
A   fine-grained   concurrent   ring   buffer   
mode   for   IO_CACHE   

1.   Rationale.   
Current   implementation   of   IO_CACHE’s    SEQ_READ_APPEND     mode   behaves   coarsely   grained   
on   its   write   buffer:   every   read   and   every   write   is   protected   by    append_buffer_lock .     
  
  

int   _my_b_seq_read(IO_CACHE   
*info,   ...)   {   
   lock_append_buffer(info);   
   ...   //   read   logic   

     
   unlock_append_buffer(info);   
   return   Count   ?   1   :   0;   
}   

int   my_b_append(IO_CACHE   *info,   
...)   {   
   lock_append_buffer(info);   
   ...   //   append   logic   
  

   unlock_append_buffer(info);   
   return   0;   
}   

  
Despite   the   separate   read   buffer   is   read-only,   and   therefore   is   accessed   wait-free,   the   write   
buffer   can   have   a   contention   with   medium-sized   transactions.   
  

The   design   described   hereafter   is   going   to   solve   this   issue,   and   an   extension   for   a   parallel   
multi-producer   workflow   is   additionally   provided.   
  
  

Furthermore,   the   API   extension   for   multi-producer   approach   support   is   proposed,   and   the   
multi-consumerness   is   discussed.   

2.   The   single-producer,   single-consumer   case.   

Idea     
The   memcpy   operations   of   consumer   and   producer   never   overlap,   therefore   they   can   be   freed   
of   locks.   

Overflow   and   emptiness   
We   cannot   begin   writing   in   the   area   still   involved   in   reading.   Therefore,   the   reader   should   not   
update   the   pointers   before   it   finishes   reading.   This   means   that   we   should   lock   in   the   beginning   
to   atomically   read   the   data,   and   in   the   end,   to   write   the   new   reader   data.   



Same   for   the   vice-versa,   we   cannot   read   from   the   area   still   involved   into   writing,   therefore   a   
read   should   finish   with    EMPTY    error   (currently    _my_b_seq_read    just   returns   1)   

When   we   reach   a   “buffer   is   full”   condition,   we   can    flip   the   read   and   write   (append)   buffers,    if   
we   were   reading   from   an   append   buffer.   Otherwise,   the   append   buffer   is   flushed.   
  

The   algorithm   
The   following   pseudocode   will   describe   the   single-consumer,   single-producer   approach.   
It   is   assumed   that   reading   from   the   read   buffer   is   handled   in   the   usual   way.   
  
io->total_size    and    io->read_buffer    are   considered   to   be   accessed   atomically.   
  
  

io_err_t    read (IO_CACHE   *io,   uchar   *buffer,   size_t   sz)   
{   

if   (sz   >   io->total_size)  
return   E_IO_EMPTY;   

  
uchar   *read_buffer   =    io->read_buffer ;   

  
if   (io->read_pos   points   to   read_buffer)  

sz_read   =   read_from_read_buffer(io,   buffer,   sz);   
buffer   +=   sz_read;   
sz   -=   sz_read;  

  
io->total_size   -=   sz_read;   

  
if   (sz   ==   0)   

return   0;    
//   else   copy   from   append   buffer   

  
lock(io->append_buffer_lock);  
//   copy   the   local   variables   
uchar   *read_pos   =   io->read_pos;   
uchar   *read_buffer   =    io->read_buffer ;   
uchar   *append_start_pos   =   i->append_start_pos;   
uchar   *append_size   =   io->append_size;   



uchar   *append_pos   =   io->append_pos;   
//   etc,   if   needed   
unlock(io->append_buffer_lock);   

  
read   from   append   buffer;  

  
lock(io->append_buffer_lock);  
//   update   the   variables   
io->append_size   -=   sz;   
io->append_start_pos   +=   sz;   
if   (i->append_start_pos   >=   io->append_buf   +   io->cache_size)  

io->append_start_pos   -=   io->cache_size;  
unlock(io->append_buffer_lock);   
  

io->total_size   -=   sz;   
}     
  

The   first   read()’s   part   tries   to   read   from   a   read-only   buffer.   If   it’s   empty,   it   moves   the   effort   to   a   
volatile   append   buffer.   All   the   metadata   is   copied   in   the   first   critical   section,   before   the   data   
copying,   to   the   stack.   It   is   updated   back   in   the   second   critical   section,   after   the   data   copying.   
  

io_err_t    write (IO_CACHE   *io,   uchar   *buffer,   size_t   sz)  
{   

lock(io->append_buffer_lock);  
if   (append_buffer   is   full   and   io->total_size   <=   io->append_size)  

swap(io->append_buffer,    io->read_buffer );   
else   flush   the   append   buffer   if   needed;  
write   to   disk   directly,   if   the   data   is   too   large;  

  
uchar   *write_pos   =   io->write_pos;   
unlock(io->append_buffer_lock);   

  
write   to   append   buffer;   

  
lock(io->append_buffer_lock);  
io->write_pos   =   new_write_pos;   
unlock(io->append_buffer_lock);   
  

io->total_size   +=   sz;   
}   
  

The   important   note   here   is   that   we   access   io->read_buffer   in   the   reader’s   thread   without   the   
lock   (the   accesses   are   marked   bold).   However   this   access   happens   only   once   in   the   beginning   
and   is   safe:     

1. Only   writer   changes   read_buffer   
2. The   writer   can   change   it   only   once   during   one   read()   
3. if    io->read_buffer    is   considered   reads-only,   then   it   will   not   flip   again,   and   continue   to   be   

consistent,   until    io->total_size    is   changed:   



io->total_size   -=   sz_read;   
Then   the   lock   happens.   It   should   be   fine   to   read   from   a   flipped   buffer   on   that   stage.   

3.   Multi-producer   concurrency   

  Idea   
Writes   start   from   io->write_start,   which   is   to   update   immediately.   Reads   are   possible   only   until   
io->read_end,   which   is   updated,   as   soon   as   writes   are   finished.   

Medium-grained   approach   
io->write_start   is   updated   immediately   to   allow   parallel   writes.   However,   we   cannot   update   
io->read_end   immediately   after   this   thread’s   write   ends,   because   earlier   writes   can   still   be   in   
progress.   We   should   wait   for   them   i.e.   we   wait   while   (io->read_end   !=   local_read_end)   
  

  

Algorithm   (medium-grained)  
Medium-grained   approach   will   modify   write()   function   as   follows   (the   changed   lines   and   locks   

are   bolded):   

io_err_t   write(IO_CACHE   *io,   uchar   *buffer,   size_t   sz)  
{   

lock (io->append_buffer_lock);  
if   (buffer   flip   of   flush   is   needed)   

wait   until   all   the   writes   are   finished;  
  

if   (append_buffer   is   full   &&   
     io-> write_total_size    <=   io->append_size)   

swap(io->append_buffer,   io->read_buffer);   
else   flush   the   append   buffer   if   needed;  
write   to   disk   directly,   if   the   data   is   too   large;  

  
uchar   *local_write_start   =   io->write_start;   
io->write_total_size   +=   sz;   



io->write_start   +=   sz;   
if   (io->write_start   >   io->append_buffer   +   io->cache_size)   

io->write_start   -=   io->cache_size;  
unlock (io->append_buffer_lock);   

  
write   to   append   buffer;   

  
lock(io->write_event_lock)   

  
while(local_write_start   !=   io->read_end)   

cond_wait(io->write_event,   io->write_event_lock);  
  

unlock(io->write_event_lock)   
  
  
  

lock (io->append_buffer_lock);  
io->read_end   =   new_read_end;   
unlock (io->append_buffer_lock);   

  
cond_signal(io->write_event);  
  

io->total_size   +=   sz;   
}   
  

The   read   function   should   be   modified   mostly   cosmetically.   
  

Fine   graining   
The   writers   are   still   waiting   for   each   other’s   finish.   The   approach   described   here   defers   waiting   
through    helping   pattern    by   introducing    progress   slots .    
  

Each   time   a   writer   begins   progress   it   allocates   a   slot   in   the   dedicated   (fixed   size)   array.   
When   the   writer   finishes   its   job,   it   checks   whether   it   is   the   leftmost   one   (relative   to   its   read_end   
value.   If   it   is,   it   updates   read_end   for   itself,   and   for   all   the   consecutive   writers   already   finished.   
  

The   slot   allocation   will   be   controlled   by   a   semaphore   to   prevent   overflow.   Therefore,   only   a   fixed   
number   of   producers   can   work   simultaneously.   
  

The   slot   array   is   made   of   elements   of   private   cache_slot_t   structure:   
  
struct   cache_slot_t   {   
   bool   vacant:   1;   
   bool   finished:   1;   
   uint   next:   size_bits(uint)   -   2;   
   uint   pos;   



}   
  

The   slot   is   acquired   whenever   a   write   begins   by   searching   an   array   cell   with   vacant=1.   When   it’s   
found,    vacant   =   0,   finished   =   0    is   set.   The    last_slot    variable   holds   the   slot   index   for   the   
latest   write.    slots[last_slot].next    is   set   to   a   new   index,   and    last_slot    itself   is   updated.   
  

The   following   example   demonstrates   how   the   slots   work:   there   were   three   writes   currently   
running   in   parallel.   write2   and   write3   are   finished,   but   write1   is   still   running.   When   it   finishes,   it   
will   hop   through   slot.next   while   vacant==0   and   finished==1   and   pos   !=   io->write_start.   
Therefore,   read_end   will   be   updated   to   C   if   no   other   write   will   begin   in   parallel.   
  

If   another   write   begins   in   parallel   before   write1   finishes,   it   allocates   slots[1]   and   sets   pos=D.   
slots[3].next   would   be   set   to   1,   and   last_slot   will   be   updated   from   3   to   1.   
  

  
The   slot   run   through   expected   complexity   is   O(1).   The   proof   for   acquisition   is   however   not   that   
obvious   to   prove   the   same,   and   no   effort   was   spent   for   proving   it   (It’s   only   obvious   that   it’s   
O(slots)).   

4.   Arbitrary   data   sources   support   
The   widely   spread   use-case   is   pouring   from   another   IO_CACHE   source   (like   a   statement   or   
transaction   cache).   The   operation   may   require   several   consecutive   write()   calls   with   an   external   
lock:  
lock(write_lock);   
uchar   buffer[SIZE];  
while(cache_out   is   not   empty)   {   



   read(ceche_out,   buffer,   SIZE);   
   write(cache_in,   buffer,   SIZE);   
}   
unlock(write_lock);  

  
This   case   destroys   all   the   parallel   design   described.   
However,   let’s   make   api   changes   to   allow   blocks   of   predicted   size   be   written   in   parallel:   
  

/**   Allocates   the   slot   of   a   requested   size   for   a   writer.   Returns   new   slot   id.   */   
slot_id_t   append_allocate(IO_CAHCE*,   size_t   block_size);   
  

/**   Frees   the   slot   and   propagates   the   data   to   be   available   for   reading   */   
viod   append_commit(IO_CACHE*,   slot_id_t);   
  

These   two   functions   just   decompose   our   write()   function:   append_allocate   would   include   the   first   
critical   section   and   append_commit   would   include   the   second   one.   
  

The   use-case   will   be   changed   slightly:   
slot_id_t   slot   =   append_allocate(cache_out,   append_tell(cache_in));   
uchar   buffer[SIZE];  
while(cache_out   is   not   empty)   {   
   read(ceche_out,   buffer,   SIZE);   
   write(cache_in,   buffer,   SIZE);   
}   
append_commit(cache_out,   slot);   

5.   Multi-consumerness   
We   currently   have   no   cases   with   several   readers   working   in   parallel   in   SEQ_READ_APPEND   
mode.   It   is   only   used   by   the   replication   thread   to   read   out   the   log,   where   it   is   delegated   to   a   
dedicated   worker.   The   first   problem   is   that   parallel   readout   would   require   additional   coordination   
--   the   order   of   event   application   can   be   important.   
  

Another   problem   is   that   a   variable-sized   blocks   require   at   least   two   consecutive   reads   if   the   
structure   is   not   known.   If   the   length   is   stored,   it   can   be   read   out   with   exactly   two   reads   (first   
reads   length,   second   reads   the   body).   

  
  

The   slot   allocation   strategy   can   be   applied,   and   api   can   be   added   similar   to   a   new   write   api:   
/**   lock   the   cache   and   allocate   the   read   slot   */   
slot_id_t   read_allocate_lock(IO_CACHE*);   



  
/**   Allocate   a   read   zone   of   the   requested   size   and   unlock   the   cache   */   
void   read_allocate_unlock(IO_CACHE*,   slot_id_t,   size_t   size);   
/**   Finish   reading;   deallocate   the   read   slot   */   
void   read_commit(IO_CACHE*,   slot_id_t);   
  

Reading   api   needs   one   function   more   than   writing   api   --   the   allocation   is   split   on   two   phases:   
locking   phase   (to   compute   the   block   length),   and   the   actual   requesting   phase.   
  

This   approach   has   several   disadvantages:   
1. The   read   buffer   access   is   no   longer   lock-free   
2. read_allocate_lock    leaves   the   IO_CACHE   in   a   locked   state,   which   can   be   potentially   

misused.   
  

Additionally,   two   SX   locks   can   be   used   (one   for   readers   and   one   for   writers)   for   extra   
parallelism.   


