

 Thales Norway AS
Use of ROHC for secure traffic over

satcom

 All Rights Reserved. Ed. 1 Page 11 of 26

APPENDIX A. UPDATING AND BUILDING THE SOFTWARE

The software consists of two packages built within the Vyatta framework; rohc-lib and rohc.

Rohc-lib contains the librarycode fetched from https://launchpad.net/rohc. The library requires access to
a compiled Linux kernel and its corresponding source. The code can be accessed online through bazaar
version control management. The code supplied by Thales in the Vyatta framework is using git to track
changes locally. The launchpad directory outside the Vyatta framework is conforming to both bazaar and
git, to allow fetching updated source from the internet, and providing this code to the Vyatta framework.

Update of rohc-lib code is done this way:

 Go lo launchpad/rohc/trunk directory

 Perform “bzr pull”

 Verify that the library changes are sane, then commit the changes to the git tree.

 Pull this tree from the rohc-lib module inside Vyatta.

Rohc contains the userspace application that support provides the framework around the library.

Note that the library must be installed on the buildmachine in the latest version to get a correct build of the
userspace application.

https://launchpad.net/rohc

 Thales Norway AS
Use of ROHC for secure traffic over

satcom

 All Rights Reserved. Ed. 1 Page 12 of 26

Update and buildprocedure from scratch is as follows:

1. Update: Update rohc-lib as described above

2. Update: Go to build-iso directory, perform

a. “<path>vc –b=oxnard checkout

b. cd ../../..

c. tools/update-git rohc/oxnard/build-iso

d. cd –

e. “<path>vc –b=rohc-1.4.0 checkout

3. Update: Perform a merge of all modules i.e. top-level, linux-image and iproute (git merge Oxnard)

4. Update: Login as root, perform

a. make distclean

5. Update: Exit root, perform

a. autoreconf –i && ./configure –with-vyatta-build-branch=oxnard

6. Build: Perform

a. tools/submod-mk –c linux-image iproute rohc-lib

7. Build (IF rohc-lib has changed): Login as root, perform:

a. dpkg –i pkgs/rohc-lib_999.dev_all.deb

b. exit root

8. Build: Perform:

a. tools/submod-mk –c rohc

9. Build: Log in as root, perform:

a. make iso

10. Finished; iso can be found in build-iso/liveCD

NOTE! Do not perform step 6 and 7 if no update of Linux-image or rohc-lib source has taken place.

 Thales Norway AS
Use of ROHC for secure traffic over

satcom

 All Rights Reserved. Ed. 1 Page 13 of 26

APPENDIX B. RUNNING THE LIBRARY

The Rohc implementation is setup by use of the CLI commonly used on the Thales ITR.

The configuration structure is:

Service {
 rohc {
 debug-level <0..5>
 interface xxx {
 execute-script yyyy
 }
 }
}

The parameters are used as described below:

debug-level:

Defines the debug-level of the rohc user application. Setting the debug-level when rohc is running
will restart the user application.

Debug of the rohc-library can only be set compiletime. Edit the file rohc-lib/debian/rules and
change the line

configure += --enable-rohc-debug=0

to a value that is suitable.

interface

The interface to use compression on.

execute-script:

The parameter should point to a script that initializes qdisc in order to get the packets that shall
be compressed into the correct rohc queue. Scripts are located in directory /opt/Vyatta/etc/rohc.

 Thales Norway AS
Use of ROHC for secure traffic over

satcom

 All Rights Reserved. Ed. 1 Page 14 of 26

APPENDIX C. PACKET FLOW FOR ROHC

This is a short description of how packets to be compressed and decompressed by ROHC travel trough
Linux network stack and user space application ROHC.

The information for packet flow is partly taken from “FFI-notat 2010/02528 Integration of Robust Header
Compression (ROHC) in a Linux based tactical router – an extension to Linux traffic control”, chapter 3.4
and partly based on code reading.

Output of compressed packets:

 Packet arrives in IP OUTPUT from a local process or because of forwarding from another
interface

 TC (Traffic Control) decides what queue to use for packets, default is FIFO qdisc. Here ROHC
queue is available, routed by TOS value (depending on configuration)

 If packet matches a TC rule for ROHC, packet is sent to ROHC queue that forward the packet to
a kernel module called “SCHED ROHC”. Here the packet is stored in a FIFO queue and user
space app ROHC is informed that a packet is waiting

 ROHC APP read packet and send contents to ROHC LIBRARY for compression. The
compressed payload is returned to the SCHED ROHC module

 SCHED ROHC fetches original packet from FIFO queue and replaces contents with compressed
content before the packet is submitted to the Ethernet driver

