data, &my_ data->nac);
if (rc = EOX) {

/* Do cl eanup */

return rc;

}

/* Setup DDF interface and create a new DDF function for the device */

43

HelenOS networking

rc = nic_register_as_ddf _fun(nic_data, &mrydriver_dev_ops);
if (rc = EOKX) {

/* Do cl eanup */

return rc;

}

/* Connect to NET and | RC services */
rc = nic_connect_to_services(nic_data);
if (rc = EOKX) {

/* Do cl eanup */

return rc;

}

return ECK;
}

Leavethenydriver _wite_packet () handler implementation empty for now. At this moment, you
can try to compile the driver, run HelenOS and try typing ni cconf on the console. The device should
be reported on the output. However, in order to be able to send and receive messages, there are still a
couple of things you have to do.

8.4. Sending and receiving

Sending the message is rather a matter of the driver itself. Y ou should include <packet _cl i ent. h>
and use functions packet _get _data_l engt h() and packet _get _dat a() to get the data. Filling them
to the send it to the network is up to you. After the packet is processed (both successfully or with an
error), you haveto call ni c_rel ease_packet () to free the packet.

If DMA isused the NIC requires physical address of the memory with desired data. If you just need a
buffer with known physical memory, you should alocate it using dma_al | ocat e_anonynous() . Such
buffer can be destroyed using dma_unnap() .

If you want to pass the packet data as they are, the memory holding them must be prepared -

locked. The function dma_I ock() doesthisfor you - it forces physical location of the memory and
prohibits any swapping out until you call dma_unl ock() . For easy use on packets there are functions
ni c_dma_| ock_packet () and ni c_dma_unl ock_packet ().

Receiving messagesis a bit more complicated. Y ou have to register interrupts using

regi ster_interrupt_handl er () function. You should do thisin theadd_devi ce() function. The
exact way how interrupts are handled in HelenOS and the pseudo-code instructions are out of scope
of this document - see Lenka Trochtova's thesis 1 for details. So, add this piece of codeinto the
add_devi ce() function after initializing the device.

/* Register interrupts */

rc = register_interrupt_handl er(ni c_get ddf_dev(nic_data), ny_data->irq,
nmydriver interrupt _handl er, &y data->irqg_code);

if (rc = EXK) ({
/* Do cleanup */
return El NVAL;

}

There are three states in which can be the driver:

14_enka Trochtova: Device drivers interface in HelenOS system; 2010; http://www.helenos.org/doc/theses/It-thesi s.pdf

44

http://www.helenos.org/doc/theses/lt-thesis.pdf

HelenOS networking

* ACTI VE: usua mode = operating, sending and receiving messages
* DON: neither sending nor receiving messages, but still keeping its settings
» STOPPED: down and with erased settings

NICF provides three handlers for transition between theses states: on_act i vati ng(),

on_goi ng_down() and on_st oppi ng() . These handlers are set using

ni c_set _state_change_handl ers() intheadd_devi ce() function. Thedriver isinitialy in the
STOPPED state.

Intheon_act i vat ed() handler, you should prepare the device to be able to accept frames and then
enable interrupts from this device (ni c_enabl e_i nterrupt ()). Intheon_goi ng_down handl er ()
you may disable the interrupts from your NIC in order to discard frames directly in the hardware.
Nevertheless, these frames would be discarded anyway in the NICF after being reported to come.
In the on_st opped() handler you should disable interrupts as well and bring the deviceto itsinitia
state.

After you have successfully received a frame (through the interrupt handler set up above), you should
call theni c_recei ved_frame() or ni c_recei ved_packet () function (seealsoni c_al | oc_frame()
and ni c_al | oc_packet ()). All thefiltering (see below) and propagation into higher layersin the
network stack is already implemented in the NICF framework. If your device supports receiving
multiple frames upon single interrupt, you can use function ni c_r ecei ved_frame_l i st () aswell
(seeasonic_alloc_frame(),nic_alloc_frame_list() andnic_frame_|ist_append()).

voi d nydriver _interrupt_handl er (ddf _dev_t *dev, ipc_callid_t iid,
ipc_call _t *call)

{
nic t *nic_data = (nic_t *) dev->driver_data;
if (/* There are franmes to be received */) {
nic franme_list t *frames = nic_alloc_frame_list();
while (/* There are frames to be received */) {
nic franme_t *frame = nic_alloc_franme(nic_data, |ength, 0);
if (franme !'= NULL) {
/* Get packet length and all ocate enough space in the frame */
voi d *data_buffer = packet_suffix(frane->packet, |ength);
/* Move the data fromthe device to the data_buffer */
nic frame_|ist_append(frames, franme);
} else {
/* Discard packets from device */
}
}
nic _received frame_list(nic_data, frames);
}
/* Handle if there were nultiple reasons for interrupt */
async_answer _0(iid, EOK);
}

However, this example does not exploit the DMA - data are copied from the device to the data buffer.
For high-performance drivers you need to preallocate the frames in advance in the add_devi ce()
function and then each time some frames are removed from NIC’'s RX ring.

For the version using DMA you need functions mentioned several paragraphs above -
ni c_dma_| ock_packet () and ni c_dma_unl ock_packet ().

45

HelenOS networking

Correctly received packets (both accepted or filtered in NICF) are counted automatically in
the statistics. If there were problems with receiving frames, you should report them using the
nic_report_receive_error() function.

Most NICs report successfully sent packets or errors in transmission in the interrupt routine as well -
you should call ni c_report _send_ok() andni c_report_send_error () toupdate the statistics.

So, now you should be aware of what to do to set up basic operation of your driver.

8.5. Advanced operations

Filters

Most network interface cards are able to limit the set of accepted frames, these do not

receive each frame that is detected on the link medium. The default behaviour is defined

as receiving only frames with destination address equal to NIC's MAC address, and

broadcast frames (all without any restrictions on VLAN tags). NICF defines handlers

on_uni cast _node_change(),on_nul ti cast _node_change(), on_broadcast _node_change(),
on_bl ocked_sour ces_change() and on_vl an_mask_change() . Y ou should set them using

ni c_set _filtering_change_handl ers() inyour add_devi ce() function.

These handlers should change the mode on the device. If the mode cannot be used on the device at all
(for example it does not support promiscuous mode), the handler should just return ENOTSUP and the
mode change fails.

However, the device could only support more coarse modes than NICF. Therefore the driver should
aso inform the NICF how exact the filtering is using the function ni c_report _hw filtering()
which enables software filtering inside the NICF.

Y ou can query the current mode (prior to the change) by calling functions ni c_query_uni cast (),
nic_query nulticast(),nic_query_broadcast(),nic_query_ bl ocked sources() and
ni c_query_vl an_mask() inthehandlers.

Wake-on-LAN

Some NICs support the wake-on-LAN feature. There are many ways how the computer can be
waken up, that is why the NICF defines so-called WOL virtues. WOL'’ s cannot be software emul ated
and setting them is a matter of each device, therefore the NICF just keeps a records with current
WOL settings and does some checks on the arguments. There are two handlers for adding and
removal WOL virtues, called on_wol _virtue_add() and on_wol _virtue_renove() -ther
meaning is quite obvious. Y ou should set the handlersin the add_devi ce() function by calling
nic_set_wol virtue_change handl ers().

Other operations

There are several another concepts defined in the DDF interface for NICs as the autonegotiation
control, querying current cable state and link operation mode, VLAN tagging or offload computing.
However, their functionality is rather hardware-oriented and therefore NI CF does not encapsulate
them. If you can implement them (which is recommended, of course), you should set DDF callbacks
inthenic_iface_t.

46

HelenOS networking

Debugging compilation

During the development it is recommended to build both I i bni ¢ and your driver with debug-level
logging enabled during development. Thisis done using line

EXTRA _CFLAGS += - DNLOG_COWPI LE_M N_SEVERI TY=NLOG_COWPI LE_SEVERI TY_DEBUG

in both libnic’s and your driver’s Makefiles and setting runtime severity level to DEBUG via

nl og_set _m n_severity(DEBUG ; (doitinthe main function after ni c_driver_init()).If
anything goes wrong, you can see the logs by typing | ogvi ew - d on the console (type! ogvi ew - -
hel p for another options to view log records).

47

HelenOS networking

9. Driver testing

The testing of the driver functionalities can be provided in few different ways using HelenOS
networking infrastructure present in the HelenOS before the project has stared or new application
implemented during the project.

Asall of the developed controllers are emulated by QEMU, the QEMU usage will be described. The
default configuration in the source tree is prepared for usage with QEMU. The examples will be
provided on RTL8139 controller, it’sinterface name in QEMU iset ho.

9.1. Nicconf

The first step in the testing can be running nicconf to seeif the controller was detected properly and
to see some statistics and configuration. The detailed description if the ni cconf command isin the
Section 6.1, “NIC configuration utility - nicconf”.

9.2. Ping command

The simple ping command aready present in the HelenOS before the NIC project has started can

be used to verify the controller is working correctly. This way assumes the other part prepared for
replying echo request. The advantage is that default configuration for the controller can be used - the
i pasthellL and et h asNIL layer.

In QEMU the user networking should be used. To provide RTL8139 testing in QEMU, usethe IA32
or AMDG64 project image and run

genmu -net nic,nmdel =rtl 8139 -net user -cdrominage.iso

In the bshd run

pi ng 10.0. 2.2

to ping default gateway created by QEMU. The disadvantage of this way is dependency on nontrivial
ip layer functionality and ARP protocol implementation, only basic sending and receiving can be
tested. Testing on real hardware is aso possible, only need is that other side answers ECHO requests
correctly.

9.3. Nictest

Aside from simple ping to the gateway, the application nictest was devel oped to provide advanced
tests of the controller functionality by both interactive and automatic testing. The disadvantage of this
kind of testing is necessity of the second nictest instance on the other side of network.

Configuration

The simple ildummy layer, which just simply sends packets to application/NIL layer, is used instead
of ip. In the controller configuration (et ho. ni ¢ fileinuspace/ srv/ net/ cf g directory) set

48

HelenOS networking

| L=i | dummy
System start
The two running instances of nictest running on different computersQEMU instances are needed.

Note

The combination of real HW and QEMU is also possible - in that case the network traffic
must be bridged to the QEMU on the computer where QEMU instance is running. One
possible way to do so is on HelenOS official website 15

For gemu-gemu testing, run two instances of gemu connected by QEMU socket networking. For the
proper functionality the each instance must have different MAC address assigned

gemu -net nic, nodel =rtl 8139 -net socket,listen=:1234 -cdrom i nage.i so

gemu -net nic, nodel =rtl| 8139, nacaddr =52: 54: 00: 12: 12: 12
-net socket, connect=: 1234 -cdrom i nage.i so

Note

there is no necessity for running the same controller on both instances, better attitude
for testing is using some controller with aready tested driver on one side and the new
controller on the other side.

Running tests

Manual testing

The first simple testing can be provided by dunp and send. Run
ni ctest et hO dunp

in the one instance and

ni ctest eth0O send
in second instance.

The packets received by the first instance will be dumped by nictest. Thereis possibility to use
ni ctest ethO send to ADDRfor specify address (e.g. to test unicast/multicast packets reception,
reception of packets sent to another address), the broadcast address is used by default.

The manual testing is also good for testing different polling modes - you run dunp at the tested
instance, send few packets and wait for reception (in the case of periodic polling modes) or force
polling device by

ni ctest ethO poll

in on demand polling mode

Bhitp://trac.helenos.org/wiki/NetworkBridging

49

http://trac.helenos.org/wiki/NetworkBridging

HelenOS networking

Automatic tests

The main profit from the nictest application isin its ability to provide automatic test. Thereis nast er
and sl ave instance of nictest, the sl ave isthe side with the controller to be tested. To invoke the
master run

ni ctest ethO test master $test
and to invoke

ni ctest ethO test_slave

Thetest canbee.g. filters test to test reception rules changing, st at es or st ress test for testing
driver stability (lots of packets are sent), one test invoking al other can be invoked by

nictest ethO test _master all

The complete ni ct est documentation can be found in Section 6.2, “NIC testing tool - nictest”
Note

While testing on real hardware we had expirienced frozen reception after extreme amount
of packets. Thisis probably issue somewhere else in HelenOS and we expect it resolve
after merge with mainline version.

50

HelenOS networking

10. User documentation

The HelNet project improved the networking capabilities of the HelenOS operating system by
implementation of the framework for NIC controller development, DMA support for the devices and
NIC related stuff.

10.1. Supported platforms

The HelenOS subsystems devel oped by the HelNet project are supported on 1A-32 and AMD-64
platform, running in QEMU emulator 16 or on the real hardware - every current computer should be
usable. The supported network interface controllers are RTL 8139 in all versions and 8254x family of
I ntel E1000 network interface controller.

10.2. CDROM content

The CDROM contains the electronic version of the documentation, system source files and images
compiled with QEMU configuration. The directory structure is

READVE The README file

hel net . pdf The electronic version of this documentation

htm / Doxygen cross reference root directory

htm /i ndex. ht m Doxygen cross reference main file

i mg/image_ia32_ip.iso IA32 cdrom image for QEMU, ip asthe IL module

i mg/ i mage_i a32_i | dummy.iso 1A32cdromimage for QEMU, ildummy asthe IL module

i g/ i mage_and64_ip.iso AMD®64 cdrom image for QEMU, ip asthe IL module

i my/ i mage_amd64_i | dumrmy.iso AMD®64 cdrom image for QEMU, ildummy asthe IL module
src/ The root of project sourcefiles

10.3. System compilation

The precompiled system images for QEMU settings are placed on the CDROM, if the specific system
setting must be done (e.g. for the real hardware) the compilation from the source filesis the only way.

Source files

The source files are located in the sr ¢ directory on the CDROM, optionally the most actual version
can be obtained from the Bazaar 7 repository by

bzr co http://bazaar.| aunchpad. net/~hel enos-ni cf/ hel enos/ ni cf src

System configuration

The specific configuration is needed only for compilation for the real hardware or during the NIC
controller testing compilation.

16http://qemu.org
Yhttp://bazaar.canonical.com

51

http://qemu.org
http://bazaar.canonical.com

HelenOS networking

The NIC configuration is provided by configuration files placed in uspace/ srv/ net / cf g directory.
Each file contains the interface setting related to the specific hardware path depending on the
hardware placement (like PCI dot). The new configuration file with the name related with hardware
path should be added, the ssmplest way isto modify existing file and update its setting. The only
setting to changeis are the lines:

HWPATH=/ har dwar e/ pat h/ of / t he/ devi ce
I L=ip

The hardware paths of all recognized devices in the system can be obtained by
I s /dev/devices
invoked inside the running HelenOS instance.

TheIL can beip for the IPv4 related infrastructure running or ildummy for the network card testing
infrastructure support. If theip module is used, the setting of the IPv4 configuration variables -
address by | P_ADDR, network mask by | P_MASK and network gateway by | P_GATEWAY.

Compilation

To compile the system run

make

from the root source directory. Select and64 or i a32 from the Load preconfigured defaul ts
menu, disable Support for SMP, change the settings specific to target computer and press Done to
confirm the settings.

Note

The SMP support can remain enabled but the controller will be functional only with
softwar e periodic polling mode in multiprocessor environment due the APIC driver
[imitations.

Note

Y ou need specific version of cross compiler. You can install it by toolchain build script
t ool s/t ool chai n. sh.

10.4. Running the system in QEMU

To run the system in the QEMU run

gemu -net nic, nodel =MODEL - net user -cdrom | MAGE

The MODE can be either rt 1 8139 or €1000, the IMAGE is the .iso image file obtained from the
CDROM or as the compilation result. The system is expected to useip layer. To test network
controller by ping the default QEMU gateway by running

pi ng 10.0.2.2

inside the HelenOS.

52

HelenOS networking

For the NIC tests provided by ni ct est utility, used the image compiled with the ildummy
configuration. The two instances of the QEMU should be used, the more detailed information about
can be found in Section 9.3, “Nictest”.

10.5. Nicconf utility

After the system start you can run

ni cconf

to obtain list of available network interface. The nicconf help can be invoked by ni cconf - h order,
detailed description including all argumentsisin Section 6.1, “NIC configuration utility - nicconf”.

10.6. Nictest

When running two instances of HelenOS with ildummy configuration, the driver testing by nicconf
utility can be provided. The testing using ni ct est isdescribed in Section 9.3, “Nictest”, the detailed
description of the ni ct est utility isin the Section 6.2, “NIC testing tool - nictest”.

53

HelenOS networking

11. Future development

11.1. More drivers

Having full scale of NIC drivers asin other operating systems would be very nice. The two well-
developed drivers provided within this project enable further devel opment of HelenOS' s networking
abilities and also may serve as reference implementations of drivers. Drivers for other NICs should
come upon the necessity to control hardware where these are installed, the devel opment should be
straightforward now.

11.2. DMA framework future development

DMA framework is functional on 1A32 and AMD64. But in can be extended to other platforms
supported by HelenOS. Next DMA improvement isrelated to AGP/PCI-X support adding. These
technol ogies can enable pseudol OMMU operations, which can trans ate bus address to physical
memory address. Today is bus address same as physical memory address. But support of this feature
is above requests to this project.

Another possibility of development can be implementation of drivers of busmaster devices. These
devices are not required on modern Intel architecture systems, but some other systems could require
them.

11.3. Support for multiport NICs

Although we have considered the existence of multi-port NICs as no device of thiskind is supported
in Qemu and we had no access to areal HW, we have mostly ignored them. The NICF would require
some changes in order to support them.

11.4. Power management

HelenOS currently does not use any power management. NICs possibilities to conserve power were
not exposed, because the ability to do so should be implemented in different interface than the NIC
interface. Solving the design of power management was out of scope of this project.

11.5. Removable NICs

The NICs are usually situated on firm bus such as PCI or ISA. However, there are NICs that can
be inserted on the fly to USB ports or PCM CIA ports. Neither DDF nor NICF and network stack
anticipate that the NIC could be removed from the system.

54

HelenOS networking

A. NIC Interface

The interface consists of few mandatory methods, which must be implemented in the driver
(otherwise the driver cannot operate in any way). Other methods are optional.

Table A.1. Mandatory methods

I nterface method

Description

connect _to_ni

Assignsthe deviceitsdevi ce_i d - identifier which will beused in
higher layers of network stack - and requests connection to specified NI L
module.

get address

Queries device' s MAC address.

get _state

Queries device's state - this can be either active, down or stopped.

set_state

Sets device' s state.

send_nessage

Reguests the device to send a frame with specified ID to the network.

Following methods provide useful information about device:

Table A.2. Informational methods

I nterface method

Description

get _stats

Queries device' s statistics: number of sent and received frames, errors
encountered etc.

get _device_info

Queries static information about the NIC - the result should be the same
for al calls on the same device.

get _cable_state

Queries whether the cable is currently plugged in.

The next set contains methods controlling operation mode:

Table A.3. Operation mode control methods

I nterface method

Description

set address

SetsNIC's MAC address. Although the ability to query the addressis
mandatory, setting MAC address does not need to be implemented (on
some cardsit is even not possible).

get _operati on_node

Sets device' s operation speed (usually 10/200/1000 Mbps), mode (full/half
duplex) and in case of gigabit Ethernet the role.

set _operati on_node

Sets the operation speed, mode and role (disables autonegotiation).

aut oneg_enabl e

Enables the autonegotiation, possibly limiting some options in the
advertisement.

aut oneg_di sabl e

Disables the autonegotiation (the current operation mode will be
preserved).

aut oneg_probe

Probes which modes are we and the second party really advertising.

autoneg_restart

Forces the autonegotiation to be performed again from scratch.

55

HelenOS networking

I nterface method Description

get _pause Queries the currently set (or autonegotiated) state of flow-control
mechanism.

set _pause Limits the flow-control mechanism of PAUSE frame.

Methods in following set control which frames will be accepted and which should not be received.

Table A.4. Filtering methods

I nterface method

Description

uni cast _get _node

Queries which unicast (physical) MAC addresses in frame’s destination
field are to perceived as "our" (therefore accepting those frames).

uni cast _set node

Requests accepting frames with particular unicast (physical) MAC

addresses in the destination field.

mul ti cast _get _node

Queries which multicast addresses are accepted in frame’ s destination
field.

mul ti cast _set node

Requests accepting frames with particular multicast addressesin the
destination field.

br oadcast _get node

Queries whether broadcast frames are received or discarded.

br oadcast _set node

Sets whether broadcast frames are received or discarded.

defective_get node

Queries which types of defective packets (too long, to short, invalid
CRC...) are accepted.

defective_set node

Sets which types of defective packets should be accepted.

bl ocked_sources_get

Queries which MAC addresses in frame' s source field cause the packet to
be refused (blacklisting).

bl ocked_sources_set

Sets which MAC addresses in frame’ s source field cause the packet to be
refused (blacklisting).

Some cards allow filtering according to VLAN tags in the frames and even automatic tagging and

untagging.

Table A.5. VLAN methods

I nterface method

Description

vl an_get _nmask

Queriesfor VLAN tags filtering mask.

vl an_set mask

Setsthe VLAN tags filtering mask. This mask has one bit for each of 4096
possible VLAN tags determining whether the frame should be accepted or
refused.

vl an_set _tag

Setsasingle VLAN tag that should be automatically added and/or stripped
from the packet.

Many PCI NICs have the possibility to boot the computer even if it is turned off upon receiving a
special frame. The conditions can be rather complicated - each way how to wake up the computer is

so called avirtue.

56

HelenOS networking

Table A.6. WoL methods

I nterface method

Description

wol _virtue_add

Add anew virtue, specified by arguments subject to the type.

wol _virtue_renove

Remove avirtue with specified ID.

wol _virtue_probe

Query the type and arguments of existing virtue with specified ID.

wol _virtue_li st

Query alist of IDs from virtues with specified type or alist of all
registered virtues.

wol _virtue_get _caps

Query how many virtues of this type can be yet added.

wol | oad info

After the computer was activated by WoL, query the type of virtue and
exact frame that caused the wakeup.

High speed NICs help the network stack with various automatic checksums (IP checksums, TCP
checksums...). The result can then be stored in asingle bit in packet’ s meta information and queried

in appropriate module.

Table A.7. Offload computing methods

I nterface method

Description

of f1 oad_probe

Query which offload options are supported and which offload
computations are currently performed.

of fl oad_set

Set which offload computations should be performed.

Interrupts can cause significant overhead - therefore there is a possibility to poll the device manually
or periodically rather than fire an interrupt upon receiving each single frame.

Table A.8. Polling methods

I nterface method

Description

pol | _get node

Query the current polling mode and eventually the period of polling.

pol | _set node

Sets the polling mode and eventually the period of polling

pol | _now

Forces NIC to check the status, receive frames etc.

57

HelenOS networking

B. NICF Default handlers summary

TableB.1. DDF interface handlers

I nterface callback

Requirements

devi ce_added none
open none
cl ose none

TableB.2. General NICF handlers

I nterface callback

Requirements

set_state setting on_st oppi ng(), on_acti vati ng() and on_goi ng_down() callbacks
by ni c_set _state_change_handl ers() or keeping the device in active state
all thetime

get _state state handling by set _st at e() default implementation

send_nessage

settingwri t e_packet () callback by ni c_set _write_packet _handl er ()

connect _to_nil

none

get address

reporting device address by ni c_r eport _addr ess() during the device
initialization and set _addr ess() handling

get _stats

updating statisticsby 1 i bni ¢ interface

pol | _get node

using default pol | _set _node() handler

pol | _now

setting on_pol | _request () calback by ni c_set _pol | _handl ers(), using
default pol | _set _node() handler

pol | _set node

setting on_pol | _node_change() callback by ni c_set _pol | _handl ers(),
using default pol I _now() handler, implementing on demand and immediate
polling modesin on_pol | _node_change() callback

TableB.3. Filtering interface handlers

I nterface callback

Requirements

uni cast _get _node

using uni cast _set _node() default handler

uni cast _set _node

setting on_uni cast _node_change() by
nic_set_filtering_change_handl ers() callback

reporting filtering precision by ni c_report _hw filtering() inthe
handler

reporting MAC address by ni c_report _address()

passing packets to higher modules by I i bni ¢ interface

mul ti cast _get node

using mul ti cast _set _node() default handler

mul ti cast_set node

setting on_nul ti cast _node_change() by

nic_set filtering_change_handl ers() callback

reporting filtering precision by ni c_report _hw filtering() inthe
handler

58

HelenOS networking

I nterface callback

Requirements

passing packets to higher modules by i bni ¢ interface

broadcast _get node

using br oadcast _set _node() default handler

broadcast set node

setting on_br oadcast _node_change() callback by
nic_set filtering_change_handl ers()
passing packets to higher modules by I i bni ¢ interface

bl ocked_sour ces_get

using bl ocked_sour ces_set () default handler

bl ocked_sources_set

setting on_bl ocked_sour ces_change() callback by
ni c_set _filtering_change_handl ers() (optional)
passing packets to higher modules by I i bni ¢ interface

vl an_get nask

using vl an_set _mask() default handler

vl an_set nask

setting on_vl an_nask_change() callback by
ni c_set _filtering_change_handl ers() (optional)
passing packets to higher modules by I i bni ¢ interface

TableB.4. WoL interface handlers

I nterface callback

Requirements

wol _virtue_add

setting on_wol _vi rtue_add() callback by

ni c_set _wol virtue_change_handl ers()

proper setting and updating of maximal WoL capabilities by
ni c_set _wol _max_caps()

wol _virtue_renove

setting on_wol _vi rtue_renove() calback by
ni c_set _wol _virtue_change_handl ers()

wol _virtue_probe

using default wol _vi rt ue_add() andwol _virtue_renove() handlers

wol virtue |ist

using default wol _vi rt ue_add() andwol _virtue_renove() handlers

wol _virtue _get caps

managing capabilities by default wol _vi rt ue_add/ renove() callbacks

59

HelenOS networking

C. Project timeline

November 2010

Begin of work, started studying of HelenOS and hardware

December 2010

First team meeting, work divided to members, set rules of work.
Conversion of NE2000 and loopback drivers to use DDF.
Start writing RTL8139 driver, MAC address read from the device.

January 2011

First drafts of physical memory allocator.
First packet transmitted by RTL8139 and E1000.
Logging service added.

February 2011

Advanced NIC framework functionalities.

Manual nictest operation.

Limited packet reception on RTL8139, MAC address setting, ping
functional.

DMA allocator allocates memory with requested size, added
direct_backend.

10Th February 2011

Official project start

March 2011

Automatic address space searching in DMA framework, NICF driver
lifecycle defined, E1000 demonstrator is able to receive packet.
Full packet reception on RTL8139, autonegotiation, filtering work started

April 2011

scatter/gather memory page locking designed. Near-to-final version of NIC
interface.

RTL8139 filtering finished. E1000 is transmitting an receiving multiple
packets.

May 2011

State polling in RTL8139 driver, work at page locking. E1000 works on
AMDG64.

June 2011

Work on polling mode, locking pages finished. E1000 is filtering.

July 2011

Automatic testing in nictest.

Rapid testing (QEMU + real hardware), bug hunting and reparations
E1000 works on real hardware, autonegotiation.

Documentation started.

August 2011

Packet reception rewritten in RTL8139.

Improved packet accepting, DMA server finished tested and debugged.
Real hardware tests, designed DMA controller interface.

VLAN support in E1000 driver.

Documentation finished.

1St September 2011

Project delivered

60

	HelenOS networking
	Table of Contents
	1. Introduction
	1.1. Goals and achievements of the project

	2. HelenOS Architecture Overview
	2.1. IPC
	2.2. HelenOS networking architecture
	2.3. Devide Driver Framework (DDF)
	Services and driver starting
	Communication with the device
	Interrupt handling

	2.4. Memory management

	3. NIC Framework architecture
	3.1. Framework overview
	3.2. NIC interface in DDF
	Application side
	Driver Side

	3.3. NIC Interface methods
	Initialization
	Device states
	Packet sending and receiving
	MAC address
	Filtering
	Operation mode, flow control and autonegotiation
	Device statistics and information
	Offload computing
	VLAN support
	Wake-on-LAN

	3.4. NIC driver structure and libnic
	Driver Initialization Support
	Device Initialization Support
	Device state handling
	Packet transmition support
	Packet reception
	Packet filtering and statistics
	Device polling
	Accessing the nic_t structure

	3.5. Driver activation

	4. DMA interface
	4.1. Introduction
	4.2. Userspace methods and syscalls
	Userspace memory allocation
	Memory locking

	4.3. Kernel changes
	Kernel DMA allocator
	Handling buddies
	Zoning memory
	Allocator speed

	Handling memory areas
	Direct memory backend

	Memory locking and unlocking
	Implementation

	4.4. DMA memory server
	DMA memory server function
	DMA server API:
	DMA server implementation

	4.5. DMA controller framework
	Driver capabilities oriented call
	Channel oriented calls
	Device transfer oriented calls
	Memory oriented calls
	DMA controller driver interface

	4.6. Writing basic driver using DMA bus mastering
	4.7. Writing driver using scatter/gather

	5. Implemented and integrated drivers
	5.1. Loopback
	5.2. Realtek RTL8139
	Controller Documentation Sources
	Implementation

	5.3. Intel E1000
	Controller Documentation Sources
	Implementation

	5.4. Novell NE2000

	6. Tools developed
	6.1. NIC configuration utility - nicconf
	Global actions
	Interface actions

	6.2. NIC testing tool - nictest
	Commands
	Automatic testing
	States test
	Filter test
	Stress test
	Throughput test
	Address test

	6.3. Logging support

	7. Changes not related to NICF
	7.1. PIO improvements
	7.2. DDF callback device_added()
	7.3. Hardware resources parsing
	7.4. PCI interface
	7.5. ILdummy network module

	8. How to write a NIC driver
	8.1. Compilation
	8.2. Configuration files
	8.3. DDF and NICF integration
	8.4. Sending and receiving
	8.5. Advanced operations
	Filters
	Wake-on-LAN
	Other operations
	Debugging compilation

	9. Driver testing
	9.1. Nicconf
	9.2. Ping command
	9.3. Nictest
	Configuration
	System start
	Running tests
	Manual testing
	Automatic tests

	10. User documentation
	10.1. Supported platforms
	10.2. CDROM content
	10.3. System compilation
	Source files
	System configuration
	Compilation

	10.4. Running the system in QEMU
	10.5. Nicconf utility
	10.6. Nictest

	11. Future development
	11.1. More drivers
	11.2. DMA framework future development
	11.3. Support for multiport NICs
	11.4. Power management
	11.5. Removable NICs

	A. NIC Interface
	B. NICF Default handlers summary
	C. Project timeline

