
Kicad C++ Source Code Style Guide

Latest Publishing: September 2010
First Published: September 2010

written by

Wayne Stambaugh <stambaughw@verizon.net>
and
Dick Hollenbeck <dick@softplc.com>

Page 1 / 13

mailto:Wayne%20Stambaugh%20%3Cstambaughw@verizon.net%3E?subject=C++%20Style%20Guide
mailto:dick@softplc.com

Table of Contents

1. Introduction..3
1.1 Why Coding Style Matters..3
1.2 Enforcement...3

2. Naming Conventions..3
2.1 Class, Type Definitions, Name Space, and Macro Names....................................3
2.2 Local, Private and Automatic Variables...4
2.3 Public and Global Variables..4
2.4 Local, Private and Static Functions..4
2.5 Function Arguments...4

3. Commenting...4

4. Formatting..5
4.1 Indentation...5
4.2 Line Length...5
4.3 Strings..5
4.4 Trailing Whitespace..6
4.5 Multiple Statements per Line...6
4.6 Braces...6
4.7 Parenthesis...6
4.8 Switch Formatting..7

5. License Statement..7

6. Header Files..7
6.1 Nested Include #ifndef...7
6.2 Headers Without Unsatisfied Dependencies..7

7. I Wrote X Lines of Code Before I Read This Document......................8

8. Show Me an Example..8

9. Resources...13

Page 2 / 13

1. Introduction
The purpose of this document is to provide a reference guide for Kicad developers about how
source code should be styled and formatted in Kicad. The goal is to make all of the Kicad
source as close to this policy as possible. It is not a comprehensive programming guide
because it does not discuss many things such as software engineering strategies, source
directories, existing classes, or how to internationalize text.

1.1 Why Coding Style Matters

You may be thinking to yourself that using the style defined in this document will not make
you a good programmer and you would be correct. Any given coding style is no substitute for
experience. However, any experienced coder will tell that the only thing worse than looking at
code that is not in your preferred coding style is looking a twenty different coding styles that
are not your preferred coding style. Consistency makes a) problems easier to spot and b)
looking at code for long periods of time more tolerable.

1.2 Enforcement

The Kicad coding police are not going to break down your door and beat you with your
keyboard if you don't follow these guidelines (although there are those who would argue that
they should). However, there are some very sound reasons why you should follow them. If
you are contributing patches, you are much more likely to be taken seriously by the primary
developers if your patches are formatted correctly. Busy developers don't have the time to go
back a reformat your code. If you have a desire to become a regular Kicad developer with
commit access to the development branch, you're not likely to get a glowing recommendation
by the lead developers if you will not follow these guidelines. On a much more fundamental
level, it is just good programming courtesy to follow this policy because it is respectful of the
investment already made by the existing developers. The other Kicad developers will
appreciate your effort.

2. Naming Conventions
Before delving into anything as esoteric as indentation and formatting, naming conventions
need to be addressed. This section does not attempt to define what names you use for your
code. Rather, it defines the style for naming. See the references section for links to some
excellent coding references. When defining multiple word names use the following
conventions for improved readability. Use underscores for all upper and all lower case
variables to make multiple word names more readable. Use camel case for mixed case
variable names. Avoid mixing camel case and underscores.

Examples

CamelCaseName
all_lower_case_name
ALL_UPPER_CASE_NAME

2.1 Class, Type Definitions, Name Space, and Macro Names

Class, typedef, enum, name space, and macro names should be defined with all capital letters.

Examples

class SIMPLE
#define LONG_MACRO_WITH_UNDERSCORES
typedef boost::ptr_vector<PIN> PIN_LIST;
enum KICAD_T {…};

Page 3 / 13

2.2 Local, Private and Automatic Variables

The first character of static local, private, protected, and automatic variable names should be
lower case. This indicates that the variable will not be visible outside of the class, function, or
method where they are defined.

Examples

int i;
double aPrivateVariable;
static char* static_variable = NULL;

2.3 Public and Global Variables

The first character of public and global variable names are to be upper case. This indicates
that the variable is visible outside the class that it was defined. (An exception is the use of
prefix g_ to indicate a global variable.)

Example

char* GlobalVariable;

2.4 Local, Private and Static Functions

The first character of local, private, and static functions should be lower case. This indicates
that the function is not visible outside the class or file where it is defined.

Example

bool isModified();
static int buildList(int* list);

2.5 Function Arguments

Function arguments are prefixed with an 'a' to indicate these are arguments to a function. It
also enables clever and concise Doxygen comments.

Example

void SetFoo(int aFoo);

3. Commenting
Comments in Kicad typically fall into two categories. In line code comments and Doxygen
comments. In line comments have no set formatting rules other than they should have the
same indent level as the code if they do not follow a statement. In line comments that follow
statements should not exceed 99 columns unless absolutely necessary. The prevents word
wrapping in an editor when the viewable columns is set to 100. In line comments can use
either the C++ or the C commenting style. C++ comments are preferred for single line
comments.

Doxygen is a C++ source code documenting tool used by the project. Descriptive *.html files
can be generated by building the target named doxygen-docs. Doxygen comments are used
to build developer documentation from the source code. They should be only placed in header
files and not in *.cpp files. This eliminates the obligation to keep two comments in agreement
with each other. An exception to this rule comes into play if the class, function, enum, etc. is
only defined in a *.cpp source file, in which case the Doxygen comments can go in the *.cpp
source file. Again, avoid duplicating the Doxygen comments in both the header and *.cpp
source files.

Page 4 / 13

Kicad uses the JAVADOC comment style defined in the "Documenting the code" section of the
Doxygen manual. Don't forget to use the special Doxygen tags: bug, todo, deprecated, etc. so
other developers can quickly get useful information about your code. It is good practice to
actually generate the Doxygen *.html files by running the build target named doxygen-docs,
and then to review the quality of your Doxygen comments before submitting a patch.

4. Formatting
This section defines the formatting style used in the Kicad source.

4.1 Indentation

The indentation level for the Kicad source code is defined as four spaces. Please do not use
tabs.

4.1.1 Defines

There should be only one space after a #define statement.

4.1.2 Column Alignment

Please try align multiple consecutive similar lines into consistent columns when possible, such
as #define lines which can be thought of containing 4 columns: #define, symbol, value, and
comment.

Example

#define LN_RED 12 // my favorite
#define LN_GREEN 13 // eco friendly

4.2 Line Length

The maximum line width is 99 columns. Please observe this limit. An exception to this is a
long quoted string such as the internationalized text required to satisfy MSVC++ described
below.

4.3 Strings

Because the Kicad project team supports compiling with Microsoft Visual C++, defining long
internationalized strings requires an ugly compromise. Most compilers support breaking long
strings in to shorter pieces for code formatting purposes. Unfortunately, Visual C++ chokes
on some multi-line internationalized string definitions. Prefixing all subsequent strings with
L”” solves the Visual C++ problem but breaks POEdit which is used by translators. Breaking
the string with \ solves both problems but is no better than line wrapping in your editor. Until
a better solution can be found or MSVC++ is fixed, please use either of the 2 acceptable
solutions mentioned below.

Examples

// works with C99 compliant compilers, but not with MSVC++ so is not acceptable:
wxChar* foo = _(“this is a long string broken ”
 “into pieces for readability.”);

// this works with VC++ but breaks POEdit, so is not acceptable:
wxChar* foo = _(“this is a long string broken ”
 L“into pieces for readability”);

// ugly, since it wraps back to column zero, but works in all cases:
wxChar* foo = _(“this is a long string \
broken into pieces for readability”);

A second acceptable solution is to simply put the text all on one line, even if it exceeds the 99
character line length limit.

Page 5 / 13

http://www.stack.nl/~dimitri/doxygen/docblocks.html
http://www.stack.nl/~dimitri/doxygen/manual.html

4.4 Trailing Whitespace

Many programming editors conveniently indent your code for you. Some of them do it rather
poorly and leave trailing whitespace. Thankfully, most editors come with a remove trailing
whitespace macro or at least a setting to make trailing whitespace visible so you can see it
and manually remove it. Trailing whitespace is known to break some text parsing tools. It
also leads to unnecessary diffs in the version control system. Please remove trailing
whitespace.

4.5 Multiple Statements per Line

It is generally preferred that each statement be placed on its own line. This is especially true
for statements without keywords.

Example

x=1; y=2; z=3; // Bad, should be on separate lines.

4.6 Braces

Braces should be placed on the line proceeding the keyword and indented to the same level. It
is not necessary to use braces if there is only a single line statement after the keyword. In the
case of if..else if..else, use braces all of the branches if they are required by any of the
branches.

Example

void function()
{
 if(foo)
 {
 statement1;
 statement2;
 }
 else if(bar)
 {
 statement3;
 statement4;
 }
 else
 statement5;
}

4.7 Parenthesis

Parenthesis should be placed immediately after function names and keywords. Spaces should
be placed after the opening parenthesis, before the closing parenthesis, and between the
comma and the next argument in functions. No space is needed if a function has no
arguments.

Example

void Function(int aArg1, int aArg2)
{
 while(busy)
 {
 if(a || b || c)
 doSomething();
 else
 doSomethingElse();
 }
}

Page 6 / 13

4.8 Switch Formatting

The case statement is to be indented to the same level as the switch.

Example

switch(foo)
{
case 1:
 doOne();
 break;
case 2:
 doTwo();
 // Fall through.
default:
 doDefault();
}

5. License Statement
There is a the file copyright.h which you can copy into the top of your new source files and edit
the <author> field. Kicad depends on the copyright enforcement capabilities of copyright law,
and this means that source files must be copyrighted and not be released into the public
domain. Each source file has one or more owners.

6. Header Files
Project *.h source files should:

• contain a license statement
• contain a nested include #ifndef
• be fully self standing and not depend on other headers that are not included within

it.

The license statement was described above.

6.1 Nested Include #ifndef

Each header file should include an #ifndef which is commonly used to prevent compiler errors
in the case where the header file is seen multiple times in the code stream presented to the
compiler. Just after the license statement, at the top of the file there should be lines similar to
these (but with a filename specific token other than RICHIO_H_):

#ifndef RICHIO_H_
#define RICHIO_H_

And at the very bottom of the header file, use a line like this one:

#endif // RICHIO_H_

6.2 Headers Without Unsatisfied Dependencies

Any header file should include other headers that it depends on. (Note: Kicad is not at this
point now, but this section is a goal of the project.)

It should be possible to run the compiler on any header file within the project, and with proper
include paths being passed to the compiler, the header file should compile without error.

Page 7 / 13

Example

$ cd /svn/kicad/testing.checkout/include
$ g++ `wx-config --cxxflags` -I . xnode.h -o /tmp/junk

Such structuring of the header files removes the need within a client *.cpp file to include some
project header file before some other project header file. (A client *.cpp file is one that
intends to use, not implement the public API exposed within the header file.)

Client code should not have to piece together things that a header file wishes to expose.
Instead, all the needed dependencies should already be included in the header which is doing
the exposing. The exposing header file should be viewed as a fully sufficient ticket to use the
public API of that header file.

This is not saying anything about how much to expose, only that that which is exposed needs
to be fully usable merely by including the header file that exposes it, with no additional
includes.

For situations where there is a class header file and an implementation *.cpp file, it is
desirable to hide as much of the private implementation as is practical and any header file that
is not needed as part of the public API can and should be included only in the implementation
*.cpp file. However, the number one concern of this section is that client (using) code can use
the public API which is exposed in the header file, merely by including that one header file.

7. I Wrote X Lines of Code Before I Read This Document
It's OK. We all make mistakes. Fortunately, Kicad provides a configuration file for the code
beautifier uncrustify. Uncrustify won't fix your naming problems but it does a pretty decent
job of formatting your source code. There are a few places where uncrustify makes some less
than ideal indentation choices. It struggles with the string declaration macros wxT(“”) and
_(“”) and functions used as arguments to other functions. After you uncrusify your source
code, please review the indentation for any glaring errors and manually fix them. See the
uncrusify website for more information.

8. Show Me an Example
Nothing drives the point home like an example. The source file richio.h below was taken
directly from the Kicad source.

/*
 * This program source code file is part of KICAD, a free EDA CAD application.
 *
 * Copyright (C) 2007-2010 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
 * Copyright (C) 2007 Kicad Developers, see change_log.txt for contributors.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, you may find one here:
 * http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

Page 8 / 13

http://uncrustify.sourceforge.net/

 * or you may search the http://www.gnu.org website for the version 2 license,
 * or you may write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
 */

#ifndef RICHIO_H_
#define RICHIO_H_

// This file defines 3 classes useful for working with DSN text files and is named
// "richio" after its author, Richard Hollenbeck, aka Dick Hollenbeck.

#include <string>
#include <vector>

// I really did not want to be dependent on wxWidgets in richio
// but the errorText needs to be wide char so wxString rules.
#include <wx/wx.h>
#include <cstdio> // FILE

/**
 * Struct IOError
 * is a class used to hold an error message and may be used to throw exceptions
 * containing meaningful error messages.
 */
struct IOError
{
 wxString errorText;

 IOError(const wxChar* aMsg) :
 errorText(aMsg)
 {
 }

 IOError(const wxString& aMsg) :
 errorText(aMsg)
 {
 }
};

/**
 * Class LINE_READER
 * reads single lines of text into its buffer and increments a line number counter.
 * It throws an exception if a line is too long.
 */
class LINE_READER
{
protected:

 FILE* fp;
 int lineNum;
 unsigned maxLineLength;
 unsigned length;
 char* line;
 unsigned capacity;

public:

 /**

Page 9 / 13

 * Constructor LINE_READER
 * takes an open FILE and the size of the desired line buffer.
 * @param aFile An open file in "ascii" mode, not binary mode.
 * @param aMaxLineLength The number of bytes to use in the line buffer.
 */
 LINE_READER(FILE* aFile, unsigned aMaxLineLength);

 ~LINE_READER()
 {
 delete[] line;
 }

 /*
 int CharAt(int aNdx)
 {
 if((unsigned) aNdx < capacity)
 return (char) (unsigned char) line[aNdx];
 return -1;
 }
 */

 /**
 * Function ReadLine
 * reads a line of text into the buffer and increments the line number
 * counter. If the line is larger than the buffer size, then an exception
 * is thrown.
 * @return int - The number of bytes read, 0 at end of file.
 * @throw IOError only when a line is too long.
 */
 int ReadLine() throw (IOError);

 operator char* ()
 {
 return line;
 }

 int LineNumber()
 {
 return lineNum;
 }

 unsigned Length()
 {
 return length;
 }
};

/**
 * Class OUTPUTFORMATTER
 * is an interface (abstract class) used to output ASCII text in a convenient
 * way. The primary interface is printf() like but with support for indentation
 * control. The destination of the 8 bit wide text is up to the implementer.
 * If you want to output a wxString, then use CONV_TO_UTF8() on it before passing
 * it as an argument to Print().
 * <p>
 * Since this is an abstract interface, only classes derived from this one
 * will be the implementations.
 */
class OUTPUTFORMATTER
{

Page 10 / 13

#if defined(__GNUG__) // The GNU C++ compiler defines this

// When used on a C++ function, we must account for the "this" pointer,
// so increase the STRING-INDEX and FIRST-TO_CHECK by one.
// See http://docs.freebsd.org/info/gcc/gcc.info.Function_Attributes.html
// Then to get format checking during the compile, compile with -Wall or -Wformat
#define PRINTF_FUNC __attribute__ ((format (printf, 3, 4)))

#else
#define PRINTF_FUNC // nothing
#endif

public:

 /**
 * Function Print
 * formats and writes text to the output stream.
 *
 * @param nestLevel The multiple of spaces to preceed the output with.
 * @param fmt A printf() style format string.
 * @param ... a variable list of parameters that will get blended into
 * the output under control of the format string.
 * @return int - the number of characters output.
 * @throw IOError, if there is a problem outputting, such as a full disk.
 */
 virtual int PRINTF_FUNC Print(int nestLevel, const char* fmt, ...)
throw(IOError) = 0;

 /**
 * Function GetQuoteChar
 * performs quote character need determination.
 * It returns the quote character as a single character string for a given
 * input wrapee string. If the wrappee does not need to be quoted,
 * the return value is "" (the null string), such as when there are no
 * delimiters in the input wrapee string. If you want the quote_char
 * to be assuredly not "", then pass in "(" as the wrappee.
 * <p>
 * Implementations are free to override the default behavior, which is to
 * call the static function of the same name.

 * @param wrapee A string that might need wrapping on each end.
 * @return const char* - the quote_char as a single character string, or ""
 * if the wrapee does not need to be wrapped.
 */
 virtual const char* GetQuoteChar(const char* wrapee) = 0;

 virtual ~OUTPUTFORMATTER() {}

 /**
 * Function GetQuoteChar
 * performs quote character need determination according to the Specctra DSN
 * specification.

 * @param wrapee A string that might need wrapping on each end.
 * @param quote_char A single character C string which provides the current
 * quote character, should it be needed by the wrapee.
 *
 * @return const char* - the quote_char as a single character string, or ""
 * if the wrapee does not need to be wrapped.
 */
 static const char* GetQuoteChar(const char* wrapee, const char* quote_char);
};

Page 11 / 13

/**
 * Class STRINGFORMATTER
 * implements OUTPUTFORMATTER to a memory buffer. After Print()ing the
 * string is available through GetString()
*/
class STRINGFORMATTER : public OUTPUTFORMATTER
{
 std::vector<char> buffer;
 std::string mystring;

 int sprint(const char* fmt, ...);
 int vprint(const char* fmt, va_list ap);

public:

 /**
 * Constructor STRINGFORMATTER
 * reserves space in the buffer
 */
 STRINGFORMATTER(int aReserve = 300) :
 buffer(aReserve, '\0')
 {
 }

 /**
 * Function Clear
 * clears the buffer and empties the internal string.
 */
 void Clear()
 {
 mystring.clear();
 }

 /**
 * Function StripUseless
 * removes whitespace, '(', and ')' from the mystring.
 */
 void StripUseless();

 std::string GetString()
 {
 return mystring;
 }

 //-----<OUTPUTFORMATTER>--
 int PRINTF_FUNC Print(int nestLevel, const char* fmt, ...) throw(IOError);
 const char* GetQuoteChar(const char* wrapee);
 //-----</OUTPUTFORMATTER>---
};

#endif // RICHIO_H_

Page 12 / 13

9. Resources
There are plenty of excellent resources on the Internet on C++ coding styles and coding do's
and don'ts. Here are a few useful ones. In most cases, the coding styles do not follow the
Kicad coding style but there is plenty of other good information here. Besides, most of them
have some great humor in them enjoyable to read. Who knows, you might even learn
something new.

C++ Coding Standard
Linux Kernel Coding Style
C++ Operator Overloading Guidelines
Wikipedia's Programming Style Page

Page 13 / 13

http://en.wikipedia.org/wiki/Programming_style
http://www.cs.caltech.edu/courses/cs11/material/cpp/donnie/cpp-ops.html
http://git.kernel.org/?p=linux/kernel/git/stable/linux-2.6.32.y.git;a=blob;f=Documentation/CodingStyle;h=8bb37237ebd25b19759cc47874c63155406ea28f;hb=HEAD
http://www.possibility.com/Cpp/CppCodingStandard.html

	1. Introduction
	1.1 Why Coding Style Matters
	1.2 Enforcement

	2. Naming Conventions
	2.1 Class, Type Definitions, Name Space, and Macro Names
	2.2 Local, Private and Automatic Variables
	2.3 Public and Global Variables
	2.4 Local, Private and Static Functions
	2.5 Function Arguments

	3. Commenting
	4. Formatting
	4.1 Indentation
	4.1.1 Defines
	4.1.2 Column Alignment

	4.2 Line Length
	4.3 Strings
	4.4 Trailing Whitespace
	4.5 Multiple Statements per Line
	4.6 Braces
	4.7 Parenthesis
	4.8 Switch Formatting

	5. License Statement
	6. Header Files
	6.1 Nested Include #ifndef
	6.2 Headers Without Unsatisfied Dependencies

	7. I Wrote X Lines of Code Before I Read This Document
	8. Show Me an Example
	9. Resources

