← Back to team overview

yade-dev team mailing list archive

[svn] r1626 - in trunk/gui: . py

 

Author: eudoxos
Date: 2009-01-17 23:26:54 +0100 (Sat, 17 Jan 2009)
New Revision: 1626

Added:
   trunk/gui/py/linterpolation.py
Modified:
   trunk/gui/SConscript
Log:
1. Add a few functions for integrating piecewise-linear functions in new module yade.linterpolation


Modified: trunk/gui/SConscript
===================================================================
--- trunk/gui/SConscript	2009-01-15 05:17:58 UTC (rev 1625)
+++ trunk/gui/SConscript	2009-01-17 22:26:54 UTC (rev 1626)
@@ -79,6 +79,7 @@
 		env.File('runtime.py','py'),
 		env.File('ipython.py','py'),
 		env.File('plot.py','py'),
+		env.File('linterpolation.py','py'),
 		env.File('PythonTCPServer.py','py'),
 	])
 

Added: trunk/gui/py/linterpolation.py
===================================================================
--- trunk/gui/py/linterpolation.py	2009-01-15 05:17:58 UTC (rev 1625)
+++ trunk/gui/py/linterpolation.py	2009-01-17 22:26:54 UTC (rev 1626)
@@ -0,0 +1,97 @@
+# encoding: utf-8
+#
+# © 2009 Václav Šmilauer <eudoxos@xxxxxxxx>
+#
+
+"""
+Module for rudimentary support of manipulation with piecewise-linear
+functions (which are usually interpolations of higher-order functions,
+whence the module name). Interpolation is always given as two lists
+of the same length, where the x-list must be increasing.
+
+Periodicity is supported by supposing that the interpolation
+can wrap from the last x-value to the first x-value (which
+should be 0 for meaningful results).
+
+Non-periodic interpolation can be converted to periodic one
+by padding the interpolation with constant head and tail using
+the sanitizeInterpolation function.
+
+There is a c++ template function for interpolating on such sequences in
+pkg/common/Engine/DeusExMachina/LinearInterpolate.hpp (stateful, therefore
+fast for sequential reads).
+
+TODO: Interpolating from within python is not (yet) supported.
+"""
+
+def revIntegrateLinear(I,x0,y0,x1,y1):
+	"""Helper function, returns value of integral variable x for
+	linear function f passing through (x0,y0),(x1,y1) such that
+	1. x∈[x0,x1]
+	2. ∫_x0^x f dx=I
+	and raise exception if such number doesn't exist or the solution
+	is not unique (possible?)
+	"""
+	from math import sqrt
+	dx,dy=x1-x0,y1-y0
+	if dy==0: # special case, degenerates to linear equation
+		return (x0*y0+I)/y0
+	a=dy/dx; b=2*(y0-x0*dy/dx); c=x0**2*dy/dx-2*x0*y0-2*I
+	det=b**2-4*a*c; assert(det>0)
+	p,q=(-b+sqrt(det))/(2*a),(-b-sqrt(det))/(2*a)
+	pOK,qOK=x0<=p<=x1,x0<=q<=x1
+	if pOK and qOK: raise ValueError("Both radices within interval!?")
+	if not pOK and not qOK: raise ValueError("No radix in given interval!")
+	return p if pOK else q
+
+def integral(x,y):
+	"""Return integral of piecewise-linear function given by points
+	x0,x1,… and y0,y1,… """
+	assert(len(x)==len(y))
+	sum=0
+	for i in range(1,len(x)): sum+=(x[i]-x[i-1])*.5*(y[i]+y[i-1])
+	return sum
+
+def xFractionalFromIntegral(integral,x,y):
+	"""Return x within range x0…xn such that ∫_x0^x f dx==integral.
+	Raises error if the integral value is not reached within the x-range.
+	"""
+	sum=0
+	for i in range(1,len(x)):
+		diff=(x[i]-x[i-1])*.5*(y[i]+y[i-1])
+		if sum+diff>integral:
+			return revIntegrateLinear(integral-sum,x[i-1],y[i-1],x[i],y[i])
+		else: sum+=diff
+	raise "Integral not reached within the interpolation range!"
+
+
+def xFromIntegral(integralValue,x,y):
+	"""Return x such that ∫_x0^x f dx==integral.
+	x wraps around at xn. For meaningful results, therefore, x0 should == 0 """
+	from math import floor
+	period=x[-1]-x[0]
+	periodIntegral=integral(x,y)
+	numPeriods=floor(integralValue/periodIntegral)
+	xFrac=xFractionalFromIntegral(integralValue-numPeriods*periodIntegral,x,y)
+	return period*numPeriods+xFrac
+
+def sanitizeInterpolation(x,y,x0,x1):
+	"""Extends piecewise-linear function in such way that it spans at least
+	the x0…x1 interval, by adding constant padding at the beginning (using y0)
+	and/or at the end (using y1) or not at all."""
+	xx,yy=[],[]
+	if x0<x[0]:
+		xx+=[x0]; yy+=[y[0]]
+	xx+=x; yy+=y
+	if x1>x[-1]:
+		xx+=[x1]; yy+=[y[-1]]
+	return xx,yy
+
+if __name__=="main":
+	xx,yy=sanitizeInterpolation([1,2,3],[1,1,2],0,4)
+	print xx,yy
+	print integral(xx,yy) # 5.5
+	print revIntegrateLinear(.625,1,1,2,2) # 1.5
+	print xFractionalFromIntegral(1.625,xx,yy) # 1.625
+	print xFractionalFromIntegral(2.625,xx,yy) # 2.5
+