P2PSP (Peer-to-Peer “Straightforward” Protocol)

Cristobal Medina-Lépez, J. A. M. Naranjo,
L. G. Casado and Vicente Gonzdlez-Ruiz
Universidad de Almeria

June 8, 2015

The Peer-To-Peer Straightforward Protocol (P2PSP) is an application-layer pro-
tocol designed for real-time broadcasting of live media over a P2P overlay network.
As many other P2P protocols, it minimizes the bandwidth requirements on the
source nodes (which executes the process in charge of sending the data stream) by
profiting of the upload bandwidth available in the links of the peers. However, the
P2PSP has several characteristics that make it different of other previous propos-
als: (1) the protocol is simple enough to allow a straightforward implementation,
(2) churn tipically produces a small number of lost blocks spreaded in the time and
therefore, error concealment techniques based on signal interpolation can be applied
more effectively, (3) peers can be behind NATSs, (4) the protocol is media-agnostic,
(5) the P2PSP is extremely modular which allows you to adapt it accurately to
your requirements, (6) it can be deployed together client/server streaming services,
among others advantages.

1 Introduction

Massive distribution of real-time video content is one of the big challenges in the
Internet. Nowadays, there are several proposals that approximate to this goal, but
none of them provide a QoS (Quality of Service) comparable to the DVB (Digital
Video Broadcasting). This is a direct consequence of the design of the Internet
and an unefficient use of the capacity of the network. The Internet was created to
provide the so called best-effort service that basically means that you can transmit
data through the network but the transmission time is unknown a priori. That time
depends on several factors such as network failures, the network load and, obviously,
the amount of sent data. These two last factors are directly related to the capacity
of the network, a term also refered as (network) bandwidth.

In order to provide an acceptable QoS in real-time streaming scenarios one of
the most important requirements to fulfill is to have a lower bound of the network
capacity. However, most of the current solutions fail to take advantage of this
resource. One of the reasons is that IP multicast has not achieved the expected
popularity. This forces content sources to replicate the same data for different

receivers, resulting in a linear growth of the transmmited data when the number of
receivers increases. In this situation, P2P (Peer-to-Peer) overlays can improve the
performance of the real-time streaming services: given that all peers manage (and
thus can share) the same content, the trasmission requirements at the source are
drammatically reduced.

This work introduces P2PSP (Peer-to-Peer Straightforward Protocol). P2PSP
is a set of transmission and machine behavior rules that helps increasing the QoS of
real-time streaming systems. Basically, the P2PSP mimics the IP multicast solution
by taking advantage of the transmission capacity of the peers which is typically
wasted in pure C/S (Client/Server) services. We would like to stress that, although
the P2PSP can be an standalone solution for small scenarios, its performance can
be increased in massive scenarios by taking advantage of both paradigms: the C/S
model and the P2P model.

2 Some networking facts

This section enumerates a list of facts that typically are found in those current data
transmission scenarios which are based on computer networks.

1. Routers deliever datagrams, not streams between connected devices:
In other words, the cost (in terms of bandwidth) of sending two or more
packets to two or more different hosts is equal to the cost of sending two or
more packets at the same host.

2. Redundancy enables data compression: Some data link protocols, such
as the PPP (Point-to-Point Protocol), can compress the payloads in order
to decrease the size of the packets. Therefore, assuming a constant packet
size, it is expectable that the cost of sending two or more identical packets
on content should be less than or equal to the cost of sending two or more
packs of the same size but with different content.

3. IP multicast availability: Although IP multicasting is disabled at global
scale, locally is usually available and is this case, it is the most efficient way
of data broadcasting. For this reason, network level multicasting should be
used whenever possible.

4. Encapsulation overhead: Each block of media content (which it will be
referred as a “chunk” in the rest of this document) sent between peers must
undergo a process of encapsulation which is basically be adding a header and
sometimes a trailer for each network layer a packet traverses in his trip. The
headers of the physical, data-link and network layers are compulsory in the
Internet. However, at the transport layer level, there are basically two options:
(1) the TCP (Transmission Control Protocol), a reliable protocol from the
point of view of transmission errors and that avoids network congestion and
(2) the UDP (User Datagram Protocol), which basically provides datagram
transmission service. Apart from these differences, it should be noted that

the header overhead of both protocols is different: 20 bytes in the case of
TCP and 8 bytes in the case of UDP.

5. Congestion control and latency: Internet is a shared medium and as such,
the bandwidth provided is unknown a priori because it depends mainly of
the bandwidth than other network users consume at that time. Furthermore,
when the demand for bandwidth is higher than the network can provide,
a phenomenon known as the network congestion occurs. This effect is a
consequence of the routers, the devices that decide the paths to be followed by
data packets, receive more data than can be process, and when this happens
the packets are simply destroyed. This behavior brings a serious negative
impact on overall network performance because, usually, a destroyed packet
means that sooner or later it will be retransmitted and thus it will contribute
to further congestion the network.

To avoid getting into this dangerous dynamic, the TCP provides a mechanism
for congestion avoidance which basically reduces the transmission rate if there
are indications that the network is congested. As a result of the reduction of
the transmission rate, users experience an increased latency in communication.
In the case of UDP, such a mechanism does not exist and is the responsibility
of the application to prevent the network congestion.

3 P2P architectures

The QoS (Quality of Service) provided by the streaming system depends strongly
on the topology of the cluster of peers. Some proposals, such as Overcast [13]
and Scattercast [9], define a two-tier network structure where some (suppously high
reliable) peers form a core network and the rest of peers are in an outer network.
This architecture is, in essence, similar to a CDN because the outer peers do not
contribute to the network and therefore, the scalability is quite limited. Additionally,
if a core peer fails, several core and outer peers can experiment an interruption in
the receiving of the stream.

Other approaches, such as PeerCast [7], Scribe [4], NICE [2], ZigZag [24] and
BulkTree [I], distribute the peers in a tree (that in the end is a specific case of
the star topology). It is well known that tree-push techniques are optimal respect
to transmission delay, but only when the overlay structure matches the physical
network structure. Besides, if a peer in the tree fails, then all the descendant peers
will experiment an interruption in the streaming, effect that becomes larger when
the failed peer is closer to the tree root. Finally, the leaf peers do not send data
and therefore, the scalability of the system is limited. This last drawback can be
mitigated building multiple trees and configuring leaf peers as root peers in other
tree, approach that has been used in Zebra [8], CoopNet [19], SplitStream [3] and
Orchard [17], albeit that the rest of problems remains.

In order to improve the robustness of the overlay, some protocols such as
Narada [26], Yoid [11], PULSE [21] and Bullet [14] propose a tree/mesh-pull struc-
ture, similar to the one used in BitTorrent [6]. This architecture has been also

Figure 1: Different usage levels of the P2PSP. On the left, a pure C/S system where
the content provider sends 9 copies of the stream to six clients C;; by means of
a server S and three proxies Py, P, and P3. On the righ, a pure P2PSP system
where the content provider sends 1 copy of the stream. In the middle, a mix of
both models which requires to send 6 copies of the stream.

utilized in the PPSP [12]. However, the signaling overhead that are necessary to
maintain the dynamic structure of the mesh and the interchange of data between
the peers (in order to perform the pull-operations) usually limites the size of the
overlays, or at least, the neighbour-rate between the peers, a key aspect that usually
helps to cope with the un-notified churn.

The proposal introduced in this document, the P2PSP, is an hybrid structure
that can match any of the previously described topologies, depending on the user
configuration. A pure P2PSP overlay lies in one of the extremes of this spectrum
of P2P streaming algorithms because it can be clasiffied as a mesh-push structure
with the maximal neighbour-rate because each peer send chunks of data to the rest
of peers of the cluster (in other words, the diameter of the cluster is always 2).
This provides to a P2PSP cluster a high error resilience, specially against churn. In
the other extreme, a P2PSP overlay can consist of a large group of P2PSP teams
which are interconnected with a star structure. A description of that idea has been
depicted in Figure[Il where three different configurations have been shown. On the
left one, there is a pure C/S structure. In the center, some proxies have reduced
their bandwidth requirements thanks to the creation of some P2PSP clusters. In
the right, the content privider only sends a copy of the stream by means of a pure
P2PSP structure.

4 The Peer-To-Peer Straightforward Protocol

P2PSP [23) [16] is a application layer protocol for real-time streaming of multimedia
content over the Internet, i.e., users playing the same stream in a synchronized
way (all peers follow the same playback point). It can be used to build a variety
of live-streaming services that ranges from small hangouts to large IPTV (Internet
Protocol TV) systems.

4.1 Main P2PSP characteristics

These are some of the P2PSP features:

e P2PSP is not aware of the broadcasted content, the bit-rate, the format, etc.
Any type of stream can be transmitted without having to modify the protocol
at all.

e At least one working implementation of P2PSP can be found in Launch-
pad [22]. It can be used/modified/expanded without restrictions as long as
the GNU GENERAL PUBLIC LICENSE [9] guidelines are followed.

e P2PSP has a modular architecture. The number of modules used depends on
the requirements of the system to be deployed.

e The most basic module is simple enough to run the peer process in systems
with very low computing resources. The rest of modules add functionality
to the protocol, such as connectivity across NATs, parallel streaming, data
integrity and information privacy.

e If native IP multicast is available (even locally, as it happens in most of the
local area networks), the P2PSP can use it.

e The P2PSP facilitates the use of error concealment techniques in the received
stream because lost packets are spreaded along the time.

e Peers can be hosted in private networks, even if they are placed behind sym-
metric NATs.

e The protocol is fully compatible with multiresolution and bandwidth-adaptive
streaming services. Simulcast [?], scalable video coding [?] and multiple de-
scription video coding based solutions [?] are possible.

e P2PSP has been conceived for P2P real-time streaming services but it can be
used to deploy hybrid C/S-P2PSP systems.

4.2 Data partitioning

In the P2PSP, data can be transmitted in two different states:

1. As a stream, i.e., as an endless sequence of data that transports some kind of
information. Streams are always transmitted over TCP (Transmission Control
Protocol).

2. As a collection of chunks, being a chunk a piece of stream. All chunks have
the same size. Chunks are always transmitted over UDP (User Datagram Pro-
tocol). A small chunk minimizes the average latency of the transmission but
also increments the underlying protocols (UDP/IP (Internet Protocol)/data-
link) overhead, and vice versa

!Anyway, the chunk size should not exceed the MTU (Maximum Transfer Unit) of the trans-
mission links in order to avoid the overload produced by IP fragmentation.

Figure 2: A P2PSP team. Arrows and their labels indicate the transmission of
chunks. S sends one different chunk to one different peer which is selected using a
Round-Robin model. Peers send each chunk received from S to each other peer in
the team.

4.3

Basic entities

A P2PSP overlay network is composed the entities (in general, nodes) that are
explained following:

1.

4.4

This
used

Source (O): It is the producer of the stream which is transmitted over the
P2PSP network. Typically, it is a streaming server using the HTTP protocol
such as Icecast [I0]. The source controls the transmission bit-rate in the
P2PSP network and in general can serve to several clients.

Player (L): Players request and consume (decode and play) the stream.
Usually, players can use signal interpolation techniques that are applied when
some parts of the stream is missing. This is specially usefull in the P2PSP
because lost chunks tend to be spreaded along time.

Splitter (S): This entity receives the stream from the source, splits it into
chunks of the same size and sends the chunks to peers.

Peer (P): Receives chunks from the splitter and from other peers, ensembles
the stream and sends it to a player. Some chunks are also sent to other peers
(see below). Notice also that the player and the peer usually run on the same
host.

Team: A splitter and one or more peers. As an example, Figure [2) show
a P2PSP team of size 3 (the splitter is excluded of the computation of the
team size).

IMS (IP Multicast Set of rules)

set of rules implements the most basic behaviour of the protocol that can be
when IP multicast is available. This mode can be useful in local area networks

where this transmission mode usually works properly.

1.

IP multicast address: The splitter uses an IP multicast address (and a port)
where all peers of the team wait for receiving chunks. Notice that the peers
only receive chunks (never send them to the multicast channel because the
splitter does all the work).

. Peer arrival: An incoming peer must contact with the splitter in order to

join the team. After that, the splitter sends to the peer the stream header
over the TCP using a temporal unicast connection.

. Buffering in peers: Packets in transit can suffer different transmission delays

due to thejittelﬁ, even producing that they arrive out of order. For this reason,
the splitter enumerates every chunk of stream with a 16-bit counter, producing
a packet with the format:

IMS_packet = [chunk_number, chunk]

2Variations in the network latency.

Peers store the received IMS_packets in a buffer whose size b can be different
in each peer depending on the maximun tolerated delay.

4. Relation between the buffer size B and chunk number upper bound
M: Due to practical reasons, the upper bound for the chunk number should
be a power of two. In order to minimize the probability of receiving two or
more chunks with the same number (remember that chunks can be reordered
in transit), M must be a multiple of B, i.e.:

M =pB, (1)

where p € N.

4.5 DBS (Data Broadcasting Set of rules)

This set of rules been designed to be efficient in transmitting a data-stream from a
splitter node to peers in the network when unicast transmissions are used between
the nodes of the team.

1. Chunk scheduling: Chunks are transmitted from the splitter to peers, then
among peers (see Figure 7?). The splitter sends the n-th chunk to the peer
P if

(¢ +mn)mod |T| =0, (2)

being |T'| the number of peers in the team. Next, P; must forward this chunk
to the rest of peers of the team. Chunks received from other peers are not
retransmitted.

2. Congestion avoidance in peers: Each peer sends chunks using a constant
bit-rate strategy to minimize the congestion of its uploading link. Notice that
the rate of chunks that arrive to a peer is a good metric to perform this
control in networks with a reasonable low packet loss ratio.

3. Burst mode in peers: The congestion avoidance mode is immediately aban-
doned if a new chunk has been received from the splitter before the previous
chunk has been retransmitted to the rest of peers of the team. In the burst
mode the peer sends the previously received chunk from the splitter to the
rest of peers of the team as soon as possible. In other words, the peer sends
the previous chunk to the rest of peers of the list (of peers) as faster as it can.
Notice that although this behaviour is potentially a source of congestion, it
is expectable a small number of chunks will be sent in the burst mode under
a reasonable low packet loss ratio.

4. The list of peers: Every node of the team (splitter and peers) knows the
endpoint P = (P.IP address, P.port) of the rest of peers in the team. A list
is built with this information which is used by the splitter to send the chunks
to the peers and is used by the peers to forward the received chunks to the
other peers.

5. Peer arrivals: An incoming peer X must contact with the splitter in order
to join the team. After that, the splitter sends to X the list of peers and the
current] stream header over the TCP. More exactely, the splitter does:

(a) Send (over TCP) to X the number of peers in the list of peers.
(b) For each peer P; in the list of peers:

i. Send (TCP) to X the P; endpoint.
(c) Append X to the list of peers.

In incomming peer X performs:

(a) Receive (TCP) from X the number of peers in the list of peers.
(b) For each peer P; in the list of peers:

i. Receive (TCP) end endpoint P; fron the splitter.
ii. Send (UDP) to P; a [hello] message.

Because the [hello] messages can be lost, some peer of the team could not
know X in this presentation. However, because peers also learh about their
neighbors when a [IMS] message is received, the impact of these lost should
be small.

6. Free-riding control in peers: The main idea behind the DBS is that in a
large enough interval of time, any peer must relay the same amount of data
that it receives. If a (infra-solidary) peer can not enforce this rule, it must
leave the team and join another team that requires less bandwidth. In order
to achieve this, each peer P; assigns a counter to each other peer P; of the
team. When a chunk is sent to P;, its counter /P;/ is incremented and when
a chunk is received from it, /P;/ is decremented. If /P;/ reaches a given
threshold, P; is deleted from the list of peers pf F; and it will not be served
any more by P;.

Notice that this rule will remove from the peer’s lists those peers that per-
form a impolite churn (those peers that leave the team without sending the
[goodbye] message).

7. Monitor peers: Some peers (see Py in Figure [3), which usually run close
(in hops) the splitter, play different roles depending on the P2PSP modules
implemented. Among others:

(a) As a consequence of the impolite churn and peer insolidarity, it is unreal-
istic to think that a single video source can feed a large number of peers
and simultaneously to expect that the users will experience a high QoS.
For this reason, the team adminitrator should monitorize the streaming
session because, if the media is correctly played by the monitor peer,
then there is a high degree of probability that the peers of the team are
correctly playing the media too.

3The stream can be a concatenation of different pieces of audio/video with different headers.

Media Content Provider’s hos

Monitor—peer

Figure 3: A typical P2PSP configuration using a monitor-peer (Fy). Notice that
the monitor-peer, the source and the splitter run on the same host.

(b)

(c)

At least one monitor peer is created before any other peer in the team
and for this reason the transmission rate of the first monitor peer is 0.
However, the transmission rate of the second (first standard) peer, and
the monitor peer, is:

B/2,

where B is the average encoding rate of the stream. When the size of
the team is |T'|, the transmission rate of all peers (included the monitor
peers, obviously) of the team is:

7
IT|+1

(3)
Therefore, only the first (monitor) peer is included in the team without

a initial transmission requirement. Notice also that

lim B 7] =B,
[T|=oo |T|+1

(4)

which means that when the team is large enough, all the peers of the
team will transmitt the same amount of data that they receive.

In order to minimize the number of loss reports (see Rule[10]) Section A.7])
in the team, the monitor peers are the only entities allowed to complain
to the splitter about lost chunks.

8. Peer departures: Peers are required to send a [goodbye] message to the
splitter and the rest of peers of the team when they leave the team, in order

10

the splitter can stop sending chunks to them as soon as possible. However,
if a peer P; leaves without notification no more chunks will be received from
it. This should trigger the following succession of events:

a) In the rest of peers {P;,i # j}, the free-riding control mechanism (see
J
Rule ??) will remove P; from the list of peers.

(b) All monitor peers will complain to the splitter about chunks that the
splitter has sent to P;.

(c) After receiving a sufficient number of complains, the splitter will delete
P; from his list.

9. Relation between the buffer size B and the team size |T|: As in the IMS
module, peers need to buffer some chunks before the playback. However, the
main reason of buffering in the DBS is not the network jitter but the overlay
jitter. As it has been defined in Rule[I] peers retransmit the [IMS] messages
received from the splitter to the rest of the team. Also, it has been specified
in Rule 2 that peers send these messages using the chunk-rate of the stream.
Therefore, depending on the position of a peer X in the list of peers of the
peer Y, it can last more or less chunk times for Y sending the [IMS] message
to X.

In order to handle this unpredictable retransmission delay, the peer’s buffers
should store at least |T'| chunks. This means that, the team size is limited by
the buffer size, i.e., in the DBS module it must be hold that

| < B. (5)

10. Chunk tracking at the splitter: In order to identify unsupportive peers
(free-riding), the splitter remembers the numbers of the sent chunks to each
peer among the last B chunks. Only the monitor peers will complain about
lost chunks x to the splitter using [lost chunk number z] complain report
messages. In the DBS module, a chunk is clasiffied as lost when it is time to
send it to the player and the chunk is missing.

11. Free-riding control in the splitter: In this module it is compulsory that
peers contribute to the team the same amount of data they receive from
the team (always in the conditions imposed by the Equation H]). In order
to guarantee this, the splitter counts the number of complains (sent by the
monitor(s) peer(s)) that a peer produces, for all the peers of the team. If this
number exceeds a given threshold, then the unsupportive peer will be rejected
from the team, first removed from the list of the splitter and next from the
lists of all peers of the team (see [l

4.6 ACS (Adaptive Chunk-rate Set of rules)

All nodes of a team (peers and splitter) that implements only the DBS transmitt
exactly the same amount of media, which basically implies that if a peer can not

11

fulfill this requirement it will be thrown of the team. Unfortunately, this could be
considered too much demanding in some specific configurations, such as a team of
colleagues that want to share a content regardless of who spends more transmission
bandwidth, or in PPV (Pay-Per-View) systems where the stream must be guaranteed
to those users that have paid for receiving the stream.

The number of chunks that ultimately a peer must retransmit depends exclu-
sively on the number of chunks that the peer receives from the splitter. Besides,
the splitter knows the performance of the peers of the team for the task of retrans-
mitting the chunks by checking the number of times that the peers has lost a chunk
(see Section[A7]). This knowledgment could be exploited by the splitter to maximize
the profiting of the team capacity by assigning a different splitter-chunk—rateﬂ to the
peers depending on their reliability. In other words, if a peer does not loss chunks,
then its splitter-chunk-rate will be increased and viceversa. Now, lets classify the
peers into two types: (1) class-A peers that contribute more and (2) class-B peers
that contribute less.

By default and using only the ACS, the splitter-chunk-rate per peer will be the
same for all peers if the team size remains constant. In this framework, the ACS
proposes an adaptive Round-Robing scheduler (at the splitter, see Rule[Il) in which
the team cicle of a peer P is proportional to the packet loss ratio of P. Using the
ACS, a class-A peer will receive from the splitter more chunks than a class-B peer and
therefore, a class-A peer will enter in the burst mode (see Rule [B]) more often than
a class-B peer. This is something that goes against the throughtput of the class-A
peer and that, in some moment, could produce a lost of chunks (remember the the
burst mode can congest the upload link of the peers). Therefore, the throughtput of
a class-A peer will grow until reachint its congestion threshold, instant in which the
monitors peers will report the lost of this class-A peer and the splitter will decrease
its splitter-chunk-rate.

Another consecuence of implementing the ACS is that class-A peers will remove
from their list of peers to class-B peers more often, with a frequency that depends
on among other things of the MAX_LOSS_COUNTERY configuration parameter of each
peer. However, this action has not a noticeable impact on the performance of the
team because the time that lasts from a class-A peer removes a class-B peer of its
list of peers is smaller than the time that the class-B peer needs to send a chunk to
the class-A peer, and when this happens, the class-B peer is inserted again in the
list of peers of the class-A peer, reseting its loss counter. Anyway, an increment
of the MAX_LOSS_COUNTER in class-A peers would improve the performance of the
system.

4The number of chunks per second that the splitter sends to a peer.

5Each peer has a counter for each other peer of the team. This counter is increased when a
chunk is sent to the peer and decreased when a chunk is received from that peer. If this counter
is higher than MAX_LOSS_COUNTER, the unsupportive peer is removed from the list of peers (move
this to DBS).

12

4.7 LRS (Lost chunks Recovery Set of rules)

The P2PSP relies on the UDP as the transport protocol and, obviously, packet
losses can happen. The impact of a packet loss in the QoS offered by the team
depends on where the packet is lost. If the packet is lost in its trip between the
splitter and a peer, this packet will be missed by all the peers of the team, included
the monitor peers. However, if the packet is loss in the trip between two peers, only
the destination peer will loss the chunk.

Only monitor peers tell the splitter which chunks have not been received on
time. More specifically, a monitor peer P sends to the splitter a [lost chunk index
x] loss report message when a chunk with chunk-number z has been lost. Using
this information, the splitter can enumerate the number of times that a chunk has
been lost. In this framework, the LRS module defines that the splitter resend a
lost chunk stored in the location mod M of its buffer of chunks if the number
of losses is equal to the number of monitor peers. The selected peer to resend this
block will one of the monitor peers.

Notice also that, in this case, monitor peers should become aware of a chunk
loss some time before of that the rest of peers of the team send it to their players,
in order to have enough time to resend the lost chunk from the monitor peer to the
rest of peers of the team. A simple technique that has been proven to work is to
use in the monitor peers a buffer size of half the size of the buffer size of the rest
of peers. Thus, when a monitor peer realizes that a chunk has been lost, the rest
of peers are receiving those chunks that are approximately in the middle of their
buffers. Now, if the buffer if large enought, the resent chunks should be received
on time. This implies also that, if the LRS module is implemented, the buffer sizes
in (standard) peers should be doubled and therefore, it holds that

B <2T). (6)

4.8 EMS (End-point Masquerading Set of rules)

It is expected that most of the peers are running behind NAT (Network Address
Translation) devices which connect private address networks to the public Internet.
When a packet crosses the NAT from a private network towards the public one, the
source (private) end-point is replaced (masqueraded) by a public end-point of the
NAT and an translation entry is created in the NAT table. NAT translation entries
are needed to relate the NAT public end-point with the source (private) end-point.

Basically, there are three types of NATs: (1) full-cone NATS, (2) restricted-cone
NATs and (3) symmetric NATs. Depending on the type of the NAT, the number
of fields in the NAT entry and the NAT behaviour is different. A Full-Cone NAT
Entry (FCNE) has three fields:

FCNE = (public NAT port X, private IP address Y, private port Z)

and whatever the origin of the incoming packetﬂ if that packet is received by the
NAT at the end-point (public NAT IP address, public NAT port X’), the packet

5Incomming packets go from the Internet towards the private network.

13

will cross the NAT and it will be delivered to the proccess that is listening at the
end-point (private IP address), private port Z).

This procedure is fully compatible with the DBS module because a full-cone
NAT-ed peer{?] behaves like a public peer except that the NAT masks its actual
private IP address. Nevertheless, a problem arises when two or more peers are
behind the same NAT (are in the same private network). Although an efficient (but
also complex) solution for this case is proposed in SectionZ.8] it could happen that
this solution can not be applied. Therefore, if two (or more) peers A and B are
in the same NAT-ed network and no NAT Ioopbaclﬁ is avaiable, the DBS module
does not provide enough functionality because the neigbouring peers does not know
the private end-point of each other: A only knowns the public-end point of B and
viceversa.

For providing the extra functionality to solve this situation peers must implement
the EMS. At the beginning of the joining stage, each EMS-powered peer sends to
the splitter its local end-point and the splitter checks if the source end-point of the
received packet (which figures in the packet header) matches the local end-point.
If these values are the same then the peer is public; otherwise, the peer is running
in a private host. When this is true, it holds that

X #(X), (7)

where X denotes the local (private) end-point of peer X and (X) the global (public)
end-point of peer X in X's NAT. In general, we have also that

N(T)C T, (8)

where T represents all the elements of a team (including the splitter) and N (T)
those peers that behind a NAT. In other words,

N(T)={PeT|P#(P)} (9)

Notice also that the splitter can find out if a peer A has a neightbour B because
in this case, the public IP address of the end-point that the splitter see of A and B
matches.

Accordingly, when the splitter is sending the list of peers to a EMS-graded peer
A and this peer is hosted by a private machine, the splitter also checks whether
A has neighbours, and if this is true, the splitter sends to A the private end-point
of B instead of its public end-point, and viceversa. Hence, A will use the private
end-point of B to communicate with it and viceversa.

4.9 NTS (NAT Traversal Set of rules)

Connection-filtering-NATs are becoming increasingly frequent, and this is a situa-
tion that dificults the connectivity between peers. This set of rules introduces the

7A peer that is behind a full-cone NAT.
8This feature allows a peer A to connect to other peer B in the same NAT-ed network using
a the public end-point of B in the NAT.

14

extra functionality to handle those peers that are behind restricted-cone NATs and
symmetric NATs.

The DBS module enables the communication for those peers that are behind
full-cone NATs and peers that are behind those more restrictive NATs but that have
dedicated an open port for the P2PSP traffic, but in the rest of the cases NATs
will block the incoming packets. In order to known the reason of that problem, let's
examine the behaviour of restricted-cone and symmetric NATs.

When a restricted-cone NAT is used, the NAT entries can have four or five fields,
depending on the exact type of NAT. Compared to a full-cone NAT, restricted-cone
NATSs entries have a fourth field which memorizes the destination IP address of the
outcoming packetﬂ i.e., we have a translation entry such as:

RCNE = (public source IP address W, FCNE)

where RCNE stands for Restricted-Cone Nat Entry. Therefore, an incoming packet
can cross the NAT only if it comes from a proccess that is running at a host whose
IP address is W.

If the NAT is a port-restricted-cone one, NAT entries become:

PRCNE = (public source port V, RCNE)

where PRCNE stands for Port-Restricted Cone Nat Entry. In this case the NAT
forwards the packet only if it was originated at the (public source port V, public
source IP address W) end-point.

It is important to notice that in a cone NAT (restricted or not) only a public
NAT port is assigned to each (private IP address), private port Z) end-point.
This means that, although a peer is behind a cone NAT, the peers can be addressed
using the unique public NAT end-point that the NAT has selected to create the
corresponding translation entry. Thus, in order to reach the NAT-ed peer the only
action that must be previously performed is to send a packet from this (private)
peer to the interlocutor (public) peer, something that is already performed in the
DBS.

Let us suppose that a new peer X wants to join the team. Following the DBS,
when X is joining the team it receives the list of peers and sends a [hello] message
to each peer of the list. These messages will be received by those peers that run at
public hosts or full-cone NAT-ed hosts, but not otherwise"] To solve this problem,
when a peer X want to join the team, the splitter can send to the all NAT-ed peers
of the team'] the X's end-point using the message:

[say hello to (X)],

where (X) is the public X's end-point asigned by its NAT. Thus, when the peers
receive this message will send a [hello] to (X)), creating a translation entry in their

9Qutcoming packets go from the private network towards the Internet.

10Notice also that, if X is behind a NAT, these [hello] messages creates one or more translation
entries in the NAT of X that makes possible that the rest of peers of the team reach X.

1 Notice that in order to apply this rule, the splitter must know if a peer is behind a NAT or
not. For this reason, it is compulsory that a NTS-graded peer implements also the EMS (see

Section [A.3]).

15

NATs. After that, X will be able to communicate with all the peers of the team,
even if X is behind a NAT.

Summarizing, when an arriving peer X wants to join the team T and after
receiving the list of peers in T" from S, S must carry out the steps refered in
Algorithm [I] and each peer in N(T') must follow the steps in Algorithm 2

Algorithm 1 : NTS algorithm for S.
1. For each peer P in N (T):

(a) Send [say hello to (X)] to P.

Algorithm 2 : NTS algorithm for each peer P in N (T).

1. Receive [say hello to (X)] from S.
2. Send [hello] to (X).

Unfortunately, symmetric NATs behaviour is different and the previously pro-
posed algorithm does not work. A symmetric NAT assigns a different public port
for each (public source port, public source IP address, private IP address, private
port) combination. This means that, if a peer that is behind a symmetric NAT it
will use different public NAT ports for communicating with any other peer and the
splitter. Moreover, the algorithm used by a symmetric NAT to allocate the public
ports is not standardized. Some NATSs will assign ports sequentially (depending on
their availability) and other will assign them at random. Notice also that symmet-
ric NATs, by definition, are incompatible with the pure P2PSP philosophy. Each
peer must sends messages to the rest of peers of the team and this means that
|T| ports will be allocated for each peer that is behind a symmetric NAT. For all
these reasons, in order to run the P2PSP under symmetric NATs, the configuration
presented in Section should be used. However, if this solution if not factible,
|T'| is small and the number of peers behind the symmetric NAT is also small, the
following simple solution could be tried.

The first problem to solve here is to identify those peers that are behind sym-
metric NATs because their NAT traversal set of rules will be different of the rules
that must follow those peers that are behind cone NATs. To indentify a symmet-
ric NAT-ed peer X, the splitter sends to the monitor peer the public end-point of
X and the monitor peer search this end-point in his list of peers. If the peer is
in the list, X is behind a cone NAT, otherwise, X is behind a symmetric NAT.
Algorithm ?? sumarizes this procedure.

Algorithm 3 : NTS algorithm for S to determine the type of NAT that an incom-
ming peer X uses.

1. Send [(X)] to Pp.

2. Receive [type of X's NAT].

Most NATSs use the port preservation port allocation technique which means
that if a process that runs in the (NAT-ed) private network uses a local port L,

16

Algorithm 4 : NTS algorithm for Py to determine the type of NAT that an incom-
ming peer X uses.

1. Receive[(X)] from S.
2. if (X) isin T, then:

(a) Send [X's NAT is a cone NAT] to S.
3. else:
(a) Send [X's NAT is a symmetric NAT] to S.

then the NAT will try to use the same port at the public side, and if the public
port £ has been already allocated then the NAT will check if port £ 4 oo is free.
Supposing this and taking into account that using the rules[§] and ?? of the DBS
will allocate the ports £,£ + 1,--- , L + |T| where, £ will be the port assigned
for the NAT to talk with the splitter, £ + 1 will be the port assigned to talk with
the first peer of the list of peers and £ + |T'| will be the port to talk with the last
peer of the list of peers. Notice that it is possible to determine whether the ports
used by the symmetric NAT of the incoming peer X are £, L+1,--- | L+ |T| after
receiving the [hello] messages from X to the rest of peers of the team, even if there
are peers behind symmetric NATSs, provided these peers have sent a [hello] towards
X using the corresponding public port at X's NAT. Therefore, if after this phase
of “regards” between X and the rest of peers of the team, all these peers have
received a [hello] from X, then we can conclude that X has joined to the team
correctly.

Algorithms [B] and [l sumerize the steps that must be performed in order to
incorporate to a team a peer X that is behind a symmetric NAT.

Algorithm 5 : NTS algorithm for S when there are peers behing symmetric NATs.

1. Sort the list of peers.
2. For each peer P in S(T):

(a) Send [say hello to (X) + #P] to P.

Algorithm 6 : NTS algorithm for each peer P in S(T') when P is behing symmetric
NAT.

1. Sort the list of peers.
2. Receive [say hello to (X) + #P] from S.
3. Send [hello] to (X).

Finally, we would like to stress that this algorithm must be executed only by
those peers that are behind a (port-)restricted-cone or symmetric NAT. The rest of
peers of the team do not need to be aware of the use of these techniques.

17

4.10 MCS (Multi-Channel Set of rules)

The P2PSP may broadcast different channels (streams) over distinct (unconnected)
teams and users can run several peers in parallel, one peer per channel the user wants
to receive. The only essential requirement to enable multi-channel capability is the
network providing sufficient bandwidth. However, when this condition can not be
achieved, users should define the channel priorities. Using this information and if
not enought bandwidth is avaiable, the peer instances that correspond to the lower
priority channels will be identified as unsupportive peers and rejected from their
teams.

To implement that behaviour, the MCS module introduces the encapsulation
scheme:

[MCS] = [Priority, [DBS]]

and a new type of node, the Multichannel Scheduler M.

Therefore, those peers that implement the MCS must label each DBS message.
This label is a 16-bit positive integer number that represents a priority, being zero
the highest one. MCS messages are sent to M which basically implements a priority
FIFO queue of messages. Each time a new [MCS] is received by M, it sorts them
by priority and next, by chunk number. Thus, if there is not enough bandwidth to
transmit all packets, the user stops receiving those channels that have been assigned
a lower priority.

The MCS module can also be useful when simulcasting, scalable media coding
and multiple description media coding is used. In these situations, the different
channels refeer to different representations (qualities, resolutions, etc.) of the same
media content.

4.11 The Content Integrity Set of rules

The CIS (Content Integrity Set of rules) is responsible for fighting against a DoS
(Denial of Service) attacks by stream spoiling (also known as pollution attacks).
This action could be carried out by possible custom implementations of peers that
might to poiso (by altering willfully) the content of the stream. This set of rules
could be also useful in those situations where the transmission links are error-prone
and the error detection mechanism of the underlaying transport protocol has been
disabled.

In the CIS is proposed use a hash of the content of Chunks to discover a attacker
peer. The rules are:

1. One or more peers of the team are selected as trusted peers so that only the
splitter knows of its existence through of endpoint of each them. It's possible
that all peers in the team are trusted-peers except the attacker.

127 poisoned chunk is a chunk that seems to be OK, but which the sender has changed in such
a way that when played, introduces no information (for example, a chunk filled with zeroes) or
even wrong information.

18

2. The trusted peers create a hash (fingerprint) for a number of received chunks
(included the chunk number) plus an other hash of the endpoint from where
each chunk has been received. Depending on the computational power avail-
able in the trusted peer host, all or a subset (can be random) of chunks are
processed.

3. The hashes (both chunks and endpoints) are sent to the splitter, which checks
if the received chunks have been altered (calculate the hash is necessary).

4. The splitter knows what chunk has been sent to each peer. Therefore if the
splitter receives a hash that does not match the one he has calculated can
deduce that one of the chunks was altered and depending on the number of
corresponding chunk is able to determine to which peer was sent the altered
chunk (note that all chunks follow the following process: the chunk first
travels from the splitter to a peer which sends it to all other peers of the
team).

5. When the number of altered/peer exceeds a treshold, the peer is rejected of
the team. This is achieved not sending more chunks to the attacker(s) peer(s).
Moreover the splitter sends a reject message that contain the endpoint of the
attacker to all peers of the team, this ensures that the attacker is removed
from the peers list of all peers of the team as soon as possible.

4.11.1 A model of the impact of an attack

This mathematical model estimates the averages of poisoned chunks X into a
team depending of number of trusted peers T', the numer of attackers peers A
concurrently in a team and the P number of total peers (attackers or not) in the
team. In addition, the model estimates the number of poisoned chunks that arrives
to any peer, always in average values.

As noted in the begin of this section, the identity of the trusted peers is unknow
for all except for the splitter. Moreover, the behavior of the attackers will be poison
the maximun number of chunks. Note, however, that any intermediate selective
situation with the chunks poisoned can be consider similar to this one (are poisoned
all possible chunks) where the attackers number is lower.

Suppose initially that 7 = 1 (only exist one trusted peer in the team). In
the more favorable situation (and unlikely) for an attacker, this could reach up to
P — 1 chunks if in the retransmission cycle the last chunk is sent to the only one
trusted peer. Moreover, It may also happen that the first poisoned chunk sent by
an attacker arrives to an only one trusted peer. In this case, only one chunk is
poisoned. As the position of the peers is random, the average number of poisoned
chunks when A=1and T =1's

P-1+1 P
2 2
Suppose that exist more of one trusted peer (T' > 1 and A = 1). As now the
probability of deliver a poisoned chunk to a trusted peer increment proportionality

X = (10)

19

with T, the average number of poisoned chunks would be T times lower, i.e., the
average number of poisoned chunks would be

P
X = 11
5T (11)
Finally, if there is more of one attacker (7' > 1 and A > 1), that amount would
be multiplied by A (suppose that the A attackers poisons the chunks in parallel),
getting
AP

X =5 (12)

From this expression can be derived two hypotheses. The first one, that the
impact of an attack depends of the ratio between number of attackers and trusted
peers (expected behavior). And second, that when A and T are of the same order
the average poisoned chunks tend to be P/2 In the case of exist also normal peers,
clearly X will increase. For example, if there is a friendly peer too, X will increase
in a poisoned chunk per each concurrently attacker in the team. Therefore, it's
determined that

X="_1(P-A-T) (13)

As seen, the latter term does not significantly affect the average number of
poisoned chunks, unless the team is very large, in which case, the attack is diluted
because never the number of received chunks for each peer in the same retransmis-
sion cycle can be bigger than A.

4.12 The Data Privacy Set of rules

The following set of rules deals with privacy-related issues. Many content providers
offer pay-per-view channels as part of their services. From a technical point of
view, this implies having a Key Server that ciphers the stream with a symmetric
encryption key and delivers such key to authorized members only. However, this is
not enough: it is crucial that the Key Server renews the encryption key after the
expiration of a peer's authorization period so the stream can not be decrypted any
more by the peer (this feature is called forward secrecy). In addition, if we want
to play on the safe side then the Key Server should renew the encryption key after
a peer purchases an authorization period (if the key remained the same then the
peer might decrypt previously captured stream packets for a later viewing). This
renewal process is not trivial and is carried out by a secure multicast protocol. In
order to alleviate the overhead incurred by avalanches of peers entering and leaving
the authorized group (for example, at the beginning of a high interest event such as
The Olympics) key renewal can be performed on a batch manner, i.e. renewing the
key at a given fixed frequency rather than on a per arrival/exit basis. Finally, key
renewal messages should be authenticated by means of a digital signature or other
alternative methods [20].

20

Many secure multicast protocols protocols exist in the literature, for example
[25, 15} 28] 27]. Here we suggest the implementation of a protocol by Naranjo et al
[18]. On it, every authorized peer receives a large prime number from the Key Server
at the beginning of its authorization period (this communication is done under a
secure channel, for example SSL/TLS). For every renewal, the Key Server generates
a message containing the new key to be used by means of algebraic operations: all
the authorized primes are involved in this message generation process, and the key
can only be extracted from the message by a peer with a valid prime. This protocol
is efficient and suits P2PSP architecture in a natural way: every splitter can act as
a Key Server for its own team. Hence, the stream would be first transmitted among
splitters (possible encrypted by a different key, shared by the splitters). Within
each team, its corresponding splitter would control the encryption and key renewal
process.

4.13 The Peer-list Compression Set of rules

S maintains the list of peers {T'} ordered according to the numerical order of the
IP addresses of the end-points of the peers. Thanks to this and depending on the
compression ratio, the splitter should minimize the transmission time of the list of
peers by compressing it with the Algorithm [7l Notice that only the IP addresses of
the end-points are compressed.

Algorithm 7 : Compression algorithm of the list of peers.
1. Send 4 bytes for T'(0).
2. Send 2 bytes for “A", “C" or “C", depending on type of network that is going
to be sent next.
3. Send 3 (A class), 2 (B class) or 1 (C class) bytes to encode the rest of peers
of T that are in the sub-network specified in the previous step.
4. For each peer in the sub-network:

(a) Send the host part of the IP address of the peer, using 3 (A class), 2 (B
class) or (C class) 1 bytes.

(b) Send the port of the peer using 2 bytes.

5 A mathematical analysis of the P2PSP

Important aspects to analyze are: (1) the average throughtput of the system, mea-
sured as a ratio between the capacity of the network and the effective bandwidth
that the overlay provides, (2) the average start-up/swiching delay (the time interval
from when one stream is selected by a user util the playback starts) and (3) the
average playback time lags between peers due to the deployment of the buffering
mechanisms. This study should be performed depending of the cluster size.

This section presents a analitical model of the P2PSP using the stochastic dif-
ferential equation approach [R. Brockett, “Stochastic control,” Harvard University,

21

lecure notes.].

Let us make the same fluid assumption as in [13], that is let the content from
the server be infinitely divisible and the file be infinitely large so that the server
continuously send content to the peers.

6 Definitions

1. @: The cluster size. The number of peers in the cluster.

2. C: The chunk rate. The number of chunks per second.

6.1 Splitter delivery period

The splitter sends chunks to peers following the Round-Robing scheme. The time
T elapsed between two consecutive splitter deliveries depends on the cluster size)
and the chunk rate C, as follows:

1
==
T=05 (14)

6.2 Steady-state performance

Throughput

The throughput of the system is defined as the amount of content received by all
peers per unit time.

Network degree

Lets asume that at time ¢ there are P& #C'(¢) peers in the team cluster. Because
each peer sends data to the rest of peers of the team cluster, every peer has a

degree of 2{#} #C'(1).

Bit rates

When the network is stable, i.e. dRP#=80 d#C(t) = 0 where - denotes the
expectation operator, the average downloading and uploading rates of peers are &
Ya usado antes bs bits/second, which is also the bit-rate of the stream. Peers
that are not & be able to send or receive at & bs are rejected from the team cluster.
Notice also that & bs is not a constant in most streams. We will express this idea
using (& bs(t) in our argumentation.

Protocol overhead

A comparison between a the P2PSP and a pure server/client architecture?

22

Network diameter

The diameter is a key property of any overlay structure. It specifies the maximum
number of hops necessary to reach any peer from any other peer.
In the P2PSP, the network diameter in a team cluster is a constant equal to 2.

Network delay

Network delay depends on the physical link delay and the available bandwidth (in-
cluding the queue delays caused by the routing). This second parameter is strongly
related to the network load, and therefore, the network delay is & tlme -varying

Let us denote Nd;(t) > (J the network delay at phyS|ca| Ilnk i. Due to the diameter
of the P2PSP an upper bound of the network delay is Nd(t) < 2max;{Nd;(t)}.

Block rate

The stream & St is divided into an infinite number of orthogonal? blocks S; St;
of size a such as St = (J;, St;, where St; N.St; = 0. The block rate is defined by

Bs(t) = —. (15)

Buffering delay

Peers wait until to receive A I blocks to start serving clients (its players). Therefore,
the buffering delay at peers can be expressed as

Pd(F,t) = (16)

Bs(t)

Client delay

Most clients (players) use an internal buffer to deal with the jitter. Let's suppose
t—h-at—t—he—t—me—t—hat—t—he—ehent—needs the time needed to fill this buffer , i.e., initial
delay for the client is Cd(t) >

Start-up delay

Also called the playback delay, is the total delay that-a an user experiments and can
be calculated as the sum of network, buffering and client delays

D(F,t) = Nd(t) + Pd(F,t) + Cd(t). (17)

23

6.3 Chunk lost-rate produced by churn and unwarned-churn

Polite and warned churn should never produce a loss of chunks. On the other hand,
unwarned churn can produce this lost if the buffer size is too small or if the splitter
is congested (remind that the splitter resend those chunks that are requested at
least by the half of the peers of the cluster and this could congest its upload link).
Independtly of the motive, the rest of the peers of the cluster will lost those chunks
that were sent to the outgoing peer while the time that the splitter were not aware of
this fact. Under a reasonable network performance, the this time should be smaller
than the splitter delivery period T' and the number of lost chunks per peer should
be only one.

Leo: Juan Alvaro usa una distribucion distinta a la Poisson. ... in the conti-
nuity index (ratio of received blocks vs sent blocks by the source that is perfect
when reach 1) depending on the arrival and departure rate. ... and in the start-up
delay.

The user-driven dynamics of peer participation, or churn, must be taken into
account in both the design and evaluation of any large scale P2P application.

Usually, peers (users) arrive and leave acording to a Poisson process with rate A,
i.e., 1/X is the average time a peer stay in the team). The Poison counter satisfies
that

~ 1 at Poisson arrival/departure
apP(t) _{ 0 elsewhere (18)
and
dN(t) = Adt, (19)

6.4 Flash crowd dealing (maybe included in the previous sec-
tion?)

In a flash crowd scenario, large number of peers join the system in a short period
of time.

6.5 Maximun free-riding ratio

6.6 DoS impact?

6.7 Scalability

6.8 Are peers synchronized?

In other words, are the peers using the same receiving position?

24

7 Configurations

This section is devoted to describe a collection of P2PSP configuration examples
that could be useful in some specific contexts.

7.1 Trusted peers

Peers are usually run by users that want to play the media. However, one or more
trusted peers could be executed by the cluster administrator in order to monitorize
the streaming performance and/or minimize the impact of some attacks. Consider-
ing that, in general, the trusted peers identities will remain unknown for other peers,
the administrator could connect a player to a trusted peer and if the playback is
correct, the probability that some malicious peer could be poisoning the media is
very low (this could be also done using the monitor peer but remember that the
identity of this peer is known and the attacker will avoid to poison the chunks sent
to the monitor peer). Another advantage of using monitor peers is that their com-
plaining messages are always true. This permits a effective way of identifying those
malicious peers that try to perform a fake complaining attack.

7.2 Super-peers

A super-peer is formed by the union of a peer and an relay server. As can be seen in
Figure 7?7, the super-peer feeds its team using the P2PSP and one or more different
teams by means of the C/S paradigm.

7.3 Premium peers

Premium users pay to view although do not contribute to the team. Their configu-
ration is quite simple because we need to connect directly the premium user's player
to a content provider (a origin node). Notice that this does not implies the use of
the P2PSP.

7.4 QoS preservation

Is the responsibility of the content provider the maintain a minimum quality of
service during the streaming process. A way to achieve this goal is by minimizing
the size of the teams, i.e, sharing the streaming load between several splitters up
to spend the available bandwidth in the service side.

7.5 Clustering in private networks

In many situations, peers run in hosts of a private networks (see the “Before” part
of Figure []). However, if two or more users that are in the same private network
want to play different players, a simple and efficient solution consist in creating
a private team using the peer that belong to the public team as a source fo the

25

Before] After]
Private Private
Network Network

1 — P 1 — P

Public Public
Network Network

NAT NAT

Figure 4: A private clustering scenario. In order to accomodate several private
peers, a private team T, can be created using the stream produced by the private
peer that belongs to the public team T7.

private splitter (see the “After” part of Figure E]) Note that, as IP multicasting
is available on the private network, the private team should be configured to take
advantage of this fact.

Similarly as it happens with transparent Web proxies, this locality-aware clus-
tering concept could be also used by ISPs in order to minimize inter-ISP traffic. In
a nutshell, if a ISP detecs that there is P2PSP traffic between “local” peers and
“foreign” peers, the ISP could deploy a private team. This can be configured by
filtering the list of peers that the splitter sends to the peers. This filtering should
be performed depending on the locality of the IP addresses of the peers.

7.6 Dealing with symmetric NATs

Whereas cone NATs are used in small and domestic private networks, in most of the
corporative LANs the NATs are symmetric. When a peer P is behind a symmetric
NAT, only can receive blocks from a public node if P has sent at least a block to it.
Another drawback of using symmetric NATSs is that each different “connection’[!4
has a different public endpoint. Besides this problem, some networks administrator

13The reader could think that running another peer inside of the private network the same effect
could be achieved. Nonetheless, this is not true because peers know each other by means of a
public NAT end-point and most NATs does not allow to communicate private processes using their
public end-points.

14Using UDP the concept of connection does not make sense. However, we can use this name
to reefer to the tuple ((public IP address, public port), (private IP address, private port)), where
the public endpoint points to a public peer and the private endpoint points to the private peer.

26

Private

Network

@ @
Public
Network

NAT

Figure 5: A solution to cross symmetric NATs. A public peer P serves a stream to
the private team T5.

refuses UDP traffic because it can congest their networks easier than using TCP
traffic.

One way of solving this problem is creating a different team for the private
network, in a similar way as was explained in Section but using a peer located
in the public network (see Figure Bl). Notice that in this configuration, only a TCP
connection need to be established through the NAT.

7.7 Building large P2PSP overlays

Although a P2PSP team can scale easily, there are several reasons why it might be
desirable to split a large team into smaller ones. For example, if a team fails (for
example, the splitter stop sending blocks to the peers), other teams would not be
affected by this issue.

Again, a solution to these problems consists in partitioning the big team into a
collection of smaller ones. The simplest configuration makes use of the concurrent
service that most of streaming servers can perform (see the schema at the left in
the Figure [B]). However, if the source node can not serve multiple streams, we can
divide our big team following a tree structure where the root of the tree is the
splitter connected to the source and peers are the leafs of the tree (see the schema
at right in the Figure [6]).

7.8 Streaming of 3D video

3D video can be broadcasted using two parallel teams implementing the MCS (see
Section ??). In one of the teams the left view (for example) of the stereoscopic
video is transmitted whilst in the other team, the other view or simply the differences
between both views are transmitted. Thus, a user with a 2D display only need to
run a peer that belongs to the left-view team and “3D users” need to run two peers.

27

PR OB P

I

BBy BB

Figure 6: Two examples of an overlay with several teams. On At the left, the
concurrency in the source is used to send in parallel the same stream towards two
different teams. At the right, concurrency is created by an internal team. In both
cases, the sub-teams are smaller than the original one.

In this configuration, the differences-view team should be the channel with lower
priority (see Figure [7]).

7.9 Simulcast of single-layer media

In some transmission scenarios (such as YouTube), a source can store several copies
of the same media, althought variying the temporal resolution, spatial resolution
and/or quality. In this situation, each media can be simultaneously broadcasted
but in different channels. Thus, peers can switch between teams depending on the
variations of the transmission bit-rate, the resolution requested by the user, etc.
Notice that, time to perform a switch between channels depends on the buffering
time, which depends on the buffer size, the transmission bit-rate and the GOP-rate,
that depends on the GOP size and the picture-rate. In a switch, the end of the
reception of the old channel should coincide with the beginning of the reception
of the new channel, i.e, the buffering time should be predictable. Otherwise, the
reception of both channels must be overlapped.

7.10 Streaming of scalable content

The idea introduced in the previous section can be extended to the transmission of
scalable video. This type of videos are divided into layers providing spatio-temporal
multiresolution and progressive refinement. Moreover, these layers are sortered by
priority (for example, in order to get the highest spatial resolution the lower ones

28

Figure 7: Streaming of 3D video using the ML. The Multi-channel scheduler M
prioritizes those incoming blocks that go to the left-view team T}, in detriment of
those ones that go to the differences-view team Tj.

are required first). Therefore, we can transmit each layer in a different channel
prioritizing the transmissions using the ML (see Section ??), in acordance with the
priority of the layers and the user preferences.

7.11 Streaming of multiple descripted content

Multiple description codecs provides a set of partially redundant streams so that the
quality of the reconstructions improve with the number of descriptions decoded. In
this case, if each description is transmitted over a different team, peers can join/left
to more/less teams depending on the transmission bit-rate. Moreover, in this case
it is not necessary to prioritize the transmission of the descriptions (although a peer
could be rejected from a team if it becomes unsupportive).

7.12 Interactive temporal random access (video-on-demand)

Before describing the way in which interactive temporal random access to a video
sequence can be done using the P2PSP, it is important to highlight that this possi-
bility represent the worst working scenario of a P2P network because peers tend to
retrieve data that it is only interesting for a small amount of them. In the extreme
situation where only a peer requests a specific part of the sequence, the bandwidth
consumption in the source side is equivalent to the bandwidth consumption in the
server side of a CS system.

Keeping this fact in mind, temporal interactivity can be implemented using the
P2PSP by configuring a set of teams where each one of them broadcasts a different
time-shifted version of the same content. Thus, a peer which wants to move to a
different time in the stream, has to leave the current cluster and to move to the
team that provides the desired part of the stream.

Obviously, this technique solves the problem of the jumping to a different time
in the same video, but does not tackle the problem of dealing with the fast forward
and rewind actions. In those situations, it is not necessarily to send all the data of

29

each GOP visited by the peer because probably only one image of the GOP is going
to be played. This problem can be tackled by using scalable video media. Having
a set of teams where each one of them broadcasts the lowest temporal resolution
layer of a different delayed video, fast forward and rewind can be performed when
the peer visits only those teams. Finally, notice that temporal scalability does
not introduce a significant overhead in the system because its coding overhead is
minimal (a video scalable in time needs approximately the same amount of memory
than a non-scalable one).

8 Summary

Acknowledgements

This work has been funded by grants from the Spanish Ministry of Science and In-
novation (TIN2008-01117, TEC2010-11776-E, TIN2012-37483-C03-03) and Junta
de Andalucia (P08-TIC-3518 and P10-TIC-6548, P11-TIC7176), in part financed
by the European Regional Development Fund (ERDF) and Campus de Excelencia
Internacional Agroalimentario (ceiA3).

References

[1] G. An, D. Gui-Guang, D. Qiong-Hai, and L. Chuang. BulkTree: an overlay
network architecture for live media streaming. Journal of Zhejiang University
SCIENCE, 2006.

[2] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application layer
multicast. In ACM SIGCOMM, pages 205-217, October 2002.

[3] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh.
Splitstream: High-bandwidth content distribution in a cooperative environ-
ment. In Peer-to-Peer Systems II, February 2003.

[4] M. Castro, P. Druschel, A-M. Kermarrecand, and A. Rowstron. SCRIBE: A
Large-scale and Decentralized Application-level Multicast Infrastructure. In
IEEE JSAC, volume 8, pages 100-110, October 2002.

[5] Y. Chawathe. Scattercast: An Architecture for Internet Broadcast Distribution
as an Infrastructure Service. PhD thesis, University of California, Berkeley,
2000.

[6] Bram Cohen. http://www.bittorrent.com, 2001.

[7] H. Deshpande, M. Bawaand, and H. Garcia-Molina. Streaming Live Media
over Peers. Technical report, CS-Stanford, 2002.

30

http://www.bittorrent.com

(8]

[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

M. Dobuzhskaya, R. Liu, J. Roewe, and N. Sharma. Zebra: Peer to Peer
Multicast For Live Streaming Video. Technical report, Massachusetts Institute
of Technology, 2004.

Free Software Foundation. http://www.gnu.org/licenses/gpl.html|

The Xiph.org Foundation. Icecast.org. http://www.icecast.org.
P. Francis. Yoid: Extending the Internet Multicast Ar-
chitecture. The ICSI Networking and Security Group,

http://www.icir.org/yoid/docs/ycHtmlIL /htmIRoot.html, April 2000.

IETF. Peer to Peer Streaming Protocol (PPSP).
http://datatracker.ietf.org/wg/ppsp/charter/|

J. Jannotti, D.K. Gifford, K.L. Johnson, M.F. Kaashoek, and Jr.J.W. OToole.
Overcast: Reliable multicasting with an overlay network. In Operating Systems
Design and Implementation, pages 197-212, 2000.

D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High Bandwidth
Data Dissemination Using an Overlay Mesh. In ACM SOSP, October.

J. Lin, K. Huang, F. Lai, and H. Lee. Secure and efficient group key man-
agement with shared key derivation. Comput. Stand. Inter., 31(1):192 — 208,
20009.

Cristobal Medina-Lépez, J.A.M. Naranjo, Juan Pablo Garcia-Ortiz, L. G.
Casado, and Vicente Gonzélez-Ruiz. Execution of the P2PSP protocol in par-
allel environments. In Guillermo Botella y Alberto A. Del Barrio Garcia, edi-
tor, |Actas XXIV Jornadas de Paralelismo, pages 216—221, Madrid, Septiembre
2013.

J.J.D. Mol, Dick Epema, and Henk J. Sips. The Orchard Algorithm: P2P
Multicasting without Free-riding.

J. A. M. Naranjo, L. G. Casado, and J. A. Ldpez-Ramos. Group
oriented renewal of secrets and its application to secure multicast.
Journal of Information Science and Engineering, 27(4):1303-1313, july 2011.

V.N. Padmanabhan, H.J. Wang, and P.A. Chou. Resilient Peer-to-Peer Stream-
ing. In Network Protocols, IEEE International Conference on, pages 16-27.

A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and David E. Culler. SPINS:
security protocols for sensor networks. Wirel. Netw., 8:521-534, 2002.

F. Pianese, J. Keller, and E. W. Biersack. PULSE, a Flexible P2P Live Stream-
ing System, booktitle = INFOCOM 2006. 25th IEEE International Conference
on Computer Communications. Proceedings. pages 1-6, 2006.

The P2PSP Team. Implementation of the P2PSP (Peer to Peer Straightfor-
ward Protocol) in Lauchpad. https://launchpad.net/p2psp.

31

http://www.gnu.org/licenses/gpl.html
http://www.icecast.org
http://datatracker.ietf.org/wg/ppsp/charter/
http://www.congresocedi.es/images/site/actas/ActasParalelismo.pdf
http://www.iis.sinica.edu.tw/page/jise/Introduction.html
https://launchpad.net/p2psp

[23]

[24]

[25]

[26]

[27]

[28]

The P2PSP Team. Peer to Peer Straightforward Protocol.
http://p2psp.org/en/p2psp-protocol.

D.A. Tran, K.A. Hua, and T. Do. Zigzag: An efficient peer-to-peer scheme
for media streaming. In IEEE INFOCOM, volume 2, pages 1283-1292, April
2003.

Lihao Xu and Cheng Huang. Computation-efficient multicast key distribution.
IEEE Trans. Parallel Distrib. Syst., 19(5):577-587, May 2008.

Y.Chu, S. Rao, and H. Zhang. A case for end system multicast. In Proceedings
of ACM SIGMETRICS, pages 1-12, 2000.

Eun-Jun Yoon and Kee-Young Yoo. A secure broadcasting cryptosystem and
its application to grid computing. Future Generation Computer Systems,
27(5):620 — 626, 2011.

Z. Zhou and D. Huang. An optimal key distribution scheme for secure multicast
group communication. In INFOCOM'10, pages 331-335, 2010.

32

http://p2psp.org/en/p2psp-protocol

	Introduction
	Some networking facts
	P2P architectures
	The Peer-To-Peer Straightforward Protocol
	Main P2PSP characteristics
	Data partitioning
	Basic entities
	IMS (IP Multicast Set of rules)
	DBS (Data Broadcasting Set of rules)
	ACS (Adaptive Chunk-rate Set of rules)
	LRS (Lost chunks Recovery Set of rules)
	EMS (End-point Masquerading Set of rules)
	NTS (NAT Traversal Set of rules)
	MCS (Multi-Channel Set of rules)
	The Content Integrity Set of rules
	A model of the impact of an attack

	The Data Privacy Set of rules
	The Peer-list Compression Set of rules

	A mathematical analysis of the P2PSP
	Definitions
	Splitter delivery period
	Steady-state performance
	Chunk lost-rate produced by churn and unwarned-churn
	Flash crowd dealing (maybe included in the previous section?)
	Maximun free-riding ratio
	DoS impact?
	Scalability
	Are peers synchronized?

	Configurations
	Trusted peers
	Super-peers
	Premium peers
	QoS preservation
	Clustering in private networks
	Dealing with symmetric NATs
	Building large P2PSP overlays
	Streaming of 3D video
	Simulcast of single-layer media
	Streaming of scalable content
	Streaming of multiple descripted content
	Interactive temporal random access (video-on-demand)

	Summary

