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1. Introduction
This manual describes the support for writing network interface controllers (aka NIC’s) in HelenOS
operating system. It is intended mainly for developers who want to write NIC drivers or software
tightly cooperating with lower layers of network stack (such as firewalls or the networking stack
itself). This manual also contains the description of DMA support developed by part of NIC
development support.

1.1. Goals and achievements of the project
HelenOS 1 is microkernel operating system which means the kernel itself tends to be as small as
possible and the tasks including device drivers should run in userspace. The networking support is the
important part of the modern operating system. By the time when this project started HelenOS already
featured partly functional networking stack with basic TCP, UDP, ARP and IP protocols support as
well as a simple Novell NE2000 NIC driver ported from the Minix operating system. However this
driver operated only through basic port I/O and lacked any higher functionality.

The completion of this project provided a unified way how to easily write NIC drivers with DMA
support. We have proved the concept by developing a driver for Realtek RTL8139 network card
with full exploitation of its abilities, including hardware packet filtering, autonegotiation support
and another features. We have also developed a fully operational driver for Intel E1000 and ported
existing Novell NE2000 driver to the NIC framework.

The new DMA interface allows privileged processes to allocate memory from various physical ranges
or query information about already allocated parts of memory.

All significant operating systems like Linux, BSD family, MINIX or GNU Hurd contains the DMA
memory support, functions for making development of the network controller developement and
several network interface controllers drivers, the HelenOS obtains this abilities by this project.

We have completely meet the goals of project’s submission including the optional parts.

1http://helenos.org

http://helenos.org
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2. HelenOS Architecture Overview
This section provides an overview about NIC and DMA related architecture existing in HelenOS in
the time of the project start

2.1. IPC
In HelenOS microkernel operating system drivers are userspace processes, which are divided from
kernel. It means, when a driver of a device fails, it can be replaced by a new running instance without
system restart. But because this division of drivers from kernel, there must be a method, how to pass
data between two processes.

In HelenOS the way, how to pass data between processes, is passing messages. For this passing is
used IPC framework. It is asynchronous, it means, process which passes a message does not wait until
it is delivered and can continue it’s work. Of course there is a way, how to wait for answer to sent
request.

2.2. HelenOS networking architecture
Unlike most monolithic operating systems the network stack in HelenOS is not a part of the kernel.
As a matter of fact it is distributed between several processes, one for each layer and protocol - these
are called modules in the network stack architecture. Originally there was an option to bundle some
of the modules into processes together for the sake of higher performance but this option was already
abandoned, although some parts of code can suggest its previous existence.

Figure 1. Modules in sent/received packet processing in HelenOS

It is worth mentioning that both the overall design of the network stack and the actual implementation
are not meeting HelenOS quality standards and are subject to change in near future but the
interconnection between networking stack and NIC framework should prevail.

Aside from apparent modules for network protocols (as TCP or UDP) there is a central service /srv/
net called NET further in this documentation. This service starts protocol’s modules and reads both
common and NIC device’s configuration from the /cfg/net/ directory (in sources this is found under
/uspace/srv/net/cfg/). This service manages the configuration and distributes it between modules
which query for it. The assignment of the configuration file to the interface is based on the devices
hardware path.

The packet is represented by packet_t structure. Its instances are allocated by the NET server and
distributed by memory sharing through all the system. The packets are identified by whole system
unique identificator system and there is native support for storing packets in packet queues linked
by its idetificators. This attitude allows to pass more than one packet in time but it also leads to the
system inconsistency danger.

More detailed description of the HelenOS networking can be found in the master thesis of Lukas
Mejdrech 2.

2Lukas Mejdrech: Networking and TCP/IP stack for HelenOS system; 2009; http://www.helenos.org/doc/theses/lm-thesis.pdf

http://www.helenos.org/doc/theses/lm-thesis.pdf
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2.3. Devide Driver Framework (DDF)
In HelenOS neither the drivers are running in kernel mode but these take the form of common
userspace processes, communicating with other tasks through IPC. Kernel intervention is required
only for certain privileged operations such as interrupt handling, port I/O enabling or physical
memory allocation.

As a matter of fact, there are still some drivers in the kernel because moving them into userspace
would be impractical but these are only few and these will be not discussed here. NIC drivers, which
are of our interest, are completely userspace processes, although trusted ones (these possess some
higher privileges than common tasks).

The DDF architecture is deeply described in the master thesis written by Lenka Trochtova 3, the
overview of parts related to project follows.

Services and driver starting

Device Driver Framework consists of the central Device Manager service (aka DevMan) and the very
drivers located in the /drv/ directory. When DevMan boots it probes which drivers are installed in
the system and which devices these drivers support. This is done through .ma files associated with
each driver identifying the supported devices. Each line in the .ma file contains identificator priority
(how good is the driver for such device) and hardware identificator (match id). The match id for the
PCI device contains its vendor id and device id, the example of configuration line for PCI device with
the vendor id 10ec and device id 8139 is in Example 1, “Configuration line for PCI device”.

Example 1. Configuration line for PCI device

10 pci/ven=10ec&dev=8139

After getting the informations from the .ma files the DevMan starts the root hardware driver and
virtual device driver. Bus drivers report child devices to the DevMan which chooses the best
suitable driver based on given match id. If the driver is not running the DevMan starts it and invokes
add_device() callback on the driver side by IPC message. Then the driver initializes the device and
informs DevMan about success/unsuccess by the callback return value.

Communication with the device

Starting the drivers is only a first part of DDF functionality. The second one is to provide a uniform
way how to communicate with the devices.

Each device is identified by a URI-like path, called hardware (HW) path or DDF path later in this
manual. Task which wants to communicate with the device’s driver sends this path to DevMan and
this responds with a phone to the driver already associated with the particular device.

Example 2. Hardware path of the PCI device

/hw/pci0/00:03.0/port0

3Lenka Trochtova: Device drivers interface in HelenOS system; 2010; http://www.helenos.org/doc/theses/lt-thesis.pdf

http://www.helenos.org/doc/theses/lt-thesis.pdf
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Communication on the phone should follow the DDF interface supported by the device. This is
a simple set of RPC methods that can be called on the device. Unfortunately the RPC stubs and
skeletons (code packing and unpacking the method must be written manually. However it is not a
responsibility of driver’s author to write this code, it is already provided in libraries (libc on client
side and libdrv on driver side).

Interrupt handling

The interrupts are mostly processed in the userspace. In the case of level triggered devices there is
a necessity of handling the interrupt before leaving the kernel - the device must clear the interrupt
before kernel enables the interrupts again. The interrupt handling is divided to two parts - kernel
part defined by pseudocode in irq_code_t structure instance and userspace handler, both passed
to DDF and kernel by register_interrupt_handler() function. The driver must include <ddf/
interrupts.h> from libdrv to include interrupt handling part of DDF.

2.4. Memory management
Kernel memory management consists of two basic layers - frame allocator and virtual memory
manager.

The HelenOS uses the buddy allocator for frame allocation, the allocation is possible by the power of
two chunks of frames only.

The virtual address space is divided into continuous address space areas represented by as_area_t
structure. The different areas needs different management thus memory backend is assigned to each
area. The backend is responsible for the page faults handling, proper sharing, resizing or destroying
whole area. The example of such backend is anonymous space area backend (anon_backend)
implemented in the kernel/generic/src/backend_anon.c handling common memory without
specific requirements for physical addresses.

The memory sharing is invoked by the IPC communication between the participated processes, the
kernel waits until the sharing is confirmed and crates new memory area managed by the same backend
as the area in the original process. The backend is notified about area sharing during the first sharing
request and it should initialize structure containing the memory sharing information.
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3. NIC Framework architecture
NIC Framework evolved from the former network stack architecture exploiting the merits of the
Device Driver Framework. Its first objective was to design and implement the DDF interface for
network interface controllers and setup the existing drivers for DDF. Another objective was to identify
the code common for most drivers and extract it to the library - for example the driver does not need
to implement all setters/getters for various settings, the driver implements only the change event
handler. The general conception was to keep the driver minimalistic, only controlling the hardware
and to concentrate all added-value features into the library.

3.1. Framework overview
The framework consists of the NIC interface added to the Device Driver Framewor and libnic
library which contains default handlers for the most of NIC and DDF interface parts and supporting
functions for the NIC driver development. The structure of driver implemented by using NIC
framework is shown in Figure 2, “Driver structure overview”.

Figure 2. Driver structure overview

One goal of the framework was the reduction of hand written driver code thus the default
implementations were added to all possible interface functions. The NIC interface will be described
in Section 3.2, “NIC interface in DDF” and Section 3.3, “NIC Interface methods” , the libnic will be
described in Section 3.4, “NIC driver structure and libnic”.

The DMA support library and other tools will be described in Section 4, “DMA interface”.

3.2. NIC interface in DDF
Here is a brief example how is application request - procedure call - translated into IPC and back into
procedure call on the driver side. Requests which send and receive multiple arguments and blocks
of data are more complicated, of course. The overall functionality is a part of the Device Driver
Framework but the actual implementation of the RPC stubs was required during the NIC Framework.
Detailed description of concrete methods in the interface will follow in Section 3.3, “NIC Interface
methods”, the table of default handlers and its requirements is in the Appendix B, NICF Default
handlers summary.
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Application side

All IPC communication encapsulation was added to libc to the <device/nic.h>. The function
marshalls arguments into an IPC call together with the interface (DEV_IFACE_ID(NIC_DEV_IFACE))
and method identifiers (NIC_SEND_MESSAGE in the example below). Then it verifies that the return
code is correct (otherwise it returns EPARTY) and unmarshalls the output arguments.

The example method below has no output arguments, therefore nothing needs to be unmarshalled
back. Many methods also send or receive blocks of data - in these cases the stub is rather more
complicated.

Example 3. Application-side function implementation

int nic_send_message(int dev_phone, packet_id_t packet_id)
{
    int rc = async_req_2_0(dev_phone, DEV_IFACE_ID(NIC_DEV_IFACE),
        NIC_SEND_MESSAGE, packet_id);
    if (rc != EOK && rc != EINVAL && rc != EBUSY) {
        return EPARTY;
    }
    return rc;
}

Driver Side

The driver side of interface contains two tightly related structures: remote interface and nic
interface. The remote interface is hardcoded in the libdrv while the nic interface is provided by
driver, although usually partially filled with default methods provided from the NICF.

When a IPC request comes the service routine is picked from the remote interface. This routine is
responsible for IPC communication, decoding parameters and obtaining all request-related data and
calling the proper callback from nic interface. The remote interface functions will be referred as
remote functions in further text.

Both interfaces were added to libdrv to the uspace/lib/drv directory. Remote interface is
defined in uspace/lib/drv/generic/remote_nic.c and it consists of remote_nic_iface
instance of remote_instance_t structure containing array of callbacks to remote wrappers and the
implementation of these wrappers.

Example 4. Remote function implementation

static void remote_nic_send_message(ddf_fun_t *dev, void *iface,
                ipc_callid_t callid, ipc_call_t *call)
{
    /* Get the interface of callbacks */
    nic_iface_t *nic_iface = (nic_iface_t *) iface;
    /* Decode callback argument from the IPC message */
    packet_id_t packet_id = (packet_id_t) IPC_GET_ARG2(*call);
    /* Call the proper high-level callback */
    int rc = nic_iface->send_message(dev, packet_id);
    /* Return the result */
    async_answer_0(callid, rc);
}
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The nic interface is defined in structure nic_iface_t declared in <ops/nic.h> in libdrv. The
interface consists from some mandatory and optional functions - the mandatory callbacks (as
send_message()) must be implemented by driver. In lots of cases the default implementation of the
callback can be used to decrease amount of hand written code. The functionality descriptions as the
default implementation will be described in following sections.

3.3. NIC Interface methods
The NIC interface is designed to allow to use the most of features the network controller offers.

Initialization

The device itself does not know which NIL (network interface layer) module will be used for the
device. The connect_to_nil() callback is responsible for connecting driver to the NIL service given
as parameter.

Device states

The device can be in one of following state: active (NIC_STATE_ACTIVE), down (NIC_STATE_DOWN)
and stopped (NIC_STATE_STOPPED). The states diagram with possible transitions is in the Figure 3,
“NIC states diagram”.

Figure 3. NIC states diagram

In the stopped and down states the device does not transmit nor receives packets. The difference
between these states is that the device sets all properties to its defaults when entering to stopped state
and keeps the settings when enters down state.

The interface part for the state changing is the get_state() and set_state() callbacks, both
mandatory.

Packet sending and receiving

The packet sending and reception is allowed only in active state.

The mandatory send_message() callback must be implemented for sending packets to the network.

When a packet comes from network it is reported to NIL layer through an IPC message - this goes out
of scope of the NIC interface provided by DDF. Packet reception is expected to be done either upon
an interrupt or through device polling. Several device polling modes can be set by optional interface
part - poll_set_mode(), poll_get_mode() and poll_now(). The available modes with description
are described in Table 1, “Available polling modes”. The device polling should do all the staff as the
interrupt would do, no interrupts are expected in on demand and software periodic modes.
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Table 1. Available polling modes

Mode Enumeration value Description

immediate NIC_POLL_IMMEDIATE The device polling is invoked by interrupt
immediately after packet reception

on
demand

NIC_POLL_ON_DEMAND The device polling is invoked explicitly by
poll_now() callback

periodic NIC_POLL_PERIODIC The device polling is invoked in specific periodic
intervals

software
periodic

NIC_POLL_SOFTWARE_PERIODIC The same as periodic but the period is invoked by
software

MAC address

The NIC address can be changed by optional set_address() callback, the get_address() callback
for obtaining the MAC address is mandatory.

Filtering

The driver can set what kind of packets are accepted. This functionality is optional, the promiscuity
mode (accept whatever comes) is supposed in the case the driver does not support this interface
parts. The filtering of unicast packets should be set by unicast_set_mode() and obtained by
unicast_get_mode(). The possible modes are in Table 2, “Unicast filter modes”

Table 2. Unicast filter modes

Mode Enumeration value Received unicast packets target

blocked NIC_UNICAST_BLOCKED None accepted

default NIC_UNICAST_DEFAULT sent to devices physical address

list NIC_UNICAST_LIST devices physical address or the address from the list

promisc NIC_UNICAST_PROMISC all unicast packets

The multicast and broadcast filters can be set by the same way as the unicast - by
multicast_set_mode() and multicast_get_mode(), resp. broadcast_set_mode() and
broadcast_get_mode(). The multicast modes are in Table 3, “Multicast filter mode”, the broadcast
mode can be either accepting (NIC_BROADCAST_ACCEPTED) or blocking (NIC_BROADCAST_BLOCKED).

Table 3. Multicast filter mode

Mode Enumeration value Received multicast packets target

blocked NIC_MULTICAST_BLOCKED None accepted

list NIC_MULTICAST_LIST one of multicast address in the list

promisc NIC_MULTICAST_PROMISC all multicast packets

The possibility to block packets from some sources can be enabled by implementing
blocked_sources_set() and blocked_sources_set() - no packets with the source address on the
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list should be accepted. Some defective packet reception (bad CRC or runt packets (shorter than 60B))
can be set and detected in defective_set_mode() and defective_get_mode() callbacks. If not
implemented, no such packets should be received. The possible defective packet types are set as bits
defined by NIC_DEFECTIVE_ macros in <net/device.h> header in libc.

Operation mode, flow control and autonegotiation

The NIC controllers can set its speed, duplexity (full/half duplex) and role (master or slave, gigabit
ethernet only), which can be either set by hand or autonegotiated. The autonegotiation is the
preferred way and the driver should enable it by default if supports, but this is only recommendation.
Implementation of this functionality is only optional.

The callback for manual setting is set_operation_mode(), the mode can be obtained by
get_operation_mode(). The autonegotiation can be enabled by autoneg_enable() callback,
disabled by autoneg_disable(), new autonegotiation is forced by autoneg_restart() and the
current autonegotiation setting can be obtained from autoneg_probe(). If the autonegotiation is
enabled, the manual setting is discarded and replaced by the autonegotiated, if the manual setting is
forced, autonegotiation should be disabled automatically.

The autonegotiation advertisement is passed by bitmask of ETH_AUTONEG_ macros
defined in <net/eth_phys.h> in libc. For example ETH_AUTONEG_10_BASE_T_HALF |
ETH_AUTONEG_10_BASE_T_FULL is used for forcing autonegotiation of 10MBit half and full duplex
modes. The zero advertisement means "all supported by driver". The driver should return error value
if some unsupported mode is requested rather than silently enable unsupported mode.

The flow control can be also set manually or be autonegotiated. In some autonegotiated modes
the controller can allow setting flow control modes. The flow control setting should not disable
autonegotiation, error code should be returned instead. The flow control setting can be taken by
get_pause() callback, it can be set by set_pause() callback. When forced time of pause packet is
not supported by the controller (but the pause packet transmition can be enabled), the nearest possible
time supported should be set. The time value 0 lets driver choose the best suitable time.

Device statistics and information

The device should keep and updated statistics in the instance of nic_device_stats_t structure. The
statistics can be requested by get_stats() callback.

Another useful informations, like supported ethernet physical layers or supported autonegotiation
modes, can be requested by get_device_info() callback. The actual status of cable connection
should be obtained by get_cable_state() callback.

Implementation of all these callbacks is optional.

Offload computing

Computation of IP, TCP and UDP checksums requires massive CPU sources. Some NIC’s are trying
to ease the CPU and verify the checksum automatically, displaying the result in a single bit and filling
the checksums into transmitted packets.

Ability to do this can be probed through offload_probe() callback and requested mode set through
offload_set(). Then the driver can fill in the verification result into the offload info through
packet_set_offload() and higher layers may consider the bits.
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VLAN support

Some cards have the possibility to automatically tag and untag frames by a 12-bit identifier, called
VLAN tag. This behaviour can be controlled through vlan_set_tag() callback. The presence of
desired tag (maybe stripped) should be indicated in the offload field of the packet.

Similarly, the packets can be just filtered according to the tag. Because the 12-bit identifier space
is pretty narrow, the filtering can be perfectly specified through a 512-byte mask. See callbacks
vlan_set_mask() and vlan_get_mask().

Wake-on-LAN

NIC interface considers also NICs which offer the possibility to wake the computer up. There are
multiple types of frames that can cause the wake up - these are called WOL virtues. Combinations
of virtues are sometimes complicated. The currently allowed combination of virtues can be
determined up by calling the wol_virtue_get_caps(). New virtues are added or removed through
wol_virtue_add() and wol_virtue_remove() callbacks, currently active virtues are listed through
wol_virtue_list() and their type and parameters through wol_virtue_probe(). When the
computer boots after a wakeup event, some information about the frame that has woken the computer
can be loaded through wol_load_info().

3.4. NIC driver structure and libnic
The libnic library was developed for the NIC controller drivers development. It contains some
helper stuff and default implementation of the NIC interface functionalities. Its source root directory is
uspace/lib/nic. The header file the driver should include is <nic.h> where all functions supposed
to be used by driver are defined. The rest of headers is considered library-internal and compilation
fails upon including them in the driver.

The main structure in the libnic is nic_t defined in <nic_driver.h>. This structure contains
data needed by general NIC driver like MAC address currently assigned, connections to the DDF
structures, phones to other parts of networking (NET server, NIL layer). The structure is not directly
accessible by the driver for safety reasons, framework functions must be used for the structure
manipulation, more information about the nic_t access can be found in the section called “Accessing
the nic_t structure”.

One important part of the libnic library are the default handlers for NIC and DDF interface requests.
The handlers provides the preprocessing and postprocessing of the request data and the hand written
code is needed only for the parts where hardware cooperation is expected, some of the default
handlers are able to provide whole request.

The description of default handlers is placed in the feature support description. The framework
convention is that the default handler of "callback()" is implemented by "nic_callback_impl()"
in file uspace/lib/nic/generic/nic_impl.c. The brief summary of the default handlers
requirements can be found in Appendix B, NICF Default handlers summary.

Driver Initialization Support

The libnic contains function nic_driver_init() which should be called when the driver starts
- it initializes internal libnic structures like internal logging and initializes packet manager. Next
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the driver should initialize all DDF interfaces and call nic_driver_implement() function which
replaces unimplemented functions by default implementations if possible.

Device Initialization Support

Device initialization should be done in add_device() callback. The nic_t instance should be
created by nic_create_and_bind() function, which also initializes it and connects to the DDF
device structures, From this moment the conversion between nic_t, ddf_fun_t and ddf_dev_t
can be done by nic_get_from_ddf_dev(), nic_get_from_ddf_fun(), nic_get_ddf_fun() and
nic_get_ddf_dev().

The device can set pointer to its private data structure by nic_set_specific(), the pointer
can be obtained by nic_get_specific() method. The nic_t instance is the owner of the
assigned private data memory, the memory will be deallocated together with nic_t instance. The
nic_unbind_and_destroy() removes nic_t structure from the DDF infrastructure and deallocates
the memory.

The device should report its default MAC address by nic_report_address() to the framework to
allow proper checking of request validity, this should also be done together with all MAC address
changes.

As the final step the device should connect itself to the NET server and APIC controller
by calling nic_connect_to_services() and register itself into DDF structures by
nic_register_as_ddf_fun().

In the following device_added() callback the device should call the nic_ready() to notify NET
service that the driver is prepared to work. The default implementation for device_added() callback
provide this notification.

Device state handling

The state handling is provided by default implementations of set_state() and get_state()
handlers.

The get_state() default handler just returns the current device state stored in nic_t structure.
The set_state() handler notifies the driver about the change by calling on_activated(),
on_stopped() or on_going_down() callback

When moving to the stopped state the framework resets all the settings to its defaults and calls
the proper callbacks to propagate the settings to the driver. In the on_stopped() state the driver
should reset the controller. When moving to the down state the driver can turn the device off but the
controller settings must be restored when activating again.

Packet transmition support

The packets to send are given to the framework by send_message() callback by ID of the first packet
in the queue to send. The default implementation of this callback checks the device state, then goes
through the queue, checks each packet validity, obtains its data from the NET server in packet_t
structure, and goes through all packets in the queue to send and calls write_packet() callback
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assigned to the device. The implementation of write_packet() callback is send the checked packet
to the network through hardware.

The write_packet() callback must be assigned to the device by
nic_set_write_packet_handler() function during the device initialization.

If the driver is not able to send more packets because of full transmition buffers, it can set the
"Transmitter busy" sign by nic_set_tx_busy() function, the default implementation will discards
packets until the busy sign is cleared (set to 0).

After the packet transmition is finished, the nic_release_packet() should be call to release the
packet from the system. It is not done by default implementation because sometimes the packet cannot
be released until the interrupt comes to confirm its transmission. Here should be the packet released in
the interrupt handler long after the send_message() callback has been served.

Packet reception

The driver must process the received data, store them to the he instance of packet_t structure and
send it to the NIL layer.

The packet representation structure is obtained by the NET server, the nic_alloc_packet()
encapsulates the communication with the server. The most of controllers receive more than one
packet during one poll event. The received packets are stored in nic_frame_t structure (further
referenced as packet frame) containing the packet_t field and the connection to linked list of
received packets. The whole linked list of packets is represented by nic_frame_list_t type, the
nic_alloc_frame_list() and nic_frame_list_append() encapsulates the work with the list.

The packet frame can be allocated by nic_alloc_frame() - this function also obtains the empty
packet from the NET server. In the case of error the packet frame is expected to be released by
nic_release_frame() which also releases the allocated packet. The nic_release_packet() should
be used to release standalone packet_t structure (e.g. allocated by nic_alloc_packet())

After copying received packets data to the packet representation the nic_received_() function
family should be used to pass the packets to the framework filtering layer described in the
following section. This layer also sends the packets to higher networking layers. Single packet
can be passed by nic_received_packet(), single packet frame by nic_received_frame(), the
nic_received_frame_list() should be used to pass whole list of packet frames.

Packet filtering and statistics

First layer of filtering is directly in the hardware. Driver is notified when the filtering mode changes
through callback handlers in the nic_t structure. Then it reports how perfectly is the hardware able to
implement the filtering mode back to the NIC framework.

When a frame is received, it is passed to framework’s filtering layer. This layer checks if the packets
should be really received according to the current filters settings. No software filtering is required in
driver itself.

Note: The filtering layer drops all packets if the device is not in the active state.
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Figure 4. Packet filtering in driver

The filters are controlled through unicast_set_mode(), multicast_set_mode(),
broadcast_set_mode(), blocked_sources_set() and vlan_set_mask(). The framework
checks the requested setting and if valid the driver is notified to do the hardware setting by
on_unicast_mode_change(), on_multicast_mode_change(), on_broadcast_mode_change(),
on_blocked_sources_change() and on_vlan_mask_change() settings. These handlers are set by
nic_set_filtering_change_handlers() during the initialization phase.

The simplest way how the driver can handle these callbacks is to set the device to the
promiscuous mode, the framework filtering will do all filtering in software. If the driver sets the
hardware filtering in the callbacks it should report the filtering precision to the framework by
nic_report_hw_filtering() method - if the driver provides exact filtering as requested the
software filtering will be skipped by the framework.

The current filtering setting is returned by default implementations of unicast_get_mode(),
multicast_get_mode(), broadcast_get_mode(), blocked_sources_get() and vlan_get_mask()
functions, no code in driver is required.

Device polling

The framework supports device polling by default handlers of poll_set_mode(), poll_get_mode()
and poll_now() actions.

The poll_now() default handler just checks if the manual polling is allowed (the on demand polling
mode) and calls the on_poll_request() callback.

The poll_set_mode() default implementation checks the validity of the requested mode and notifies
driver about new mode by on_poll_mode_change() callback. The immediate and on demand
modes should be supported by driver. If the periodic or software periodic is not supported by driver,
the framework tries to switch the driver to on demand mode by on_poll_mode_change() request
and start fibril which periodically calls on_poll_request() on the device.

The default poll_get_mode() handler just returns last mode set successfully.

The on_poll_mode_change() and on_poll_request() callbacks must be set during the
initialization.

Driver could report current polling mode by calling nic_report_poll_mode(). This is useful for
setting default polling mode during the initialization.

Accessing the nic_t structure

The nic_t structure is considered internal part of libnic library and therefore it cannot be directly
accessed from the driver. However, there may come a necessity to write another implementation of
some callback handler which needs to access it.
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Such functionality should be encapsulated into separate file, considered as an extension for the
libnic itself. You can define the macro LIBNIC_INTERNAL just for this single source and then you
can include also the private libnic’s headers (mainly <nic_driver.h>). Please keep this extensions
separate from your driver’s code to ensure clean design of the code.

3.5. Driver activation
Originally the NIC drivers (loopback and Novell NE2000) used the network stack architectural model,
these had taken the form of modules sharing the structure with protocol (TCP, UDP, IP…) modules.
Drivers were started directly by the NET service and each required its own service identifier. This
was a working but insufficient temporal solution.

Currently is the activation process rather complicated. The DevMan and NET services start in
parallel, DevMan spawning the drivers and NET the protocol modules. NET service probes directory
/cfg/net (/uspace/srv/net/cfg/ in sources) and loads the configuration for network interfaces,
used in higher layers of network stack. Meanwhile the NIC driver obtains resources for the device
from parent bus, registers device in DevMan and informs the NET service that the device is ready
for operation. NET spawns appropriate link-layer (NIL) protocol module (ETH as for Ethernet) and
this requests backward connection and device’s address. After that the device is set to the active state
(see below), notifying higher layers of network stack about a new possible routing path through this
device. When the device is activated, interrupts from the device (as a hardware) are enabled.

The process is summarized in the Figure 5, “Activation sequence diagram”.

Figure 5. Activation sequence diagram
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4. DMA interface
4.1. Introduction

DMA interface is newly introduced set of syscalls, procedures closely bound to them, DMA server
with communication framework and DMA driver interface. For using basic DMA framework it is
necessary to include <dma.h> and for writing drivers using DMA controller interface <device/
dma_controller.h>.

4.2. Userspace methods and syscalls

Userspace memory allocation

Userspace interface of DMA framework (except DMA controller driver) is defined in <dma.h> and
contained in libc.

First operation before using DMA framework should be it’s initialization. There is a procedure
dma_allocator_init(), which initializes all internal structures and waits for connection to DMA
server. In current implementation it is not necessary to call when driver uses only syscall wrappers.

For allocating continuous memory areas usable for basic DMA transfer we have introduced basic
syscall dma_allocate(). It allocates continuous physical memory area. From this memory is created
a memory area at passed virtual address.

Because Intel architecture is specific by it’s backward compatibility, even modern systems may
contain devices using ISA bus. ISA bus has 24-bit wide address space, so it can reaches only lowest
16 MiB of physical memory. Most devices are stationed on the PCI bus, which is 32 or 64 bit wide,
depending on it’s version. That’s why the memory is zoned and why the DMA memory may be
allocated from different ranges: 64-bit range (this range is by default common for all platforms, not
only Intel), 32-bit range and 24-bit range.

Another important fact is that memory allocated by dma_allocate() syscall is already mapped and is
safely accessible for device. Pages mapped this way to virtual memory area must not be remapped to
another memory range by the swapping process (currently not implemented in HelenOS).

Function dma_allocate() is quite lowlevel, so there is a wrapper dma_allocate_anonymous(). It
has almost the same functionality as the syscall described above. However, there are two differences:
it searches also suitable virtual address (here comes the suffix anonymous) and it’s arguments are
wrapped into the structure dma_mem_t, which contains virtual address, variables describing the type of
memory allocation and of course physical address of beginning of the allocated area.

Deallocation of a memory area is possible by simple destroying the memory area, but for consistency
with other DMA functions there is a wrapper dma_unmap() which destroys memory area passed in
argument.

Memory locking

Allocation part of framework is useful only when all memory area sizes and properties are known
before it’s creating. (So this is useful in drivers or applications like sending network packets with
known maximal size.) But very often is necessary to pass to device a (sometimes very large) area of
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memory combined from small discontinuous areas of physical memory. This problem is solved by
two syscalls.

First of them is dma_lock() which returns largest suitable area of continuous physical memory
mapped from passed virtual memory area. The address is also registered in kernel and the swapping
mechanism cannot do anything with such locked area. This syscall does not work over memory area
bounds and after any destroy of memory area the pages are automatically unlocked.

The second syscall dma_unlock() pairs with the previous one - it again enables already locked
memory area for swapping.

Below are few examples how the above mentioned functions should be used. As first the framework
should be properly initialized:

#include <dma.h>

int main(int argc, char * argv[])
{
    /* Initialize DMA framework */
    dma_allocator_init();
        ...
}

Here is an example how to lock larger area combined from multiple smaller physical areas.
Remember, dma_lock() can lock only single memory area.

#include <dma.h>

/* Lock whole area */
int dev_lock_area(void * vaddr, void * paddr[], size_t size)
{
    size_t count = size;
    size_t currently_locked;
    size_t index;

    for (index = 0; count > 0; ++index){
        if(dma_lock(vaddr, &paddr[index], count, &currently_locked) != EOK)
                /* Handle error */

        if (currently_locked == 0)
                /* Handle error - no page has been locked*/

        count -= currently_locked;
        vaddr = (void*)(((uintptr_t)vaddr) + currently_locked * PAGE_SIZE);
    }
    return EOK;
}

Sometimes it is necessary to work with directly allocated and mapped memory:

#include <dma.h>

int dev_do_direct_stuff(...)
{
    unsigned long num_of_pages;
    dma_mem_t memory;

    /* Do some stuff and count sizes etc. */
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    memory.size = num_of_pages;
    memory.mapping_flags = AS_AREA_READ | AS_AREA_WRITE;

    /* Allocate area num_of_pages large, with flags
     * AS_AREA_READ | AS_AREA_WRITE and from any address
     * range (the parameter 0) */
    if ((dma_allocate_anonymous(&memory, 0)) != EOK)
        /* Handle error */

    /* Use the allocated memory */

    /* Unmap the area and free the memory */
    if (dma_free(&memory) != EOK)
        /* Handler error */

    /* Do other stuff */
}

Very often it is necessary to work with virtual memory area obtained randomly from other parts of
system. This method uses dev_lock_area() from example above.

#include <dma.h>

int dev_do_indirect_stuff(...)

    /* Get a buffer with unknown origin */

    void * area = dev_get_area(...)
    void ** paddr = dev_get_paddrs(...);
    size_t in_size = deg_get_area_size(...);
    size_t out_size;
    if (dev_lock_area(area, &paddr, size_in, &size_out) != EOK)
        /* Handle error */

    /* Do some stuff with locked area */

    /* Unlock the memory */
    if (dma_unlock(area, size_in, &size_out) != EOK)
        /* Handler error */

    /* All memory is again released and kernel structures are clean */
}

4.3. Kernel changes
Because of missing suitable kernel memory allocation strategy the kernel required several important
changes. New optional allocator interlayer between buddy allocator and memory management has
been introduced.

This allocator asks the buddy kernel allocator for buddy block. When the request is smaller than
the buddy block, the rest is saved and prepared to satisfy another request. Here is used the "best fit"
strategy for satisfying request from remainder of other buddy.

In normal cases this strategy leads to many little unusable remainders, but we supposed that most
required requests would be one page large requests for network packets, so this would not be a
problem. It leads to reduced time for searching suitable block as well.
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Kernel DMA allocator

Handling buddies

Allocated buddies are stored in AVL tree (special generic type of AVL tree was introduced to
HelenOS). They are split to used parts and unused rests. Unused parts are stored in two AVL trees:
one sorted by size for searching block to satisfy allocation request and second sorted by physical
address for merging with freed block.

When a block of DMA memory is freed the tree of possible neighbours is searched at first. If this
contains freed block’s neighbour which forms a buddy with the freed block these are merged. This
procedure is repeated until some neighbour exists. If it does not, two cases are possible:

• 1) There is some allocated and used block, so merged block is inserted back to remainders, ready to
be allocated.

• 2) Just merged blocks together are one allocated buddy. The tree containing already allocated
buddies is searched and if it contains the buddy it is returned back to kernel buddy frame allocator.

Zoning memory

As some devices on Intel architecture use ISA bus, these can use only 24-bit address space. However,
in Pentium Pro and newer processors the physical address space can be even larger than 32 bits. This
results in some parts of memory being unreachable from some devices. This problem can be solved by
charging restrictions on the allocated memory.

When kernel physical memory zones are created, the creating procedure assigns flags to them
according to their placement in physical memory. Allocating process can restrict which memory
wants to allocate. Upon the request for DMA memory the areas are scanned from the highest suitable
one towards lower ones. Memory problem is reported only if even the lowest area has insufficient
memory.

This works for Intel architecture, but other architectures could have another restrictions. It is up
to developer of other platforms to adapt zones creating on them. At this time memory at all other
platforms is marked as zone with 64-bit range.

Some structures for holding free areas in DMA interlayer allocator have to be tripled to hold proper
ranges, which also complicates the design.
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Figure 6. Scheme of kernel DMA memory allocator

Allocator speed

Because of used data structures, searching (and allocating) of a suitable block internally in DMA
allocator is always logarithmic with number of already done allocations. Freeing the DMA memory is
again logarithmic al with the same number.

Handling memory areas

Direct memory backend

There are several requirements that must hold for the DMA memory:

• 1. When page fault occurs, the mapped frame must correspond to the offset from beginning of the
area

• 2. The area must not be swapped out

• 3. The frames must be freed by the DMA memory allocator, not directly to the buddy allocator

These demands are applied through the new memory backend. Each block has counter meaning how
many areas are holding this block in their parts of paging tables. Here are few rules describing the
behaviour:

• When new area is created, it is fully populated by simulating page faults.

• When a page is removed from area, frame_free() callback decrements the counter.

• When the counter reaches 0, the area is deallocated.

• When sharing structure is created, one next reference is added to that area.

The last rule is important in the situation, when sharing has been started but the source area is
destroyed and the destination area has not incremented the counter. In this case the physical memory
would be freed, what would lead to system inconsistency.
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It was also necessary to introduce a new callback in memory backend share_finish() notifying that
the share structure has been removed. In this situation the counter should be decremented by one.

Memory locking and unlocking

The above described functionality is well suitable if the buffer size is known before the transfer is
requested. When a driver should fill memory area provided by a client application, there are three
problems:

• 1. Anonymous memory area in userspace does not contain information about physical frames
mapped to it.

• 2. Memory may be incontinuous and in worse case even not present.

• 3. Anonymous memory area can be swapped - in fact this is not actual in HelenOS today (swapping
is not implemented) - but we have to think ahead.

So the HelenOS kernel has been enhanced with the possibility to pin anonymous memory to physical
one - to lock it. Userspace process can ask kernel to search physical address of begin of the area and
look forward, how long is the continuous physical memory area. If there are some missing frames the
kernel simulates page faults and populates this space by physical memory.

Implementation

At this moment there is no swapping mechanism implemented in HelenOS. Therefore in fact the
locking mechanism is not necessary and simple lookup for physical memory addresses would be
sufficient for DMA purposes. However, swapping is core feature of operating system and we already
implemented a way how to mark some pages as unswappable.

Each locked page is registered in a tree (implemented as generic AVL tree) in its memory area and
its frame is registered in another kernel-wide tree (B-tree in this case), respectively a counter for this
frame in this tree is increased.

The unlocking operation traverses through tree containing virtual addresses and removes areas, which
should be unlocked. It also decrements counters to their physical frames. When the counter reaches
zero, it means that the frame is not used by any locked area and is removed from the tree.

The further swapping mechanism will have to traverse the maps mentioned above before swapping the
page out.

4.4. DMA memory server

DMA memory server function

On memory area destroy (e.g. termination of process by a failure) pages allocated for DMA transfer
and locked for swapping are unlocked and returned to kernel memory allocator. Then they can be
reused for another process.

If the device with terminated driver still holds physical memory reclaimed in the process above them,
it can rewrite them. This behaviour should be evaded using a memory server which can share memory
areas with other processes and this way protect them from deallocating.
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The server is launched on bootstrap of HelenOS and is bound as a service. Clients connect to
it and identify themselves by unique strings (e.g. hardware paths of devices). After connecting
server searches it’s memory structure for residual areas owned by preceding instance of the same
identificator. If there are no such areas, it generates new unique integer id and returns it to calling
process. In other case the old instance of the same identificator was not correctly terminated. The
old id is returned and now the new instance has chance to reinitialize the device and then destroy all
mapping.

The fact of returning old or new id is not reported to client - it should always initialize the device and
call cleanup for the old memory (release all memory owned by it’s identifier). After connecting to the
DMA server the identification of client is done only by it’s unique id.

When the client is connected it can share memory to server (let the server guard the memory) and stop
the sharing (when the memory is no longer used by the device).

For sharing is necessary address of shared memory area, offset from begin of first page which
should be also locked at server to protect possible swapping out and number of really locked pages.
Unsharing memory is easier, client only sends request for unlocking the memory and physical address
of first really locked page.

DMA server API:

The API of DMA server is declared in <dma.h> in libc

Table 4. DMA server functions

Function Description

dma_cli_register Establishes client’s connection to server.

dma_cli_unregister Unregisters client from server. Unregistration is successfully done
only when all memory already shared by calling process has been
successfully released.

dma_cli_set_ownership Shares memory area to server and queries for locking described
subarea.

dma_cli_clear_ownership Stops sharing the memory and queries the server to unlock the
area.

dma_cli_cleanup Queries the server to release all memory already allocated with the
client.

Here is an example of driver code using the DMA server:

#include <dma.h>

int dev_init_procedure(....)
{
    /* Obtain handle from server */
    int rc =  dma_cli_register("my unique device identifier", &id);
    if (rc != EOK)
        /* Handle error */

    /* Do device initialization, so it does not need any memory buffers */
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    dev_initialize_first_stage();

    /* Tell the server, it can free all shared memory by this id */
    rc = dma_cli_cleanup(&id);
    if (rc != EOK)
                /* Handle error */

    /* Do other stuff */
    dev_initialize_next_stage();
}

When the driver runs, it should share buffers of device with the DMA server:

#include <dma.h>

int dev_work_stuff_procedure(...)
{
    /* Obtain memory area */
    size_t number_of_pages;
    size_t offset_in_pages;
    void * area = dev_get_memory_area(...);

    int rc = dma_cli_set_ownership(area, offset_in_pages, number_of_pages, &id);
    if (rc != OK)
        /* Handle error */

    dev_func(area, ....);

    /* If the memory is no more needed, release it */
    int rc = dma_cli_clear_ownership(paddr, &id);
    if (rc != OK)
        /* Handle error */
}

On exit the driver should stop the device and release all memory, which is still held by server and
unsubscribe from the server:

#include <dma.h>

void dev_stop(...)
{
    /* Stop the device */

    int rc = dma_cli_cleanup(&id);
    if (rc != OK)
        /* Handle error */

    int rc = dma_cli_unregister(&id);
    if (rc != OK)
        /* Handle error */
}

DMA server implementation

DMA server contains two main memory structures: both of them are AVL trees. They contain
structures dma_client_tree_t. This structure is used to describe areas shared from one identificator
to the server. First AVL tree is sorted by string identifiers. This tree is used only when client without
knowledge of id logs into the server. Then the server assigns to it integer id and from this moment
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is used second tree sorted by the id. This solution has been chosen because of speed of comparing
strings and integers and speed of passing integers and string via IPC. Chosen structures are again
generic AVL trees because they can simply implement comparison of string keys.

Each logged in identifier has a set of locked areas. The set is again implemented as a generic AVL
tree. Here the tree is sorted by physical address of first locked page from described area. This is
because it is most simple way of passing data between client and server. Both of them knows this
address and it is not necessary to pass some other data from server to client.

Figure 7. Internal request servicing in DMA server

4.5. DMA controller framework
The device using DMA transfers needs to provide data transfer to the memory without CPU support.
The device with bus mastering mode support can provide the transfer on its own, other devices must
use DMA controller device - this device locks the memory bus and does the transfer. The DMA
controller framework provides the simple way for cooperation between device driver and DMA
controller.

The framework contains the set of IPC stubs and skeletons used by DDF framework. It is used for
driving access to DMA controller driver. The framework is divided into four basic parts - driver
capabilities oriented call, channel oriented calls, device transfer oriented calls and memory oriented
calls. The interface is declared in the <device/dma_controller.h> libc header file.

Driver capabilities oriented call

Calls oriented to driver capabilities allow to detect which features are supported by the
DMA controller (memory-memory operations, transfer requests queue,…). The procedure
dma_query_driver_capabilities() can be used to obtain this information.
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Channel oriented calls

DMA channel is an entity representing slot for transfers. They can be physical oriented (e.g. Intel
8237 4), where each channel has wires in the bus. HelenOS DMA framework expects even logical
channels, which are created by software (the DMA controller driver). It is possible to imagine a
channel like a queue (even with maximal length 1), where the transfers are inserted. DMA controller
driver exports these channels to client application and the application can use allocated channels. They
are represented by structure dma_channel_t and it’s internal structure is not important for user.

Procedure dma_query_channels() queries server for a list of all channels available for transfers.
When client has list of all channels, it can call dma_occupy_channel() to ask server to allocate
specified channel to it. Every driver should use only channels allocated this way. When a channel is
not needed anymore dma_release_channel() should be called. It marks at server the channel as free
and usable for other processes.

Device transfer oriented calls

The device can request the DMA controller to perform the transfer. Each such transfer is identified
by the dma_transfer_id_t identificator and it must be requested on the channel previously reserved
by channel oriented calls. The request must contain the physical address of the memory used in the
transfer.

The transfer from the memory to the device can be requested by dma_set_read_transfer()
or dma_add_read_transfer() calls, the dma_set_write_transfer() and
dma_add_write_transfer() requests the device to memory transfers. The transfers requested by
set_() family are started immediately, the currently processed transfer should be terminated. The
transfers requested by add_() family are added to the end of transfer request queue on the channel.

The transfer status can be obtained by dma_check_transfer_status() method. When the transfer
is finished, server should deallocate the transfer and it is not possible to check it’s status again. The
transfer can be cancelled by dma_cancel_transfer() - the running transfer is terminated, queued
transfer is removed from the waiting queue and deallocated.

Memory oriented calls

Because some devices like Intel 8237 supports copy operation from memory to memory. This
functionality can be useful for many purposes, so here are two additional calls. Their parameters
are ranges of physical memory where the transfer should be done. It is necessary to manage these
transfers, so the call also returns handle to transfer (type dma_transfer_t).

Here are two procedures: First, the dma_set_mem_cpy_transfer() sets transfer from physical
memory to physical memory on any suitable channel, overwrites any transfer possibly running on this
channel, so it is very dangerous to use this call. On the other hand dma_add_mem_cpy_transfer()
adds transfer from physical memory to physical memory to any suitable channel. When someone
tries to rewrite this transfer, the rewriting is delayed until the transfer is completed or the rewritten
transfer is sent to another channel, or if it is permitted by flag the rewritten transfer is delayed until
rewriting transfer finishes. Of course this transfer can be explicitly cancelled by user. It is strongly
recommended to use this call instead.

4http://zet.aluzina.org/images/8/8c/Intel-8237-dma.pdf

http://zet.aluzina.org/images/8/8c/Intel-8237-dma.pdf
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DMA controller driver interface

DMA controller driver interface is server part of communication protocol between device driver
and DMA controller driver. It is placed in libdrv.a and definition of the interface is in <ops/
dma_controller.h> and <remote_dma_controller.h>.

Server at initialization of new device instance should fill new instance of dma_iface_t with
proper callbacks and behave as a drive in other ways. Prototypes of that callbacks are in <ops/
dma_controller.h>.

4.6. Writing basic driver using DMA bus mastering
Basic driver does not use scatter/gather technology, when you are writing so driver, follow these
points:

1. Initialize the DMA framework (by calling dma_allocator_init())

2. Initialize the device and then call dma_cli_cleanup().

3. Allocate continuous buffers by dma_allocate().

4. The buffers should be shared to the DMA server.

5. If the driver uses DMA with external bus transfer driver, it should connect to proper driver.

6. Obtain list of available channels.

7. Select proper channel and tell to server that this channel is occupied.

8. Use the device, it is possible to allocate new DMA memory areas and deallocate old and send
requests do DMA transfer driver. Memory, which is not released by application and server is
unusable for further usage.

9. Release DMA channel.

10.Disconnect from servers. Before it, all shared memory should be freed so when unsure, whether
there is not any area shared to server, call dma_cli_cleanup() and then dma_unregister().

4.7. Writing driver using scatter/gather
scatter gather memory access is the most common way of using DMA at modern systems containing
PCI bus. The way of using DMA framework is similar to preceding case, but little differs.

1. Initialize the DMA framework (calling dma_allocator_init())

2. Initialize the device and then call dma_cli_cleanup().

3. Allocate continuous areas of physical memory with dma_allocate() or lock parts of it’s
virtual address space by dma_lock(). When the locked memory is not needed anymore, call
dma_unlock().

4. Share device buffers to the memory DMA server.
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5. If the driver uses DMA with external bus transfer driver, connect to proper driver.

a. Obtain list of available channels.

b. Select proper channel and tell to server that this channel is occupied.

6. Use the device, it is possible to allocate new DMA memory areas and deallocate old and
send requests do DMA transfer driver. When shared memory area is destroyed, server
remembers it until it obtains explicit request to free it. Memory, which is not released by
application and server is unusable for further usage. The DMA transfer driver can be polled by
remote_dma_check_transfer_status().

7. Release DMA channel if it has been allocated.

8. Disconnect from servers. Before it all shared memory should be freed so when unsure, whether
there is not any area shared to server, call dma_cli_cleanup() and then dma_unregister().
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5. Implemented and integrated drivers
The framework alone would be useless without any working drivers. Implementing example drivers
for it provides both functional and mainly architectural testing, proving framework’s correctness and
good design. This section describes several drivers we have implemented or ported to NICF.

5.1. Loopback
In fact the loopback driver is not necessary. All packets that should be send through the loopback
virtual device are immediately received by the same device and sent back up to the network stack.
It does not use Ethernet module but its own special Nildummy module, which is just a simplified
Ethernet module, so the looping could be done already in the Nildummy module.

However, the architecture can be more symmetric with loopback as separate driver, there are no
exceptions needed for having loopback as a network interface. For example statistics are counted here
using the NIC framework and any task can get them in the same way as from usual physical NIC. The
design is cleaner at the expense of minor performance hit and that’s the way HelenOS is going.

Note: Currently there is a bug in network stack causing all packets going to loopback to be sent twice.
This is not a bug of the driver itself but probably an error in ip module. That’s why if you try to ping
127.0.0.1 and then nicconf lo --stats you will see 8 packets to be sent and received instead of 4,
what you would expect.

5.2. Realtek RTL8139
RTL8139 is the network interface controller from the late 90’s operating on 10/100M Ethernet.
The advantage of this controller is its big availability and its emulation in QEMU (although there
some differences between real hardware and QEMU emulator behaviour). The driver implements all
features the NIC interface allows, the default framework implementations are used when possible, the
hardware settings are used if possible to avoid unnecessary software emulation.

Although the controller supports DMA, too strong restrictions exists. The transmition buffer must
be aligned to 4B boundary, unfortunately the packets obtained from the higher layers are not aligned
properly thus copying to internal properly aligned buffer is used. For receiving only one huge buffer
is used and the driver must copy the packet contents by itself. The both buffers are allocated by DMA
library and the controller reads/write the packet memory directly.

The development of the RTL8139 driver was tightly related to the development of NIC framework
and some parts of code were moved to the libnic.

Controller Documentation Sources

The driver implementation is based primarily on the RTL8139 datasheets 5 and RTL8139
programming guide 6 published by Realtek company. Unfortunately the official documentation is
targeted to the register description rather than functionality description and lacks some important
important information (e.g. header of received data is mentioned only in the source examples in the

5The datasheets for RTL8139B(L), RTL8139C(L) and RTL8139C(L)+
6RTL8139(A/B) Programming guide: (V0.1)
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Programming Guide, packet header value during the DMA processing is not documented,…), the
OsDev wiki 7, QEMU source files 8 and the source files of Linux 9 and FreeBSD 10 driver were used
for studying unclear parts of controller functionalities. The final code of packet reception is based on
FreeBSD driver code.

Implementation

The driver implementation is in uspace/drv/rtl8139 and consist of general sources in
rtl8139_general.[ch], register constants definition in rtl8139_defs.[ch] and the driver
implementation in rtl8139_driver.[ch]. The general sources contains the functions used in rtl8139
implementation not related to the hardware and can be simply moved to the more general library in
the future.

The driver uses NIC framework structures, rtl8139 specific data are stored in instance of rtl8139_t
structure defined in rtl8139_driver.h. The implementation boldly uses the default implementations
of interface functions of the framework and implements only the callbacks which needs to touch
hardware registers. The default callback implementation is used when it is possible, only those parts
which needs to work with registers itself are implemented.

The callbacks for NIC interface are assigned in rtl8139_nic_iface instance of nic_iface_t
structure, default implementation is used for others and it’s callbacks are assigned through framework
interface in rtl8139_create_dev_data() called during device initialization in add_device()
callback of general driver interface in DDF.

The driver uses internal locks for transmitter tx_lock and receiver rx_lock part of code, the policy
locking tx_lock first and rx_lock second was used for deadlock prevention.

The packet transmition is provided in rtl8139_write_packet() function set as callback to
nic_send_message_impl() providing packet preprocessing. In the controller. For the packet
transmittion the four buffers are used in the cyclic order. The driver assignes the 2kB to each
descriptor, the data are coppied from the packet to the buffer and the controller provides data transfer
by PCI bus mastering. If there is no buffer free, the transmitter busy mark is set in NIC framework. In
the interrupt handler all previously used descriptors are checked for transfer completion and marked as
free, the transmitter busy is unset if some descriptor was released.

The reception is provided in rtl8139_receive_packets(). The controller copies the packets to the
cyclic buffer allocated by driver, if the buffer end is reached the writing continues from the buffer
start. When processing new packets the driver obtains the last processed position in the buffer and the
last position in the buffer written by the controller and processes all data between this positions. All
frames read in one processing are sent to NIC framework where the software filtering is provided. The
hardware filtering is used to prefilter packets before its software processing to decrease CPU work.

Other callbacks are implemented mostly by reading/writing controller registers, the periodic polling
mode is implemented by using internal timer increasing by external PCI clock ticks.

The driver was successfully tested on RTL8139B, RTL8139C and RTL8139D controller versions.

7http://wiki.osdev.org/RTL8139
8http://wiki.qemu.org/Download
9drivers/net/8139too.c in linux kernel source tree
10http://fxr.watson.org/fxr/source/pci/if_rl.c

http://wiki.osdev.org/RTL8139
http://wiki.qemu.org/Download
http://fxr.watson.org/fxr/source/pci/if_rl.c
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5.3. Intel E1000
E1000 driver was written for 8254x family of gigabit ethernet controllers from Intel. It was tested
on 82541PI controller and virtual e1000 device in Qemu 0.14. These controllers operates on
10/100/1000M Ethernet.

Controller Documentation Sources

The driver implementation is based on 8254x Family of Gigabit Ethernet Controllers Software
Developer’s Manual 11

Implementation

The driver implementation is in uspace/drv/e1000 and consist of general sources in e1000.c and
hardware representation structures and constants definitions in e1000_defs.h.

Device registers are memory mapped. PIO functions are used for accessing them same way as IO
ports. EERD registers is used for reading device EEPROM. Because EERD description differs on
some devices PCI device_id is used for determining which variant to use.

For using interrupts manual mapping needs to be created. See PCI improvements section. Interface
could work without this mapping only in software periodic or on demand polling mode.

The driver uses four internal locks. tx_lock for transmitter and rx_lock receiver part of code.
ctrl_lock guards access to CTRL register and eeprom_lock guards access to eeprom. The policy
locking in this sequence: rx_lock, tx_lock, ctrl_lock and eeprom_lock was used for deadlock
prevention.

No interrupts are used for transmitting. Packet physical address locked by dma_lock() is written into
transmit ring. Device uses 64 bit long address. No packet copying is used. The packet transmition is
provided in e1000_write_packet() function

Packet is preallocated before receiving and it’s physical address is locked by dma_lock() and filled
into receive descriptor ring. Once the packet is received, new empty packet is allocated. No packet
copying is necessary here either. Possible improvement could be to postpone allocation of some
packets to avoid memory consumption. Question is whether it is worth the risk of losing some
packet. For example while receiving a lot of small packets. The packet reception is provided in
e1000_receive_packets() function.

It is possible to limit interrupt frequency (periodic polling mode) or disable interrupts by using
software polling. Default is at least 250 micro seconds between interrupts.

There is 16 register array for receive address filtering. The first one must be filled with interface
address. In this driver top registers are used for unicast addresses and the bottom registers are used
for multicast addresses. Border between them is variable. When there is not enough space in receive
address array the device is switched into unicast or multicast promiscuous mode and NIC framework
does the filtering. For multicast there is possibility for using multicast array to prefilter traffic for
framework. This was not implemented yet.

11http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf

http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf
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Device supports adding and stripping VLAN tags. It is also possible to filter specified VLAN tags
while receiving.

5.4. Novell NE2000
HelenOS already featured a driver for Novell NE2000 ported from Minix as a part of the Lukas
Mejdrech’s thesis (HelenOS network stack). This driver was not working very well under stress
conditions and the code was not fitting to HelenOS, therefore Martin Decky had rewritten the driver
from scratch in HelenOS mainline.

Both the Minix version (in the beginning of the project) and MD’s version were inserted into NIC
Framework, removing the duplicated parts. This driver was also extended with filtering support,
support for MAC address change and tweaked to better work under stress conditions.

Although this driver is fully integrated to the NIC framework, it does not exploit the capabilities of
DMA. This NIC’s documentation (datasheets) describes DMA access only on chip’s local bus (this is
rather confusing indeed), all communication with this device can be done only through port I/O. This
hardly limits the speed of this NIC’s operation and causes high CPU utilization.
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6. Tools developed
There were several tools developed both for user (system administrator) and drivers' authors.

6.1. NIC configuration utility - nicconf

Although the main purpose of NIC’s is to send and receive messages, the interface is much richer.
The NIC can range several states, its address can be changed and there are various settings that can
be queried and modified. This tool is communicates with the lowest level of network stack, with the
network interface card drivers. It can also report current settings for other layers (IP configuration…)
but this is provided just because there is currently no other tool in HelenOS that could display it. This
feature is about to be removed in the future.

Its functionality is similar (but not identical) to those of ifconfig and ethtool in Linux.

Nicconf commands to follow one of these formats:

nicconf global_action
nicconf interface interface_action

The interface is name of the network interface as stated in its configuration file (in /cfg/net/
directory) under the NAME property. If all is used as the interface name the actions specified are
applied on all currently present interfaces. By default, the nicconf command is equal to nicconf all
--state --config --stats.

Global actions

Currently the only supported global action is -h or --help - the request for displaying help for the
nicconf command. For information for concrete action type netconf --help action where action is
the long name of the action (without the two dashes, e.g. netconf --help config for the --config
action).

Interface actions

Specifying action without arguments only displays information about current settings, those actions
which allow changing the settings require an argument.

-a --autoneg Display/set current autonegotiation state. The argument (if applied) must be one
of these: enable/disable/auto.

-c --config Display current configuration obtained from the NET service - binding to
another services in network stack, current MAC address and DDF path as well as
IP configuration. This option is deprecated.

-i --info Display device’s description and list its capabilities.

-m --mac Display/set MAC address for the device. The address must be specified
as six two-digit hex numbers separated by hyphens (-) or colons (:), e.g.
12:34:56:AB:CD:EF.
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-o --opmode Display/set operation mode for the device. The argument (if applied) must be in
form speed,duplex,role, where speed is the desired speed in Mbps, duplex is
either full or half and role is master, slave or auto.

-p --pollmode Display/set device’s polling mode. The argument (if applied) must be
either immediate (default mode triggering interrupts when a new event
is detected), on_demand (some application manually polls the NIC for
new events), periodic,seconds,microseconds (either the card or
NICF automatically polls with period specified as the arguments) or
software_periodic,seconds,microseconds (same as periodic, no hardware
interrupts).

-s --state Display/set NIC’s state - one of these: active/down/stopped. active is the
usual operation state, down state keeps settings but all communication (both
outcomming and incomming) is disabled and going to the stopped state results
in a complete restart of the NIC.

-t --stats Display statistics for the device.

-u --pause Display/set pause mode. The argument (if applied) must have format
rec_mode,trans_mode[,time] where the modes must be on or off and the
time is a 16-bit number.

-v --vlantag Set VLAN tag and its automatic adding/stripping. The argument has form
tag,add,strip where tag is number between 0 - 0xFFF and add and strip are
either y or n.

6.2. NIC testing tool - nictest
Application nictest should provide a way to both manually and automatically test NIC driver’s
functionality. You can specify filters configuration - this is not available in the nicconf command
because the filters should be set up by another application (firewall) through NICF external API rather
than by user manually. Nictest can send messages with fake source and arbitrary destination, receive
messages from the NIC and perform several types of automatic tests, described below.

Because of poor architecture of current network stack, nictest cannot work with usual network settings
- it’s not possible to eavesdrop or fork the communication between layers. Therefore the internet layer
(IL) must be instead of by the IP module implemented by our module, called ILdummy. This is done
by specifying

IL=ildummy

in the NIC’s configuration file located in /uspace/srv/net/cfg/ directory. With this settings are the
usual applications (ping etc.) not working.

ILdummy does not modify packets that should be sent to the network, the source and destination
are left as they are and the packet is handed over to the ETH module. This module just copies the
addresses and frame type to the packet header and then is the packet handed to our NIC driver.

When a packet is received (from the NIC through the ETH module) it is placed into a queue in the
ILdummy module. If this queue is full (it’s limited to 16 packets) the oldest packet is released (and
the most recent is placed on the end of the queue). The number of such discarded packets can be
queried from the module. When nictest is ready to receive a packet, it polls the ILdummy module and
simply fetches the oldest packet from the queue.
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During the development you would probably develop the driver on an emulator rather than on
physical hardware. There is a nice step-by-step tutorial how to bridge qemu emulator to real network
on HelenOS wiki. When the bridge is set up you can see the communication using tcpdump or
wireshark on the host computer or bridge two instances of HelenOS and send messages between them.

Commands

Nictest has similar syntax of commands to the nicconf:

nictest interface command [arguments]

Here is a list of possible commands with their arguments:

Command and arguments Description

send Send frame

to MAC Destination MAC address (default: broadcast)

from MAC Source MAC address (all zeros = default: NIC’s address)

dump Dump all received frames until keypress

unicast Setup NIC’s unicast settings

block Block all unicast frames

default Pass only frames with NIC’s MAC as destination

list MACs… Pass frames with NIC’s MAC or any MAC from the list as
destination

promisc Promiscuous mode (all unicast is received)

info Display info about current unicast settings

mcast Setup NIC’s multicast settings

block Block all multicast frames

list MACs… Pass frames with any MAC from the list as destination

promisc Promiscuous mode (all multicast is received)

info Display info about current multicast settings

bcast Setup NIC’s broadcast settings

block Block broadcast frames

accept Accept broadcast frames

info Display info about current broadcast settings

blocksource Setup blocked source addresses

set MACs… Set blocked source address from the list

clear Remove all blocked sources

info Display info about current blocked sources settings

poll Poll the device

test_master Start automatic testing as master

states Do automatic testing of states transitions and behaviour

filters Do automatic testing of filtering modes
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Command and arguments Description

stress Do stress test

throughput Benchmark NIC’s network throughput

address Do automatic testing of address changes

test_slave Start automatic testing as slave (no arguments)

Automatic testing

This variant of testing requires two bridged (either virtually or connected with a cable) instances of
HelenOS compiled for the same architecture. On one machine you start the master part of the test,
on the second one the slave part. Slave does not require any argument, everything is sent through the
network by the master.

States test

NIC’s behaviour in each state is strictly defined. It should transmit and receive messages only in the
active state, going to the stopped state means that all settings must be reset etc. This test controls that
this behaviour is correct and that the NIC is operable after every possible transition.

Filter test

Nictest defines several configurations of filters with test packets and information which of them
should be accepted or refused. For each configuration the master sends requested filters settings to
the slave and after the slave confirms that the filters have been set up, it sends the test packets. After a
timeout slave sends a response with a list of received packets to the master. Master then compares the
list with correct result and prints out the report.

Stress test

There are two parts of this test. In the first part the master just starts sending a lot of (32 000) packets
to the slave. After the slave does not receive any new packet for a few seconds, it sends a report
how many packets were received by nictest and how many were discarded in ILdummy. The
results are printed out on the master. In the second part the slave confirms each received packet by
another acknowledgement packet to the master. Master sends the test packets and polls ildummy
for acknowledgements. After all (again 32 000) test packets are sent master waits 15 seconds for
acknowledgements that are yet pending and then reports how many packets were acknowledged.

Throughput test

This test is similar to the first phase stress test - it is only using the longest possible frames (by default,
you can also set lower lengths), and measuring how much time it takes to send them. The slave also
measures how long it took to receive all test messages and reports the number of received bytes and
the time to the master.

Address test

The address can be changed either directly by calling nic_set_address() or implicitly by restarting
the NIC (going to the stopped state and back to active). This test tries both ways and verifies that
packets are received only for the set up address.
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6.3. Logging support
Logging is a common useful debugging technique. However, there was no logging service in HelenOS
- the only possibility was stdout and stderr redirected to kernel log displayed on kernel console and
backed up in a file. Moreover, there was a bug causing the log file to be strongly corrupted. Because
currently HelenOS does not have utilities like grep or sed, even if the file was not corrupted the
filtering could not be done directly in HelenOS.

The necessity of some logging system was found in the USB team as well approximately in the
same time as we have. They have developed much simpler system just as a wrapper to printing into
separated file. This may be sufficient for logging actions of single process but because the network
stack is scattered across many processes, we have decided to create a standalone service called
Logger (/srv/logger), similar to e.g. syslog in UNIX-like systems. This service gathers log records
through IPC from multiple processes and stores them in single file together. This file uses binary
format in order to allow easy filtering and faster seeking through that file. The logs can be probed
through application logview rather than by raw access to the file.

Because of name-clash with USB team’s logging support functions from our login system use prefix
nlog_ instead of simple log_.

With each message is recorded its severity (the levels were adopted from syslog), time, source
task ID and labels associated with the record. These labels are added to the record automatically -
there is one default and possibly more optional profiles in each task, with the labels recorded in the
profile. Labels should form a hierarchy, for example for each driver’s logs are tagged with labels
networking/nic and drv/nic/driver_name. Then you can filter for example only records with label
networking, showing both records from the driver, NET service etc.

Although the logging is working well for debugging, in stress tests it revealed to be radically slowing
down. That’s why the driver can easily suppress unimportant records (with low level of severity) both
at runtime and also at compile time by defining appropriate macros, completely removing the logging
overhead. This can be also useful for example if you wan’t to suppress debugging records from the
libnic library but use your own messages at debug level in the driver itself.

Above mentioned application logview allows three modes of viewing the records:

• dump: simple print out logged records

• continuous: print out logged records and continue periodically polling the logger for new messages

• interactive: browsing the records forward or backward and jumping through the records (controlled
by the user)

Naturally it allows filtering messages according to source task, severity and labels and modifying the
print-out format.



HelenOS networking

38

7. Changes not related to NICF

7.1. PIO improvements

pio_<size>_read() and pio_<size>_write() functions could now be used for accessing device
memory and IO ranges. This is useful for devices with memory mapped registers.

This functions are used in interrupt pseudocode. Unfortunately before using them there it is also
necessary to have address mapped in kernel space. Since current HelenOS version has some memory
limitations (see issue #3 and #343 from the HelenOS mainline bug tracker 12 13) mapping is added
manually in kernel/arch/(amd64|ia32)/src/mm/page.c files. In IA32 architecture, identical
mapping is used. PA2KA() mapping is used for AMD64 architecture.

7.2. DDF callback device_added()

Originally the DDF specified only single callback for driver, called when a new device is discovered
and should be registered in the driver - this is called add_device(). However, the process is finished
only after the user-defined callback returns.

The NET service needs to be notified at the moment when the NIC is operable, which is not until the
add_device() returned. That’s why the optional device_added() callback was added to the DDF
interface. This allows the driver to do some post-initialization operations, in case of NIC to notify the
NET service.

7.3. Hardware resources parsing

The driver can ask its parent device (the bus where it is connected) about the hardware resources
assigned to the device (interrupt number, I/O ports area of the device). The original DDF interface
passes the resources in as the (in general case) unsorted array of the C unions (interrupt number,
memory range or I/O ports range). The layer which splits the resources according to the array was
added to the libc. It is implemented in uspace/lib/c/src/device/hw_res_parsed.c and can be
included by <device/hw_res_parsed.h> header file.

The new interface allows to parse resources list obtained by the parent by hw_res_list_parse()
function or obtain the parsed list of resources from the parent device directly by
hw_res_get_list_parsed() function.

7.4. PCI interface

During development of drivers the need of PCI configuration space access occurred, the interface for
reading and writing PCI configuration space registers was added. Unfortunately the similar interface
was developed and merged to the mainline during the USB device driver development. Because of the
interface similarities the change to using mainline version will be trivial.

12http://trac.helenos.org/ticket/3
13http://trac.helenos.org/ticket/343

http://trac.helenos.org/ticket/3
http://trac.helenos.org/ticket/343
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7.5. ILdummy network module
Testing of NICs required simpler behaviour of network stack. The IP and higher layers can be
bypassed to the ILdummy network module, lying on the IL layer but communicating directly with
the testing application, without any abstraction of sockets. More about ILdummy’s functionality is
described in Section 6.2, “NIC testing tool - nictest” section.
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8. How to write a NIC driver
This tutorial should teach you how to integrate an ethernet card driver into HelenOS and use the
existing libraries and services. It should help you both with writing a new driver from scratch or
porting an existing one. The details regarding the actual implementation of driver’s business logic are
up to you, of course.

8.1. Compilation
HelenOS drivers are just usual userspace executables. However, in order to categorize the executables
these are separated into /app/, /srv/ and /drv/ directories. Your driver should be located in the last
one. Here are the steps to do that:

1. Create a new directory with your driver’s name under /uspace/drv/, e.g. /uspace/drv/
mydriver/.

2. Write simple main.c file and Makefile and put them into the directory. The Makefile can look as
this:

USPACE_PREFIX = ../..
BINARY = mydriver
SOURCES = \
        main.c

include $(USPACE_PREFIX)/Makefile.common

1. Add another file, called mydriver.ma to the directory. You can leave it empty for now.

2. Open /uspace/Makefile and add drv/mydriver to the DIRS variable (for appropriate platforms).

3. Open /boot/arch/your-driver-platform/Makefile.inc and add your driver name to the
RD_DRVS variable.

Now build HelenOS and run it. The driver will be not started yet (it is not associated with the device),
however, you can run it manually from the /drv/mydriver/ directory.

8.2. Configuration files
The file mydriver.ma is responsible for associating the driver with the devices for whose is your
driver suitable. Each line describes one device in a form of match-score match-id pair, separated by
whitespace.

Match ID specifies the device itself - the exact manner how this string is generated is bus-specific, e.g.
on the PCI bus this follows the form pci/ven=VENDOR_ID&dev=DEVICE_ID. Match score specifies
how suitable the driver is for the device - usual value is 10. For example the RTL8139 driver uses .ma
file with this content:

10 pci/ven=10ec&dev=8139

Another important file you have to write is located in the /uspace/srv/net/cfg/ directory - you
should call it mydevice.nic . Actually only the .nic extension is really important, the filename
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just must be unique in the directory. The contents of this file is in standard HelenOS CFG format
(key=value pairs). There are two keys (properties) important from the driver perspective:

• NAME: this is the identificator under which will be the device known through the system

• HWPATH: (DDF path) binds the configuration file to the particular device.

Other properties configure network stack settings and their exact meanings are out of scope of this
document. Here is an example of such configuration file:

# My driver configuration
NAME=mydriver
HWPATH=/hw/pci0/00:03.0/port0

NIL=eth
IL=ip
ETH_MODE=DIX
ETH_DUMMY=no
IP_CONFIG=static
IP_ADDR=10.0.2.15
IP_ROUTING=yes
IP_NETMASK=255.255.255.240
IP_BROADCAST=10.0.2.255
IP_GATEWAY=10.0.2.2
ARP=arp
MTU=1492

In order to insert this file into HelenOS image (not only into the sources), you have to add path to this
file to the NET_CFG variable in /boot/arch/your-driver-platform/Makefile.inc.

8.3. DDF and NICF integration
Aside from common libc which is included by default each NIC driver uses three libraries:

• libdrv: the DDF library

• libnet: library for cooperation with the network stack

• libnic: NIC framework library

You have to set these to be linked in the Makefile - add these lines before including the
Makefile.common:

LIBS += $(LIBDRV_PREFIX)/libdrv.a
LIBS += $(LIBNET_PREFIX)/libnet.a
LIBS += $(LIBNIC_PREFIX)/libnic.a
EXTRA_CFLAGS += -I$(LIBDRV_PREFIX)/include
EXTRA_CFLAGS += -I$(LIBNET_PREFIX)/include
EXTRA_CFLAGS += -I$(LIBNIC_PREFIX)/include

In your main.c file you have to include several header files from these libraries:

#include <nic.h>            // NICF library (includes most of DDF library internally)
#include <ddf/interrupt.h>  // Part of DDF library handling the interrupts

You may also find handy to include the <nlog.h> for comfortable logging. See Section 6.3, “Logging
support” for details.
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Each driver has to setup several structures driver_t, driver_ops_t and after initializing global
data, run the main message loop which is implemented in the ddf_driver_main() function. The
driver_t structure just specifies the name and sets pointer to the driver_ops_t structure. Regarding
the driver_ops_t structure, you have to fill only the add_device field. It specifies a handler to your
function, where you initialize the driver structures for a newly discovered device.

Other processes communicate with drivers via DDF interface. For ethernet card drivers, this is
provided through nic_iface_t structure - you can see the specification in /uspace/lib/drv/
include/ops/nic.h file. Some of the functions (methods) specified in the interface are mandatory,
some of them are just optional. NICF provides default implementations for some of these methods
- you just have to call the nic_driver_implement() function and these are automatically filled
in. Of course, if you need your own specific implementation, you can specify them manually in the
nic_iface_t structure and the nic_driver_implement() function will keep them as you set.

Here is a excerpt of the main.c file with these structures:

static ddf_dev_ops_t mydriver_dev_ops;
static nic_iface_t mydriver_nic_iface;

static driver_ops_t mydriver_driver_ops = {
    .add_device = mydriver_add_device
};

static driver_t mydriver_driver = {
    .name = "mydriver"
    .driver_ops = &mydriver_driver_ops
};

int main()
{
    nic_driver_init("mydriver");
    nic_driver_implement(&mydriver_driver_ops, &mydriver_dev_ops,
        &mydriver_nic_iface);

    nlog_info("Starting my driver");
    return ddf_driver_main(&mydriver_driver);
}

Now some common procedure that should be used in the add_device() function:

1. Create a new structure nic_t using the nic_create_and_bind() function. This is the main NICF
structure associated with each device.

2. If you need your own structure for the driver, you should allocate it and fill into the nic_t structure
using the nic_set_specific() function.

3. Fill your handlers to the nic_t structure using nic_set_ something _handler() functions.
Actually, the only mandatory handler is write_packet().

4. Query the hardware resources provided by the parent driver (see function nic_get_resources()).

5. Enable port IO (function pio_enable()) and prepare your device for operation.

6. Inform the NICF about your device’s MAC address - use nic_report_address().
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7. Setup DDF interfaces and create a new DDF function for the device - function
nic_register_as_ddf_fun().

8. Connect to the NET and IRC service using nic_connect_to_services(). The NIL service will
be bound later.

9. If everything went OK, return EOK as the return value.

Here is an example implementation of this function:

static int mydriver_add_device(ddf_dev_t *dev)
{
    int rc;
    /* Allocate NIC structure for the device. */
    nic_t *nic_data = nic_create_and_bind(dev);
    if (nic_data == NULL) {
        return ENOMEM;
    }
    nic_set_write_packet_handler(nic_data, mydriver_write_packet);
    nic_set_state_change_handlers(nic_data, mydriver_on_activating, NULL,
        mydriver_on_stopping);

    /* Allocate your own data */
    mydriver_data_t *my_data = malloc(sizeof(mydriver_data_t));
    if (my_data != NULL) {
        memset(my_data, 0, sizeof(mydriver_data_t));
        nic_set_specific(nic_data, my_data);
    } else {
        /* Do cleanup: see nic_unbind_and_destroy() */
        return ENOMEM;
    }

    /* Get HW resources */
    hw_res_list_parsed_t hw_res_parsed;
    hw_res_list_parsed_init(&hw_res_parsed);
    rc = nic_get_resources(nic_data, &hw_res_parsed);
    if (rc != EOK) {
        /* Do cleanup */
    }
    /* Check if the resources are correct (IRQ number, I/O port range... */
    /* Fill in the resources into your data structure */
    hw_res_list_parsed_clean(&hw_res_parsed);

    /* Enable port I/O */
    if (pio_enable(my_data->port, my_data->range_size, &my_data->port) != EOK) {
        /* Do cleanup */
        return EADDRNOTAVAIL;
    }

    /* Initialize your device here */

    /* Report MAC address to the NIC framework */
    rc = nic_report_address(nic_data, &my_data->mac);
    if (rc != EOK) {
        /* Do cleanup */
        return rc;
    }

    /* Setup DDF interface and create a new DDF function for the device */
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    rc = nic_register_as_ddf_fun(nic_data, &mydriver_dev_ops);
    if (rc != EOK) {
        /* Do cleanup */
        return rc;
    }

    /* Connect to NET and IRC services */
    rc = nic_connect_to_services(nic_data);
    if (rc != EOK) {
        /* Do cleanup */
        return rc;
    }

    return EOK;
}

Leave the mydriver_write_packet() handler implementation empty for now. At this moment, you
can try to compile the driver, run HelenOS and try typing nicconf on the console. The device should
be reported on the output. However, in order to be able to send and receive messages, there are still a
couple of things you have to do.

8.4. Sending and receiving
Sending the message is rather a matter of the driver itself. You should include <packet_client.h>
and use functions packet_get_data_length() and packet_get_data() to get the data. Filling them
to the send it to the network is up to you. After the packet is processed (both successfully or with an
error), you have to call nic_release_packet() to free the packet.

If DMA is used the NIC requires physical address of the memory with desired data. If you just need a
buffer with known physical memory, you should allocate it using dma_allocate_anonymous(). Such
buffer can be destroyed using dma_unmap().

If you want to pass the packet data as they are, the memory holding them must be prepared -
locked. The function dma_lock() does this for you - it forces physical location of the memory and
prohibits any swapping out until you call dma_unlock(). For easy use on packets there are functions
nic_dma_lock_packet() and nic_dma_unlock_packet().

Receiving messages is a bit more complicated. You have to register interrupts using
register_interrupt_handler() function. You should do this in the add_device() function. The
exact way how interrupts are handled in HelenOS and the pseudo-code instructions are out of scope
of this document - see Lenka Trochtova’s thesis 14 for details. So, add this piece of code into the
add_device() function after initializing the device.

    /* Register interrupts */
    rc = register_interrupt_handler(nic_get_ddf_dev(nic_data), my_data->irq,
        mydriver_interrupt_handler, &my_data->irq_code);
    if (rc != EOK) {
        /* Do cleanup */
        return EINVAL;
    }

There are three states in which can be the driver:

14Lenka Trochtova: Device drivers interface in HelenOS system; 2010; http://www.helenos.org/doc/theses/lt-thesis.pdf

http://www.helenos.org/doc/theses/lt-thesis.pdf
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• ACTIVE: usual mode = operating, sending and receiving messages

• DOWN: neither sending nor receiving messages, but still keeping its settings

• STOPPED: down and with erased settings

NICF provides three handlers for transition between theses states: on_activating(),
on_going_down() and on_stopping(). These handlers are set using
nic_set_state_change_handlers() in the add_device() function. The driver is initially in the
STOPPED state.

In the on_activated() handler, you should prepare the device to be able to accept frames and then
enable interrupts from this device (nic_enable_interrupt()). In the on_going_down handler()
you may disable the interrupts from your NIC in order to discard frames directly in the hardware.
Nevertheless, these frames would be discarded anyway in the NICF after being reported to come.
In the on_stopped() handler you should disable interrupts as well and bring the device to its initial
state.

After you have successfully received a frame (through the interrupt handler set up above), you should
call the nic_received_frame() or nic_received_packet() function (see also nic_alloc_frame()
and nic_alloc_packet()). All the filtering (see below) and propagation into higher layers in the
network stack is already implemented in the NICF framework. If your device supports receiving
multiple frames upon single interrupt, you can use function nic_received_frame_list() as well
(see also nic_alloc_frame(), nic_alloc_frame_list() and nic_frame_list_append()).

void mydriver_interrupt_handler(ddf_dev_t *dev, ipc_callid_t iid,
    ipc_call_t *call)
{
    nic_t *nic_data = (nic_t *) dev->driver_data;

    if (/* There are frames to be received */) {
        nic_frame_list_t *frames = nic_alloc_frame_list();
        while (/* There are frames to be received */) {
            nic_frame_t *frame = nic_alloc_frame(nic_data, length, 0);
            if (frame != NULL) {
                /* Get packet length and allocate enough space in the frame */
                void *data_buffer = packet_suffix(frame->packet, length);
                /* Move the data from the device to the data_buffer */
                nic_frame_list_append(frames, frame);
            } else {
                /* Discard packets from device */
            }
        }
        nic_received_frame_list(nic_data, frames);
    }
    /* Handle if there were multiple reasons for interrupt */

    async_answer_0(iid, EOK);
}

However, this example does not exploit the DMA - data are copied from the device to the data buffer.
For high-performance drivers you need to preallocate the frames in advance in the add_device()
function and then each time some frames are removed from NIC’s RX ring.

For the version using DMA you need functions mentioned several paragraphs above -
nic_dma_lock_packet() and nic_dma_unlock_packet().
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Correctly received packets (both accepted or filtered in NICF) are counted automatically in
the statistics. If there were problems with receiving frames, you should report them using the
nic_report_receive_error() function.

Most NICs report successfully sent packets or errors in transmission in the interrupt routine as well -
you should call nic_report_send_ok() and nic_report_send_error() to update the statistics.

So, now you should be aware of what to do to set up basic operation of your driver.

8.5. Advanced operations

Filters

Most network interface cards are able to limit the set of accepted frames, these do not
receive each frame that is detected on the link medium. The default behaviour is defined
as receiving only frames with destination address equal to NIC’s MAC address, and
broadcast frames (all without any restrictions on VLAN tags). NICF defines handlers
on_unicast_mode_change(), on_multicast_mode_change(), on_broadcast_mode_change(),
on_blocked_sources_change() and on_vlan_mask_change(). You should set them using
nic_set_filtering_change_handlers() in your add_device() function.

These handlers should change the mode on the device. If the mode cannot be used on the device at all
(for example it does not support promiscuous mode), the handler should just return ENOTSUP and the
mode change fails.

However, the device could only support more coarse modes than NICF. Therefore the driver should
also inform the NICF how exact the filtering is using the function nic_report_hw_filtering()
which enables software filtering inside the NICF.

You can query the current mode (prior to the change) by calling functions nic_query_unicast(),
nic_query_multicast(), nic_query_broadcast(), nic_query_blocked_sources() and
nic_query_vlan_mask() in the handlers.

Wake-on-LAN

Some NICs support the wake-on-LAN feature. There are many ways how the computer can be
waken up, that is why the NICF defines so-called WOL virtues. WOL’s cannot be software emulated
and setting them is a matter of each device, therefore the NICF just keeps a records with current
WOL settings and does some checks on the arguments. There are two handlers for adding and
removal WOL virtues, called on_wol_virtue_add() and on_wol_virtue_remove() - their
meaning is quite obvious. You should set the handlers in the add_device() function by calling
nic_set_wol_virtue_change_handlers().

Other operations

There are several another concepts defined in the DDF interface for NICs as the autonegotiation
control, querying current cable state and link operation mode, VLAN tagging or offload computing.
However, their functionality is rather hardware-oriented and therefore NICF does not encapsulate
them. If you can implement them (which is recommended, of course), you should set DDF callbacks
in the nic_iface_t.
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Debugging compilation

During the development it is recommended to build both libnic and your driver with debug-level
logging enabled during development. This is done using line

EXTRA_CFLAGS += -DNLOG_COMPILE_MIN_SEVERITY=NLOG_COMPILE_SEVERITY_DEBUG

in both libnic’s and your driver’s Makefiles and setting runtime severity level to DEBUG via
nlog_set_min_severity(DEBUG); (do it in the main function after nic_driver_init()). If
anything goes wrong, you can see the logs by typing logview -d on the console (type logview --
help for another options to view log records).
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9. Driver testing
The testing of the driver functionalities can be provided in few different ways using HelenOS
networking infrastructure present in the HelenOS before the project has stared or new application
implemented during the project.

As all of the developed controllers are emulated by QEMU, the QEMU usage will be described. The
default configuration in the source tree is prepared for usage with QEMU. The examples will be
provided on RTL8139 controller, it’s interface name in QEMU is eth0.

9.1. Nicconf

The first step in the testing can be running nicconf to see if the controller was detected properly and
to see some statistics and configuration. The detailed description if the nicconf command is in the
Section 6.1, “NIC configuration utility - nicconf”.

9.2. Ping command

The simple ping command already present in the HelenOS before the NIC project has started can
be used to verify the controller is working correctly. This way assumes the other part prepared for
replying echo request. The advantage is that default configuration for the controller can be used - the
ip as the IL and eth as NIL layer.

In QEMU the user networking should be used. To provide RTL8139 testing in QEMU, use the IA32
or AMD64 project image and run

qemu -net nic,model=rtl8139 -net user -cdrom image.iso

In the bshd run

ping 10.0.2.2

to ping default gateway created by QEMU. The disadvantage of this way is dependency on nontrivial
ip layer functionality and ARP protocol implementation, only basic sending and receiving can be
tested. Testing on real hardware is also possible, only need is that other side answers ECHO requests
correctly.

9.3. Nictest

Aside from simple ping to the gateway, the application nictest was developed to provide advanced
tests of the controller functionality by both interactive and automatic testing. The disadvantage of this
kind of testing is necessity of the second nictest instance on the other side of network.

Configuration

The simple ildummy layer, which just simply sends packets to application/NIL layer, is used instead
of ip. In the controller configuration (eth0.nic file in uspace/srv/net/cfg directory) set
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IL=ildummy

System start

The two running instances of nictest running on different computers/QEMU instances are needed.

Note

The combination of real HW and QEMU is also possible - in that case the network traffic
must be bridged to the QEMU on the computer where QEMU instance is running. One
possible way to do so is on HelenOS official website 15

For qemu-qemu testing, run two instances of qemu connected by QEMU socket networking. For the
proper functionality the each instance must have different MAC address assigned

qemu -net nic,model=rtl8139 -net socket,listen=:1234 -cdrom image.iso

qemu -net nic,model=rtl8139,macaddr=52:54:00:12:12:12
    -net socket,connect=:1234 -cdrom image.iso

Note

there is no necessity for running the same controller on both instances, better attitude
for testing is using some controller with already tested driver on one side and the new
controller on the other side.

Running tests

Manual testing

The first simple testing can be provided by dump and send. Run

nictest eth0 dump

in the one instance and

nictest eth0 send

in second instance.

The packets received by the first instance will be dumped by nictest. There is possibility to use
nictest eth0 send to ADDR for specify address (e.g. to test unicast/multicast packets reception,
reception of packets sent to another address), the broadcast address is used by default.

The manual testing is also good for testing different polling modes - you run dump at the tested
instance, send few packets and wait for reception (in the case of periodic polling modes) or force
polling device by

nictest eth0 poll

in on demand polling mode

15http://trac.helenos.org/wiki/NetworkBridging

http://trac.helenos.org/wiki/NetworkBridging


HelenOS networking

50

Automatic tests

The main profit from the nictest application is in its ability to provide automatic test. There is master
and slave instance of nictest, the slave is the side with the controller to be tested. To invoke the
master run

nictest eth0 test_master $test

and to invoke

nictest eth0 test_slave

The test can be e.g. filters test to test reception rules changing, states or stress test for testing
driver stability (lots of packets are sent), one test invoking all other can be invoked by

nictest eth0 test_master all

The complete nictest documentation can be found in Section 6.2, “NIC testing tool - nictest”

Note

While testing on real hardware we had expirienced frozen reception after extreme amount
of packets. This is probably issue somewhere else in HelenOS and we expect it resolve
after merge with mainline version.
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10. User documentation
The HelNet project improved the networking capabilities of the HelenOS operating system by
implementation of the framework for NIC controller development, DMA support for the devices and
NIC related stuff.

10.1. Supported platforms
The HelenOS subsystems developed by the HelNet project are supported on IA-32 and AMD-64
platform, running in QEMU emulator 16 or on the real hardware - every current computer should be
usable. The supported network interface controllers are RTL8139 in all versions and 8254x family of
Intel E1000 network interface controller.

10.2. CDROM content
The CDROM contains the electronic version of the documentation, system source files and images
compiled with QEMU configuration. The directory structure is

README The README file

helnet.pdf The electronic version of this documentation

html/ Doxygen cross reference root directory

html/index.html Doxygen cross reference main file

img/image_ia32_ip.iso IA32 cdrom image for QEMU, ip as the IL module

img/image_ia32_ildummy.iso IA32 cdrom image for QEMU, ildummy as the IL module

img/image_amd64_ip.iso AMD64 cdrom image for QEMU, ip as the IL module

img/image_amd64_ildummy.iso AMD64 cdrom image for QEMU, ildummy as the IL module

src/ The root of project source files

10.3. System compilation
The precompiled system images for QEMU settings are placed on the CDROM, if the specific system
setting must be done (e.g. for the real hardware) the compilation from the source files is the only way.

Source files

The source files are located in the src directory on the CDROM, optionally the most actual version
can be obtained from the Bazaar 17 repository by

bzr co http://bazaar.launchpad.net/~helenos-nicf/helenos/nicf src

System configuration

The specific configuration is needed only for compilation for the real hardware or during the NIC
controller testing compilation.

16http://qemu.org
17http://bazaar.canonical.com

http://qemu.org
http://bazaar.canonical.com
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The NIC configuration is provided by configuration files placed in uspace/srv/net/cfg directory.
Each file contains the interface setting related to the specific hardware path depending on the
hardware placement (like PCI slot). The new configuration file with the name related with hardware
path should be added, the simplest way is to modify existing file and update its setting. The only
setting to change is are the lines:

HWPATH=/hardware/path/of/the/device
IL=ip

The hardware paths of all recognized devices in the system can be obtained by

ls /dev/devices

invoked inside the running HelenOS instance.

The IL can be ip for the IPv4 related infrastructure running or ildummy for the network card testing
infrastructure support. If the ip module is used, the setting of the IPv4 configuration variables -
address by IP_ADDR, network mask by IP_MASK and network gateway by IP_GATEWAY.

Compilation

To compile the system run

make

from the root source directory. Select amd64 or ia32 from the Load preconfigured defaults
menu, disable Support for SMP, change the settings specific to target computer and press Done to
confirm the settings.

Note

The SMP support can remain enabled but the controller will be functional only with
software periodic polling mode in multiprocessor environment due the APIC driver
limitations.

Note

You need specific version of cross compiler. You can install it by toolchain build script
tools/toolchain.sh.

10.4. Running the system in QEMU
To run the system in the QEMU run

qemu -net nic,model=MODEL -net user -cdrom IMAGE

The MODE can be either rtl8139 or e1000, the IMAGE is the .iso image file obtained from the
CDROM or as the compilation result. The system is expected to use ip layer. To test network
controller by ping the default QEMU gateway by running

ping 10.0.2.2

inside the HelenOS.
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For the NIC tests provided by nictest utility, used the image compiled with the ildummy
configuration. The two instances of the QEMU should be used, the more detailed information about
can be found in Section 9.3, “Nictest”.

10.5. Nicconf utility
After the system start you can run

nicconf

to obtain list of available network interface. The nicconf help can be invoked by nicconf -h order,
detailed description including all arguments is in Section 6.1, “NIC configuration utility - nicconf”.

10.6. Nictest
When running two instances of HelenOS with ildummy configuration, the driver testing by nicconf
utility can be provided. The testing using nictest is described in Section 9.3, “Nictest”, the detailed
description of the nictest utility is in the Section 6.2, “NIC testing tool - nictest”.
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11. Future development

11.1. More drivers
Having full scale of NIC drivers as in other operating systems would be very nice. The two well-
developed drivers provided within this project enable further development of HelenOS’s networking
abilities and also may serve as reference implementations of drivers. Drivers for other NICs should
come upon the necessity to control hardware where these are installed, the development should be
straightforward now.

11.2. DMA framework future development
DMA framework is functional on IA32 and AMD64. But in can be extended to other platforms
supported by HelenOS. Next DMA improvement is related to AGP/PCI-X support adding. These
technologies can enable pseudoIOMMU operations, which can translate bus address to physical
memory address. Today is bus address same as physical memory address. But support of this feature
is above requests to this project.

Another possibility of development can be implementation of drivers of busmaster devices. These
devices are not required on modern Intel architecture systems, but some other systems could require
them.

11.3. Support for multiport NICs
Although we have considered the existence of multi-port NICs as no device of this kind is supported
in Qemu and we had no access to a real HW, we have mostly ignored them. The NICF would require
some changes in order to support them.

11.4. Power management
HelenOS currently does not use any power management. NICs possibilities to conserve power were
not exposed, because the ability to do so should be implemented in different interface than the NIC
interface. Solving the design of power management was out of scope of this project.

11.5. Removable NICs
The NICs are usually situated on firm bus such as PCI or ISA. However, there are NICs that can
be inserted on the fly to USB ports or PCMCIA ports. Neither DDF nor NICF and network stack
anticipate that the NIC could be removed from the system.
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A. NIC Interface
The interface consists of few mandatory methods, which must be implemented in the driver
(otherwise the driver cannot operate in any way). Other methods are optional.

Table A.1. Mandatory methods

Interface method Description

connect_to_nil Assigns the device its device_id - identifier which will be used in
higher layers of network stack - and requests connection to specified NIL
module.

get_address Queries device’s MAC address.

get_state Queries device’s state - this can be either active, down or stopped.

set_state Sets device’s state.

send_message Requests the device to send a frame with specified ID to the network.

Following methods provide useful information about device:

Table A.2. Informational methods

Interface method Description

get_stats Queries device’s statistics: number of sent and received frames, errors
encountered etc.

get_device_info Queries static information about the NIC - the result should be the same
for all calls on the same device.

get_cable_state Queries whether the cable is currently plugged in.

The next set contains methods controlling operation mode:

Table A.3. Operation mode control methods

Interface method Description

set_address Sets NIC’s MAC address. Although the ability to query the address is
mandatory, setting MAC address does not need to be implemented (on
some cards it is even not possible).

get_operation_mode Sets device’s operation speed (usually 10/100/1000 Mbps), mode (full/half
duplex) and in case of gigabit Ethernet the role.

set_operation_mode Sets the operation speed, mode and role (disables autonegotiation).

autoneg_enable Enables the autonegotiation, possibly limiting some options in the
advertisement.

autoneg_disable Disables the autonegotiation (the current operation mode will be
preserved).

autoneg_probe Probes which modes are we and the second party really advertising.

autoneg_restart Forces the autonegotiation to be performed again from scratch.
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Interface method Description

get_pause Queries the currently set (or autonegotiated) state of flow-control
mechanism.

set_pause Limits the flow-control mechanism of PAUSE frame.

Methods in following set control which frames will be accepted and which should not be received.

Table A.4. Filtering methods

Interface method Description

unicast_get_mode Queries which unicast (physical) MAC addresses in frame’s destination
field are to perceived as "our" (therefore accepting those frames).

unicast_set_mode Requests accepting frames with particular unicast (physical) MAC
addresses in the destination field.

multicast_get_mode Queries which multicast addresses are accepted in frame’s destination
field.

multicast_set_mode Requests accepting frames with particular multicast addresses in the
destination field.

broadcast_get_mode Queries whether broadcast frames are received or discarded.

broadcast_set_mode Sets whether broadcast frames are received or discarded.

defective_get_mode Queries which types of defective packets (too long, to short, invalid
CRC…) are accepted.

defective_set_mode Sets which types of defective packets should be accepted.

blocked_sources_get Queries which MAC addresses in frame’s source field cause the packet to
be refused (blacklisting).

blocked_sources_set Sets which MAC addresses in frame’s source field cause the packet to be
refused (blacklisting).

Some cards allow filtering according to VLAN tags in the frames and even automatic tagging and
untagging.

Table A.5. VLAN methods

Interface method Description

vlan_get_mask Queries for VLAN tags filtering mask.

vlan_set_mask Sets the VLAN tags filtering mask. This mask has one bit for each of 4096
possible VLAN tags determining whether the frame should be accepted or
refused.

vlan_set_tag Sets a single VLAN tag that should be automatically added and/or stripped
from the packet.

Many PCI NICs have the possibility to boot the computer even if it is turned off upon receiving a
special frame. The conditions can be rather complicated - each way how to wake up the computer is
so called a virtue.
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Table A.6. WoL methods

Interface method Description

wol_virtue_add Add a new virtue, specified by arguments subject to the type.

wol_virtue_remove Remove a virtue with specified ID.

wol_virtue_probe Query the type and arguments of existing virtue with specified ID.

wol_virtue_list Query a list of IDs from virtues with specified type or a list of all
registered virtues.

wol_virtue_get_caps Query how many virtues of this type can be yet added.

wol_load_info After the computer was activated by WoL, query the type of virtue and
exact frame that caused the wakeup.

High speed NICs help the network stack with various automatic checksums (IP checksums, TCP
checksums…). The result can then be stored in a single bit in packet’s meta information and queried
in appropriate module.

Table A.7. Offload computing methods

Interface method Description

offload_probe Query which offload options are supported and which offload
computations are currently performed.

offload_set Set which offload computations should be performed.

Interrupts can cause significant overhead - therefore there is a possibility to poll the device manually
or periodically rather than fire an interrupt upon receiving each single frame.

Table A.8. Polling methods

Interface method Description

poll_get_mode Query the current polling mode and eventually the period of polling.

poll_set_mode Sets the polling mode and eventually the period of polling

poll_now Forces NIC to check the status, receive frames etc.
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B. NICF Default handlers summary
Table B.1. DDF interface handlers

Interface callback Requirements

device_added none

open none

close none

Table B.2. General NICF handlers

Interface callback Requirements

set_state setting on_stopping(), on_activating() and on_going_down() callbacks
by nic_set_state_change_handlers() or keeping the device in active state
all the time

get_state state handling by set_state() default implementation

send_message setting write_packet() callback by nic_set_write_packet_handler()

connect_to_nil none

get_address reporting device address by nic_report_address() during the device
initialization and set_address() handling

get_stats updating statistics by libnic interface

poll_get_mode using default poll_set_mode() handler

poll_now setting on_poll_request() callback by nic_set_poll_handlers(), using
default poll_set_mode() handler

poll_set_mode setting on_poll_mode_change() callback by nic_set_poll_handlers(),
using default poll_now() handler, implementing on demand and immediate
polling modes in on_poll_mode_change() callback

Table B.3. Filtering interface handlers

Interface callback Requirements

unicast_get_mode using unicast_set_mode() default handler

unicast_set_mode setting on_unicast_mode_change() by
nic_set_filtering_change_handlers() callback
reporting filtering precision by nic_report_hw_filtering() in the
handler
reporting MAC address by nic_report_address()
passing packets to higher modules by libnic interface

multicast_get_mode using multicast_set_mode() default handler

multicast_set_mode setting on_multicast_mode_change() by
nic_set_filtering_change_handlers() callback
reporting filtering precision by nic_report_hw_filtering() in the
handler
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Interface callback Requirements

passing packets to higher modules by libnic interface

broadcast_get_mode using broadcast_set_mode() default handler

broadcast_set_mode setting on_broadcast_mode_change() callback by
nic_set_filtering_change_handlers()

passing packets to higher modules by libnic interface

blocked_sources_get using blocked_sources_set() default handler

blocked_sources_set setting on_blocked_sources_change() callback by
nic_set_filtering_change_handlers() (optional)
passing packets to higher modules by libnic interface

vlan_get_mask using vlan_set_mask() default handler

vlan_set_mask setting on_vlan_mask_change() callback by
nic_set_filtering_change_handlers() (optional)
passing packets to higher modules by libnic interface

Table B.4. WoL interface handlers

Interface callback Requirements

wol_virtue_add setting on_wol_virtue_add() callback by
nic_set_wol_virtue_change_handlers()

proper setting and updating of maximal WoL capabilities by
nic_set_wol_max_caps()

wol_virtue_remove setting on_wol_virtue_remove() callback by
nic_set_wol_virtue_change_handlers()

wol_virtue_probe using default wol_virtue_add() and wol_virtue_remove() handlers

wol_virtue_list using default wol_virtue_add() and wol_virtue_remove() handlers

wol_virtue_get_caps managing capabilities by default wol_virtue_add/remove() callbacks
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C. Project timeline
November 2010 Begin of work, started studying of HelenOS and hardware

December 2010 First team meeting, work divided to members, set rules of work.
Conversion of NE2000 and loopback drivers to use DDF.
Start writing RTL8139 driver, MAC address read from the device.

January 2011 First drafts of physical memory allocator.
First packet transmitted by RTL8139 and E1000.
Logging service added.

February 2011 Advanced NIC framework functionalities.
Manual nictest operation.
Limited packet reception on RTL8139, MAC address setting, ping
functional.
DMA allocator allocates memory with requested size, added
direct_backend.

10Th February 2011 Official project start

March 2011 Automatic address space searching in DMA framework, NICF driver
lifecycle defined, E1000 demonstrator is able to receive packet.
Full packet reception on RTL8139, autonegotiation, filtering work started

April 2011 scatter/gather memory page locking designed. Near-to-final version of NIC
interface.
RTL8139 filtering finished. E1000 is transmitting an receiving multiple
packets.

May 2011 State polling in RTL8139 driver, work at page locking. E1000 works on
AMD64.

June 2011 Work on polling mode, locking pages finished. E1000 is filtering.

July 2011 Automatic testing in nictest.
Rapid testing (QEMU + real hardware), bug hunting and reparations
E1000 works on real hardware, autonegotiation.
Documentation started.

August 2011 Packet reception rewritten in RTL8139.
Improved packet accepting, DMA server finished tested and debugged.
Real hardware tests, designed DMA controller interface.
VLAN support in E1000 driver.
Documentation finished.

1St September 2011 Project delivered
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