yade-dev team mailing list archive
-
yade-dev team
-
Mailing list archive
-
Message #01310
[svn] r1804 - in trunk/lib: . py
Author: eudoxos
Date: 2009-06-17 20:35:45 +0200 (Wed, 17 Jun 2009)
New Revision: 1804
Added:
trunk/lib/py/
trunk/lib/py/README
trunk/lib/py/euclid.py
Modified:
trunk/lib/SConscript
Log:
1. Add external euclid.py module (suggested by Anton, thanks!) to our installation
Modified: trunk/lib/SConscript
===================================================================
--- trunk/lib/SConscript 2009-06-17 15:47:48 UTC (rev 1803)
+++ trunk/lib/SConscript 2009-06-17 18:35:45 UTC (rev 1804)
@@ -4,8 +4,13 @@
if 'EMBED_PYTHON' in env['CPPDEFINES']:
env.Install('$PREFIX/lib/yade$SUFFIX/py/yade',[
env.SharedLibrary('WeightedAverage2d',['smoothing/WeightedAverage2d.cpp'],SHLIBPREFIX='',
- LIBS=env['LIBS']+['yade-base'])
+ LIBS=env['LIBS']+['yade-base']),
])
+ # do not install this under yade but to the top-level module path (external modules)
+ # say e.g. 'import euclid' (not 'import yade.euclid')
+ env.Install('$PREFIX/lib/yade$SUFFIX/py',[
+ env.File('euclid.py','py'),
+ ])
if 'qt3' not in env['exclude']:
Added: trunk/lib/py/README
===================================================================
--- trunk/lib/py/README 2009-06-17 15:47:48 UTC (rev 1803)
+++ trunk/lib/py/README 2009-06-17 18:35:45 UTC (rev 1804)
@@ -0,0 +1,4 @@
+euclid.py:
+ homepage: http://partiallydisassembled.net/euclid.html
+ latest SVN version: http://pyeuclid.googlecode.com/svn/trunk/euclid.py
+ documentation: http://partiallydisassembled.net/euclid/
Added: trunk/lib/py/euclid.py
===================================================================
--- trunk/lib/py/euclid.py 2009-06-17 15:47:48 UTC (rev 1803)
+++ trunk/lib/py/euclid.py 2009-06-17 18:35:45 UTC (rev 1804)
@@ -0,0 +1,2228 @@
+#!/usr/bin/env python
+#
+# euclid graphics maths module
+#
+# Copyright (c) 2006 Alex Holkner
+# Alex.Holkner@xxxxxxxxxxxxxxx
+#
+# This library is free software; you can redistribute it and/or modify it
+# under the terms of the GNU Lesser General Public License as published by the
+# Free Software Foundation; either version 2.1 of the License, or (at your
+# option) any later version.
+#
+# This library is distributed in the hope that it will be useful, but WITHOUT
+# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
+# for more details.
+#
+# You should have received a copy of the GNU Lesser General Public License
+# along with this library; if not, write to the Free Software Foundation,
+# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+
+'''euclid graphics maths module
+
+Documentation and tests are included in the file "euclid.txt", or online
+at http://code.google.com/p/pyeuclid
+'''
+
+__docformat__ = 'restructuredtext'
+__version__ = '$Id$'
+__revision__ = '$Revision$'
+
+import math
+import operator
+import types
+
+# Some magic here. If _use_slots is True, the classes will derive from
+# object and will define a __slots__ class variable. If _use_slots is
+# False, classes will be old-style and will not define __slots__.
+#
+# _use_slots = True: Memory efficient, probably faster in future versions
+# of Python, "better".
+# _use_slots = False: Ordinary classes, much faster than slots in current
+# versions of Python (2.4 and 2.5).
+_use_slots = True
+
+# If True, allows components of Vector2 and Vector3 to be set via swizzling;
+# e.g. v.xyz = (1, 2, 3). This is much, much slower than the more verbose
+# v.x = 1; v.y = 2; v.z = 3, and slows down ordinary element setting as
+# well. Recommended setting is False.
+_enable_swizzle_set = False
+
+# Requires class to derive from object.
+if _enable_swizzle_set:
+ _use_slots = True
+
+# Implement _use_slots magic.
+class _EuclidMetaclass(type):
+ def __new__(cls, name, bases, dct):
+ if '__slots__' in dct:
+ dct['__getstate__'] = cls._create_getstate(dct['__slots__'])
+ dct['__setstate__'] = cls._create_setstate(dct['__slots__'])
+ if _use_slots:
+ return type.__new__(cls, name, bases + (object,), dct)
+ else:
+ if '__slots__' in dct:
+ del dct['__slots__']
+ return types.ClassType.__new__(types.ClassType, name, bases, dct)
+
+ @classmethod
+ def _create_getstate(cls, slots):
+ def __getstate__(self):
+ d = {}
+ for slot in slots:
+ d[slot] = getattr(self, slot)
+ return d
+ return __getstate__
+
+ @classmethod
+ def _create_setstate(cls, slots):
+ def __setstate__(self, state):
+ for name, value in state.items():
+ setattr(self, name, value)
+ return __setstate__
+
+__metaclass__ = _EuclidMetaclass
+
+class Vector2:
+ __slots__ = ['x', 'y']
+
+ def __init__(self, x=0, y=0):
+ self.x = x
+ self.y = y
+
+ def __copy__(self):
+ return self.__class__(self.x, self.y)
+
+ copy = __copy__
+
+ def __repr__(self):
+ return 'Vector2(%.2f, %.2f)' % (self.x, self.y)
+
+ def __eq__(self, other):
+ if isinstance(other, Vector2):
+ return self.x == other.x and \
+ self.y == other.y
+ else:
+ assert hasattr(other, '__len__') and len(other) == 2
+ return self.x == other[0] and \
+ self.y == other[1]
+
+ def __neq__(self, other):
+ return not self.__eq__(other)
+
+ def __nonzero__(self):
+ return self.x != 0 or self.y != 0
+
+ def __len__(self):
+ return 2
+
+ def __getitem__(self, key):
+ return (self.x, self.y)[key]
+
+ def __setitem__(self, key, value):
+ l = [self.x, self.y]
+ l[key] = value
+ self.x, self.y = l
+
+ def __iter__(self):
+ return iter((self.x, self.y))
+
+ def __getattr__(self, name):
+ try:
+ return tuple([(self.x, self.y)['xy'.index(c)] \
+ for c in name])
+ except ValueError:
+ raise AttributeError, name
+
+ if _enable_swizzle_set:
+ # This has detrimental performance on ordinary setattr as well
+ # if enabled
+ def __setattr__(self, name, value):
+ if len(name) == 1:
+ object.__setattr__(self, name, value)
+ else:
+ try:
+ l = [self.x, self.y]
+ for c, v in map(None, name, value):
+ l['xy'.index(c)] = v
+ self.x, self.y = l
+ except ValueError:
+ raise AttributeError, name
+
+ def __add__(self, other):
+ if isinstance(other, Vector2):
+ # Vector + Vector -> Vector
+ # Vector + Point -> Point
+ # Point + Point -> Vector
+ if self.__class__ is other.__class__:
+ _class = Vector2
+ else:
+ _class = Point2
+ return _class(self.x + other.x,
+ self.y + other.y)
+ else:
+ assert hasattr(other, '__len__') and len(other) == 2
+ return Vector2(self.x + other[0],
+ self.y + other[1])
+ __radd__ = __add__
+
+ def __iadd__(self, other):
+ if isinstance(other, Vector2):
+ self.x += other.x
+ self.y += other.y
+ else:
+ self.x += other[0]
+ self.y += other[1]
+ return self
+
+ def __sub__(self, other):
+ if isinstance(other, Vector2):
+ # Vector - Vector -> Vector
+ # Vector - Point -> Point
+ # Point - Point -> Vector
+ if self.__class__ is other.__class__:
+ _class = Vector2
+ else:
+ _class = Point2
+ return _class(self.x - other.x,
+ self.y - other.y)
+ else:
+ assert hasattr(other, '__len__') and len(other) == 2
+ return Vector2(self.x - other[0],
+ self.y - other[1])
+
+
+ def __rsub__(self, other):
+ if isinstance(other, Vector2):
+ return Vector2(other.x - self.x,
+ other.y - self.y)
+ else:
+ assert hasattr(other, '__len__') and len(other) == 2
+ return Vector2(other.x - self[0],
+ other.y - self[1])
+
+ def __mul__(self, other):
+ assert type(other) in (int, long, float)
+ return Vector2(self.x * other,
+ self.y * other)
+
+ __rmul__ = __mul__
+
+ def __imul__(self, other):
+ assert type(other) in (int, long, float)
+ self.x *= other
+ self.y *= other
+ return self
+
+ def __div__(self, other):
+ assert type(other) in (int, long, float)
+ return Vector2(operator.div(self.x, other),
+ operator.div(self.y, other))
+
+
+ def __rdiv__(self, other):
+ assert type(other) in (int, long, float)
+ return Vector2(operator.div(other, self.x),
+ operator.div(other, self.y))
+
+ def __floordiv__(self, other):
+ assert type(other) in (int, long, float)
+ return Vector2(operator.floordiv(self.x, other),
+ operator.floordiv(self.y, other))
+
+
+ def __rfloordiv__(self, other):
+ assert type(other) in (int, long, float)
+ return Vector2(operator.floordiv(other, self.x),
+ operator.floordiv(other, self.y))
+
+ def __truediv__(self, other):
+ assert type(other) in (int, long, float)
+ return Vector2(operator.truediv(self.x, other),
+ operator.truediv(self.y, other))
+
+
+ def __rtruediv__(self, other):
+ assert type(other) in (int, long, float)
+ return Vector2(operator.truediv(other, self.x),
+ operator.truediv(other, self.y))
+
+ def __neg__(self):
+ return Vector2(-self.x,
+ -self.y)
+
+ __pos__ = __copy__
+
+ def __abs__(self):
+ return math.sqrt(self.x ** 2 + \
+ self.y ** 2)
+
+ magnitude = __abs__
+
+ def magnitude_squared(self):
+ return self.x ** 2 + \
+ self.y ** 2
+
+ def normalize(self):
+ d = self.magnitude()
+ if d:
+ self.x /= d
+ self.y /= d
+ return self
+
+ def normalized(self):
+ d = self.magnitude()
+ if d:
+ return Vector2(self.x / d,
+ self.y / d)
+ return self.copy()
+
+ def dot(self, other):
+ assert isinstance(other, Vector2)
+ return self.x * other.x + \
+ self.y * other.y
+
+ def cross(self):
+ return Vector2(self.y, -self.x)
+
+ def reflect(self, normal):
+ # assume normal is normalized
+ assert isinstance(normal, Vector2)
+ d = 2 * (self.x * normal.x + self.y * normal.y)
+ return Vector2(self.x - d * normal.x,
+ self.y - d * normal.y)
+
+class Vector3:
+ __slots__ = ['x', 'y', 'z']
+
+ def __init__(self, x=0, y=0, z=0):
+ self.x = x
+ self.y = y
+ self.z = z
+
+ def __copy__(self):
+ return self.__class__(self.x, self.y, self.z)
+
+ copy = __copy__
+
+ def __repr__(self):
+ return 'Vector3(%.2f, %.2f, %.2f)' % (self.x,
+ self.y,
+ self.z)
+
+ def __eq__(self, other):
+ if isinstance(other, Vector3):
+ return self.x == other.x and \
+ self.y == other.y and \
+ self.z == other.z
+ else:
+ assert hasattr(other, '__len__') and len(other) == 3
+ return self.x == other[0] and \
+ self.y == other[1] and \
+ self.z == other[2]
+
+ def __neq__(self, other):
+ return not self.__eq__(other)
+
+ def __nonzero__(self):
+ return self.x != 0 or self.y != 0 or self.z != 0
+
+ def __len__(self):
+ return 3
+
+ def __getitem__(self, key):
+ return (self.x, self.y, self.z)[key]
+
+ def __setitem__(self, key, value):
+ l = [self.x, self.y, self.z]
+ l[key] = value
+ self.x, self.y, self.z = l
+
+ def __iter__(self):
+ return iter((self.x, self.y, self.z))
+
+ def __getattr__(self, name):
+ try:
+ return tuple([(self.x, self.y, self.z)['xyz'.index(c)] \
+ for c in name])
+ except ValueError:
+ raise AttributeError, name
+
+ if _enable_swizzle_set:
+ # This has detrimental performance on ordinary setattr as well
+ # if enabled
+ def __setattr__(self, name, value):
+ if len(name) == 1:
+ object.__setattr__(self, name, value)
+ else:
+ try:
+ l = [self.x, self.y, self.z]
+ for c, v in map(None, name, value):
+ l['xyz'.index(c)] = v
+ self.x, self.y, self.z = l
+ except ValueError:
+ raise AttributeError, name
+
+
+ def __add__(self, other):
+ if isinstance(other, Vector3):
+ # Vector + Vector -> Vector
+ # Vector + Point -> Point
+ # Point + Point -> Vector
+ if self.__class__ is other.__class__:
+ _class = Vector3
+ else:
+ _class = Point3
+ return _class(self.x + other.x,
+ self.y + other.y,
+ self.z + other.z)
+ else:
+ assert hasattr(other, '__len__') and len(other) == 3
+ return Vector3(self.x + other[0],
+ self.y + other[1],
+ self.z + other[2])
+ __radd__ = __add__
+
+ def __iadd__(self, other):
+ if isinstance(other, Vector3):
+ self.x += other.x
+ self.y += other.y
+ self.z += other.z
+ else:
+ self.x += other[0]
+ self.y += other[1]
+ self.z += other[2]
+ return self
+
+ def __sub__(self, other):
+ if isinstance(other, Vector3):
+ # Vector - Vector -> Vector
+ # Vector - Point -> Point
+ # Point - Point -> Vector
+ if self.__class__ is other.__class__:
+ _class = Vector3
+ else:
+ _class = Point3
+ return Vector3(self.x - other.x,
+ self.y - other.y,
+ self.z - other.z)
+ else:
+ assert hasattr(other, '__len__') and len(other) == 3
+ return Vector3(self.x - other[0],
+ self.y - other[1],
+ self.z - other[2])
+
+
+ def __rsub__(self, other):
+ if isinstance(other, Vector3):
+ return Vector3(other.x - self.x,
+ other.y - self.y,
+ other.z - self.z)
+ else:
+ assert hasattr(other, '__len__') and len(other) == 3
+ return Vector3(other.x - self[0],
+ other.y - self[1],
+ other.z - self[2])
+
+ def __mul__(self, other):
+ if isinstance(other, Vector3):
+ # TODO component-wise mul/div in-place and on Vector2; docs.
+ if self.__class__ is Point3 or other.__class__ is Point3:
+ _class = Point3
+ else:
+ _class = Vector3
+ return _class(self.x * other.x,
+ self.y * other.y,
+ self.z * other.z)
+ else:
+ assert type(other) in (int, long, float)
+ return Vector3(self.x * other,
+ self.y * other,
+ self.z * other)
+
+ __rmul__ = __mul__
+
+ def __imul__(self, other):
+ assert type(other) in (int, long, float)
+ self.x *= other
+ self.y *= other
+ self.z *= other
+ return self
+
+ def __div__(self, other):
+ assert type(other) in (int, long, float)
+ return Vector3(operator.div(self.x, other),
+ operator.div(self.y, other),
+ operator.div(self.z, other))
+
+
+ def __rdiv__(self, other):
+ assert type(other) in (int, long, float)
+ return Vector3(operator.div(other, self.x),
+ operator.div(other, self.y),
+ operator.div(other, self.z))
+
+ def __floordiv__(self, other):
+ assert type(other) in (int, long, float)
+ return Vector3(operator.floordiv(self.x, other),
+ operator.floordiv(self.y, other),
+ operator.floordiv(self.z, other))
+
+
+ def __rfloordiv__(self, other):
+ assert type(other) in (int, long, float)
+ return Vector3(operator.floordiv(other, self.x),
+ operator.floordiv(other, self.y),
+ operator.floordiv(other, self.z))
+
+ def __truediv__(self, other):
+ assert type(other) in (int, long, float)
+ return Vector3(operator.truediv(self.x, other),
+ operator.truediv(self.y, other),
+ operator.truediv(self.z, other))
+
+
+ def __rtruediv__(self, other):
+ assert type(other) in (int, long, float)
+ return Vector3(operator.truediv(other, self.x),
+ operator.truediv(other, self.y),
+ operator.truediv(other, self.z))
+
+ def __neg__(self):
+ return Vector3(-self.x,
+ -self.y,
+ -self.z)
+
+ __pos__ = __copy__
+
+ def __abs__(self):
+ return math.sqrt(self.x ** 2 + \
+ self.y ** 2 + \
+ self.z ** 2)
+
+ magnitude = __abs__
+
+ def magnitude_squared(self):
+ return self.x ** 2 + \
+ self.y ** 2 + \
+ self.z ** 2
+
+ def normalize(self):
+ d = self.magnitude()
+ if d:
+ self.x /= d
+ self.y /= d
+ self.z /= d
+ return self
+
+ def normalized(self):
+ d = self.magnitude()
+ if d:
+ return Vector3(self.x / d,
+ self.y / d,
+ self.z / d)
+ return self.copy()
+
+ def dot(self, other):
+ assert isinstance(other, Vector3)
+ return self.x * other.x + \
+ self.y * other.y + \
+ self.z * other.z
+
+ def cross(self, other):
+ assert isinstance(other, Vector3)
+ return Vector3(self.y * other.z - self.z * other.y,
+ -self.x * other.z + self.z * other.x,
+ self.x * other.y - self.y * other.x)
+
+ def reflect(self, normal):
+ # assume normal is normalized
+ assert isinstance(normal, Vector3)
+ d = 2 * (self.x * normal.x + self.y * normal.y + self.z * normal.z)
+ return Vector3(self.x - d * normal.x,
+ self.y - d * normal.y,
+ self.z - d * normal.z)
+
+# a b c
+# e f g
+# i j k
+
+class Matrix3:
+ __slots__ = list('abcefgijk')
+
+ def __init__(self):
+ self.identity()
+
+ def __copy__(self):
+ M = Matrix3()
+ M.a = self.a
+ M.b = self.b
+ M.c = self.c
+ M.e = self.e
+ M.f = self.f
+ M.g = self.g
+ M.i = self.i
+ M.j = self.j
+ M.k = self.k
+ return M
+
+ copy = __copy__
+ def __repr__(self):
+ return ('Matrix3([% 8.2f % 8.2f % 8.2f\n' \
+ ' % 8.2f % 8.2f % 8.2f\n' \
+ ' % 8.2f % 8.2f % 8.2f])') \
+ % (self.a, self.b, self.c,
+ self.e, self.f, self.g,
+ self.i, self.j, self.k)
+
+ def __getitem__(self, key):
+ return [self.a, self.e, self.i,
+ self.b, self.f, self.j,
+ self.c, self.g, self.k][key]
+
+ def __setitem__(self, key, value):
+ L = self[:]
+ L[key] = value
+ (self.a, self.e, self.i,
+ self.b, self.f, self.j,
+ self.c, self.g, self.k) = L
+
+ def __mul__(self, other):
+ if isinstance(other, Matrix3):
+ # Caching repeatedly accessed attributes in local variables
+ # apparently increases performance by 20%. Attrib: Will McGugan.
+ Aa = self.a
+ Ab = self.b
+ Ac = self.c
+ Ae = self.e
+ Af = self.f
+ Ag = self.g
+ Ai = self.i
+ Aj = self.j
+ Ak = self.k
+ Ba = other.a
+ Bb = other.b
+ Bc = other.c
+ Be = other.e
+ Bf = other.f
+ Bg = other.g
+ Bi = other.i
+ Bj = other.j
+ Bk = other.k
+ C = Matrix3()
+ C.a = Aa * Ba + Ab * Be + Ac * Bi
+ C.b = Aa * Bb + Ab * Bf + Ac * Bj
+ C.c = Aa * Bc + Ab * Bg + Ac * Bk
+ C.e = Ae * Ba + Af * Be + Ag * Bi
+ C.f = Ae * Bb + Af * Bf + Ag * Bj
+ C.g = Ae * Bc + Af * Bg + Ag * Bk
+ C.i = Ai * Ba + Aj * Be + Ak * Bi
+ C.j = Ai * Bb + Aj * Bf + Ak * Bj
+ C.k = Ai * Bc + Aj * Bg + Ak * Bk
+ return C
+ elif isinstance(other, Point2):
+ A = self
+ B = other
+ P = Point2(0, 0)
+ P.x = A.a * B.x + A.b * B.y + A.c
+ P.y = A.e * B.x + A.f * B.y + A.g
+ return P
+ elif isinstance(other, Vector2):
+ A = self
+ B = other
+ V = Vector2(0, 0)
+ V.x = A.a * B.x + A.b * B.y
+ V.y = A.e * B.x + A.f * B.y
+ return V
+ else:
+ other = other.copy()
+ other._apply_transform(self)
+ return other
+
+ def __imul__(self, other):
+ assert isinstance(other, Matrix3)
+ # Cache attributes in local vars (see Matrix3.__mul__).
+ Aa = self.a
+ Ab = self.b
+ Ac = self.c
+ Ae = self.e
+ Af = self.f
+ Ag = self.g
+ Ai = self.i
+ Aj = self.j
+ Ak = self.k
+ Ba = other.a
+ Bb = other.b
+ Bc = other.c
+ Be = other.e
+ Bf = other.f
+ Bg = other.g
+ Bi = other.i
+ Bj = other.j
+ Bk = other.k
+ self.a = Aa * Ba + Ab * Be + Ac * Bi
+ self.b = Aa * Bb + Ab * Bf + Ac * Bj
+ self.c = Aa * Bc + Ab * Bg + Ac * Bk
+ self.e = Ae * Ba + Af * Be + Ag * Bi
+ self.f = Ae * Bb + Af * Bf + Ag * Bj
+ self.g = Ae * Bc + Af * Bg + Ag * Bk
+ self.i = Ai * Ba + Aj * Be + Ak * Bi
+ self.j = Ai * Bb + Aj * Bf + Ak * Bj
+ self.k = Ai * Bc + Aj * Bg + Ak * Bk
+ return self
+
+ def identity(self):
+ self.a = self.f = self.k = 1.
+ self.b = self.c = self.e = self.g = self.i = self.j = 0
+ return self
+
+ def scale(self, x, y):
+ self *= Matrix3.new_scale(x, y)
+ return self
+
+ def translate(self, x, y):
+ self *= Matrix3.new_translate(x, y)
+ return self
+
+ def rotate(self, angle):
+ self *= Matrix3.new_rotate(angle)
+ return self
+
+ # Static constructors
+ def new_identity(cls):
+ self = cls()
+ return self
+ new_identity = classmethod(new_identity)
+
+ def new_scale(cls, x, y):
+ self = cls()
+ self.a = x
+ self.f = y
+ return self
+ new_scale = classmethod(new_scale)
+
+ def new_translate(cls, x, y):
+ self = cls()
+ self.c = x
+ self.g = y
+ return self
+ new_translate = classmethod(new_translate)
+
+ def new_rotate(cls, angle):
+ self = cls()
+ s = math.sin(angle)
+ c = math.cos(angle)
+ self.a = self.f = c
+ self.b = -s
+ self.e = s
+ return self
+ new_rotate = classmethod(new_rotate)
+
+# a b c d
+# e f g h
+# i j k l
+# m n o p
+
+class Matrix4:
+ __slots__ = list('abcdefghijklmnop')
+
+ def __init__(self):
+ self.identity()
+
+ def __copy__(self):
+ M = Matrix4()
+ M.a = self.a
+ M.b = self.b
+ M.c = self.c
+ M.d = self.d
+ M.e = self.e
+ M.f = self.f
+ M.g = self.g
+ M.h = self.h
+ M.i = self.i
+ M.j = self.j
+ M.k = self.k
+ M.l = self.l
+ M.m = self.m
+ M.n = self.n
+ M.o = self.o
+ M.p = self.p
+ return M
+
+ copy = __copy__
+
+
+ def __repr__(self):
+ return ('Matrix4([% 8.2f % 8.2f % 8.2f % 8.2f\n' \
+ ' % 8.2f % 8.2f % 8.2f % 8.2f\n' \
+ ' % 8.2f % 8.2f % 8.2f % 8.2f\n' \
+ ' % 8.2f % 8.2f % 8.2f % 8.2f])') \
+ % (self.a, self.b, self.c, self.d,
+ self.e, self.f, self.g, self.h,
+ self.i, self.j, self.k, self.l,
+ self.m, self.n, self.o, self.p)
+
+ def __getitem__(self, key):
+ return [self.a, self.e, self.i, self.m,
+ self.b, self.f, self.j, self.n,
+ self.c, self.g, self.k, self.o,
+ self.d, self.h, self.l, self.p][key]
+
+ def __setitem__(self, key, value):
+ L = self[:]
+ L[key] = value
+ (self.a, self.e, self.i, self.m,
+ self.b, self.f, self.j, self.n,
+ self.c, self.g, self.k, self.o,
+ self.d, self.h, self.l, self.p) = L
+
+ def __mul__(self, other):
+ if isinstance(other, Matrix4):
+ # Cache attributes in local vars (see Matrix3.__mul__).
+ Aa = self.a
+ Ab = self.b
+ Ac = self.c
+ Ad = self.d
+ Ae = self.e
+ Af = self.f
+ Ag = self.g
+ Ah = self.h
+ Ai = self.i
+ Aj = self.j
+ Ak = self.k
+ Al = self.l
+ Am = self.m
+ An = self.n
+ Ao = self.o
+ Ap = self.p
+ Ba = other.a
+ Bb = other.b
+ Bc = other.c
+ Bd = other.d
+ Be = other.e
+ Bf = other.f
+ Bg = other.g
+ Bh = other.h
+ Bi = other.i
+ Bj = other.j
+ Bk = other.k
+ Bl = other.l
+ Bm = other.m
+ Bn = other.n
+ Bo = other.o
+ Bp = other.p
+ C = Matrix4()
+ C.a = Aa * Ba + Ab * Be + Ac * Bi + Ad * Bm
+ C.b = Aa * Bb + Ab * Bf + Ac * Bj + Ad * Bn
+ C.c = Aa * Bc + Ab * Bg + Ac * Bk + Ad * Bo
+ C.d = Aa * Bd + Ab * Bh + Ac * Bl + Ad * Bp
+ C.e = Ae * Ba + Af * Be + Ag * Bi + Ah * Bm
+ C.f = Ae * Bb + Af * Bf + Ag * Bj + Ah * Bn
+ C.g = Ae * Bc + Af * Bg + Ag * Bk + Ah * Bo
+ C.h = Ae * Bd + Af * Bh + Ag * Bl + Ah * Bp
+ C.i = Ai * Ba + Aj * Be + Ak * Bi + Al * Bm
+ C.j = Ai * Bb + Aj * Bf + Ak * Bj + Al * Bn
+ C.k = Ai * Bc + Aj * Bg + Ak * Bk + Al * Bo
+ C.l = Ai * Bd + Aj * Bh + Ak * Bl + Al * Bp
+ C.m = Am * Ba + An * Be + Ao * Bi + Ap * Bm
+ C.n = Am * Bb + An * Bf + Ao * Bj + Ap * Bn
+ C.o = Am * Bc + An * Bg + Ao * Bk + Ap * Bo
+ C.p = Am * Bd + An * Bh + Ao * Bl + Ap * Bp
+ return C
+ elif isinstance(other, Point3):
+ A = self
+ B = other
+ P = Point3(0, 0, 0)
+ P.x = A.a * B.x + A.b * B.y + A.c * B.z + A.d
+ P.y = A.e * B.x + A.f * B.y + A.g * B.z + A.h
+ P.z = A.i * B.x + A.j * B.y + A.k * B.z + A.l
+ return P
+ elif isinstance(other, Vector3):
+ A = self
+ B = other
+ V = Vector3(0, 0, 0)
+ V.x = A.a * B.x + A.b * B.y + A.c * B.z
+ V.y = A.e * B.x + A.f * B.y + A.g * B.z
+ V.z = A.i * B.x + A.j * B.y + A.k * B.z
+ return V
+ else:
+ other = other.copy()
+ other._apply_transform(self)
+ return other
+
+ def __imul__(self, other):
+ assert isinstance(other, Matrix4)
+ # Cache attributes in local vars (see Matrix3.__mul__).
+ Aa = self.a
+ Ab = self.b
+ Ac = self.c
+ Ad = self.d
+ Ae = self.e
+ Af = self.f
+ Ag = self.g
+ Ah = self.h
+ Ai = self.i
+ Aj = self.j
+ Ak = self.k
+ Al = self.l
+ Am = self.m
+ An = self.n
+ Ao = self.o
+ Ap = self.p
+ Ba = other.a
+ Bb = other.b
+ Bc = other.c
+ Bd = other.d
+ Be = other.e
+ Bf = other.f
+ Bg = other.g
+ Bh = other.h
+ Bi = other.i
+ Bj = other.j
+ Bk = other.k
+ Bl = other.l
+ Bm = other.m
+ Bn = other.n
+ Bo = other.o
+ Bp = other.p
+ self.a = Aa * Ba + Ab * Be + Ac * Bi + Ad * Bm
+ self.b = Aa * Bb + Ab * Bf + Ac * Bj + Ad * Bn
+ self.c = Aa * Bc + Ab * Bg + Ac * Bk + Ad * Bo
+ self.d = Aa * Bd + Ab * Bh + Ac * Bl + Ad * Bp
+ self.e = Ae * Ba + Af * Be + Ag * Bi + Ah * Bm
+ self.f = Ae * Bb + Af * Bf + Ag * Bj + Ah * Bn
+ self.g = Ae * Bc + Af * Bg + Ag * Bk + Ah * Bo
+ self.h = Ae * Bd + Af * Bh + Ag * Bl + Ah * Bp
+ self.i = Ai * Ba + Aj * Be + Ak * Bi + Al * Bm
+ self.j = Ai * Bb + Aj * Bf + Ak * Bj + Al * Bn
+ self.k = Ai * Bc + Aj * Bg + Ak * Bk + Al * Bo
+ self.l = Ai * Bd + Aj * Bh + Ak * Bl + Al * Bp
+ self.m = Am * Ba + An * Be + Ao * Bi + Ap * Bm
+ self.n = Am * Bb + An * Bf + Ao * Bj + Ap * Bn
+ self.o = Am * Bc + An * Bg + Ao * Bk + Ap * Bo
+ self.p = Am * Bd + An * Bh + Ao * Bl + Ap * Bp
+ return self
+
+ def transform(self, other):
+ A = self
+ B = other
+ P = Point3(0, 0, 0)
+ P.x = A.a * B.x + A.b * B.y + A.c * B.z + A.d
+ P.y = A.e * B.x + A.f * B.y + A.g * B.z + A.h
+ P.z = A.i * B.x + A.j * B.y + A.k * B.z + A.l
+ w = A.m * B.x + A.n * B.y + A.o * B.z + A.p
+ if w != 0:
+ P.x /= w
+ P.y /= w
+ P.z /= w
+ return P
+
+ def identity(self):
+ self.a = self.f = self.k = self.p = 1.
+ self.b = self.c = self.d = self.e = self.g = self.h = \
+ self.i = self.j = self.l = self.m = self.n = self.o = 0
+ return self
+
+ def scale(self, x, y, z):
+ self *= Matrix4.new_scale(x, y, z)
+ return self
+
+ def translate(self, x, y, z):
+ self *= Matrix4.new_translate(x, y, z)
+ return self
+
+ def rotatex(self, angle):
+ self *= Matrix4.new_rotatex(angle)
+ return self
+
+ def rotatey(self, angle):
+ self *= Matrix4.new_rotatey(angle)
+ return self
+
+ def rotatez(self, angle):
+ self *= Matrix4.new_rotatez(angle)
+ return self
+
+ def rotate_axis(self, angle, axis):
+ self *= Matrix4.new_rotate_axis(angle, axis)
+ return self
+
+ def rotate_euler(self, heading, attitude, bank):
+ self *= Matrix4.new_rotate_euler(heading, attitude, bank)
+ return self
+
+ def rotate_triple_axis(self, x, y, z):
+ self *= Matrix4.new_rotate_triple_axis(x, y, z)
+ return self
+
+ def transpose(self):
+ (self.a, self.e, self.i, self.m,
+ self.b, self.f, self.j, self.n,
+ self.c, self.g, self.k, self.o,
+ self.d, self.h, self.l, self.p) = \
+ (self.a, self.b, self.c, self.d,
+ self.e, self.f, self.g, self.h,
+ self.i, self.j, self.k, self.l,
+ self.m, self.n, self.o, self.p)
+
+ def transposed(self):
+ M = self.copy()
+ M.transpose()
+ return M
+
+ # Static constructors
+ def new(cls, *values):
+ M = cls()
+ M[:] = values
+ return M
+ new = classmethod(new)
+
+ def new_identity(cls):
+ self = cls()
+ return self
+ new_identity = classmethod(new_identity)
+
+ def new_scale(cls, x, y, z):
+ self = cls()
+ self.a = x
+ self.f = y
+ self.k = z
+ return self
+ new_scale = classmethod(new_scale)
+
+ def new_translate(cls, x, y, z):
+ self = cls()
+ self.d = x
+ self.h = y
+ self.l = z
+ return self
+ new_translate = classmethod(new_translate)
+
+ def new_rotatex(cls, angle):
+ self = cls()
+ s = math.sin(angle)
+ c = math.cos(angle)
+ self.f = self.k = c
+ self.g = -s
+ self.j = s
+ return self
+ new_rotatex = classmethod(new_rotatex)
+
+ def new_rotatey(cls, angle):
+ self = cls()
+ s = math.sin(angle)
+ c = math.cos(angle)
+ self.a = self.k = c
+ self.c = s
+ self.i = -s
+ return self
+ new_rotatey = classmethod(new_rotatey)
+
+ def new_rotatez(cls, angle):
+ self = cls()
+ s = math.sin(angle)
+ c = math.cos(angle)
+ self.a = self.f = c
+ self.b = -s
+ self.e = s
+ return self
+ new_rotatez = classmethod(new_rotatez)
+
+ def new_rotate_axis(cls, angle, axis):
+ assert(isinstance(axis, Vector3))
+ vector = axis.normalized()
+ x = vector.x
+ y = vector.y
+ z = vector.z
+
+ self = cls()
+ s = math.sin(angle)
+ c = math.cos(angle)
+ c1 = 1. - c
+
+ # from the glRotate man page
+ self.a = x * x * c1 + c
+ self.b = x * y * c1 - z * s
+ self.c = x * z * c1 + y * s
+ self.e = y * x * c1 + z * s
+ self.f = y * y * c1 + c
+ self.g = y * z * c1 - x * s
+ self.i = x * z * c1 - y * s
+ self.j = y * z * c1 + x * s
+ self.k = z * z * c1 + c
+ return self
+ new_rotate_axis = classmethod(new_rotate_axis)
+
+ def new_rotate_euler(cls, heading, attitude, bank):
+ # from http://www.euclideanspace.com/
+ ch = math.cos(heading)
+ sh = math.sin(heading)
+ ca = math.cos(attitude)
+ sa = math.sin(attitude)
+ cb = math.cos(bank)
+ sb = math.sin(bank)
+
+ self = cls()
+ self.a = ch * ca
+ self.b = sh * sb - ch * sa * cb
+ self.c = ch * sa * sb + sh * cb
+ self.e = sa
+ self.f = ca * cb
+ self.g = -ca * sb
+ self.i = -sh * ca
+ self.j = sh * sa * cb + ch * sb
+ self.k = -sh * sa * sb + ch * cb
+ return self
+ new_rotate_euler = classmethod(new_rotate_euler)
+
+ def new_rotate_triple_axis(cls, x, y, z):
+ m = cls()
+
+ m.a, m.b, m.c = x.x, y.x, z.x
+ m.e, m.f, m.g = x.y, y.y, z.y
+ m.i, m.j, m.k = x.z, y.z, z.z
+
+ return m
+ new_rotate_triple_axis = classmethod(new_rotate_triple_axis)
+
+ def new_look_at(cls, eye, at, up):
+ z = (eye - at).normalized()
+ x = up.cross(z).normalized()
+ y = z.cross(x)
+
+ m = cls.new_rotate_triple_axis(x, y, z)
+ m.d, m.h, m.l = eye.x, eye.y, eye.z
+ return m
+ new_look_at = classmethod(new_look_at)
+
+ def new_perspective(cls, fov_y, aspect, near, far):
+ # from the gluPerspective man page
+ f = 1 / math.tan(fov_y / 2)
+ self = cls()
+ assert near != 0.0 and near != far
+ self.a = f / aspect
+ self.f = f
+ self.k = (far + near) / (near - far)
+ self.l = 2 * far * near / (near - far)
+ self.o = -1
+ self.p = 0
+ return self
+ new_perspective = classmethod(new_perspective)
+
+ def determinant(self):
+ return ((self.a * self.f - self.e * self.b)
+ * (self.k * self.p - self.o * self.l)
+ - (self.a * self.j - self.i * self.b)
+ * (self.g * self.p - self.o * self.h)
+ + (self.a * self.n - self.m * self.b)
+ * (self.g * self.l - self.k * self.h)
+ + (self.e * self.j - self.i * self.f)
+ * (self.c * self.p - self.o * self.d)
+ - (self.e * self.n - self.m * self.f)
+ * (self.c * self.l - self.k * self.d)
+ + (self.i * self.n - self.m * self.j)
+ * (self.c * self.h - self.g * self.d))
+
+ def inverse(self):
+ tmp = Matrix4()
+ d = self.determinant();
+
+ if abs(d) < 0.001:
+ # No inverse, return identity
+ return tmp
+ else:
+ d = 1.0 / d;
+
+ tmp.a = d * (self.f * (self.k * self.p - self.o * self.l) + self.j * (self.o * self.h - self.g * self.p) + self.n * (self.g * self.l - self.k * self.h));
+ tmp.e = d * (self.g * (self.i * self.p - self.m * self.l) + self.k * (self.m * self.h - self.e * self.p) + self.o * (self.e * self.l - self.i * self.h));
+ tmp.i = d * (self.h * (self.i * self.n - self.m * self.j) + self.l * (self.m * self.f - self.e * self.n) + self.p * (self.e * self.j - self.i * self.f));
+ tmp.m = d * (self.e * (self.n * self.k - self.j * self.o) + self.i * (self.f * self.o - self.n * self.g) + self.m * (self.j * self.g - self.f * self.k));
+
+ tmp.b = d * (self.j * (self.c * self.p - self.o * self.d) + self.n * (self.k * self.d - self.c * self.l) + self.b * (self.o * self.l - self.k * self.p));
+ tmp.f = d * (self.k * (self.a * self.p - self.m * self.d) + self.o * (self.i * self.d - self.a * self.l) + self.c * (self.m * self.l - self.i * self.p));
+ tmp.j = d * (self.l * (self.a * self.n - self.m * self.b) + self.p * (self.i * self.b - self.a * self.j) + self.d * (self.m * self.j - self.i * self.n));
+ tmp.n = d * (self.i * (self.n * self.c - self.b * self.o) + self.m * (self.b * self.k - self.j * self.c) + self.a * (self.j * self.o - self.n * self.k));
+
+ tmp.c = d * (self.n * (self.c * self.h - self.g * self.d) + self.b * (self.g * self.p - self.o * self.h) + self.f * (self.o * self.d - self.c * self.p));
+ tmp.g = d * (self.o * (self.a * self.h - self.e * self.d) + self.c * (self.e * self.p - self.m * self.h) + self.g * (self.m * self.d - self.a * self.p));
+ tmp.k = d * (self.p * (self.a * self.f - self.e * self.b) + self.d * (self.e * self.n - self.m * self.f) + self.h * (self.m * self.b - self.a * self.n));
+ tmp.o = d * (self.m * (self.f * self.c - self.b * self.g) + self.a * (self.n * self.g - self.f * self.o) + self.e * (self.b * self.o - self.n * self.c));
+
+ tmp.d = d * (self.b * (self.k * self.h - self.g * self.l) + self.f * (self.c * self.l - self.k * self.d) + self.j * (self.g * self.d - self.c * self.h));
+ tmp.h = d * (self.c * (self.i * self.h - self.e * self.l) + self.g * (self.a * self.l - self.i * self.d) + self.k * (self.e * self.d - self.a * self.h));
+ tmp.l = d * (self.d * (self.i * self.f - self.e * self.j) + self.h * (self.a * self.j - self.i * self.b) + self.l * (self.e * self.b - self.a * self.f));
+ tmp.p = d * (self.a * (self.f * self.k - self.j * self.g) + self.e * (self.j * self.c - self.b * self.k) + self.i * (self.b * self.g - self.f * self.c));
+
+ return tmp;
+
+
+class Quaternion:
+ # All methods and naming conventions based off
+ # http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions
+
+ # w is the real part, (x, y, z) are the imaginary parts
+ __slots__ = ['w', 'x', 'y', 'z']
+
+ def __init__(self, w=1, x=0, y=0, z=0):
+ self.w = w
+ self.x = x
+ self.y = y
+ self.z = z
+
+ def __copy__(self):
+ Q = Quaternion()
+ Q.w = self.w
+ Q.x = self.x
+ Q.y = self.y
+ Q.z = self.z
+ return Q
+
+ copy = __copy__
+
+ def __repr__(self):
+ return 'Quaternion(real=%.2f, imag=<%.2f, %.2f, %.2f>)' % \
+ (self.w, self.x, self.y, self.z)
+
+ def __mul__(self, other):
+ if isinstance(other, Quaternion):
+ Ax = self.x
+ Ay = self.y
+ Az = self.z
+ Aw = self.w
+ Bx = other.x
+ By = other.y
+ Bz = other.z
+ Bw = other.w
+ Q = Quaternion()
+ Q.x = Ax * Bw + Ay * Bz - Az * By + Aw * Bx
+ Q.y = -Ax * Bz + Ay * Bw + Az * Bx + Aw * By
+ Q.z = Ax * By - Ay * Bx + Az * Bw + Aw * Bz
+ Q.w = -Ax * Bx - Ay * By - Az * Bz + Aw * Bw
+ return Q
+ elif isinstance(other, Vector3):
+ w = self.w
+ x = self.x
+ y = self.y
+ z = self.z
+ Vx = other.x
+ Vy = other.y
+ Vz = other.z
+ return other.__class__(\
+ w * w * Vx + 2 * y * w * Vz - 2 * z * w * Vy + \
+ x * x * Vx + 2 * y * x * Vy + 2 * z * x * Vz - \
+ z * z * Vx - y * y * Vx,
+ 2 * x * y * Vx + y * y * Vy + 2 * z * y * Vz + \
+ 2 * w * z * Vx - z * z * Vy + w * w * Vy - \
+ 2 * x * w * Vz - x * x * Vy,
+ 2 * x * z * Vx + 2 * y * z * Vy + \
+ z * z * Vz - 2 * w * y * Vx - y * y * Vz + \
+ 2 * w * x * Vy - x * x * Vz + w * w * Vz)
+ else:
+ other = other.copy()
+ other._apply_transform(self)
+ return other
+
+ def __imul__(self, other):
+ assert isinstance(other, Quaternion)
+ Ax = self.x
+ Ay = self.y
+ Az = self.z
+ Aw = self.w
+ Bx = other.x
+ By = other.y
+ Bz = other.z
+ Bw = other.w
+ self.x = Ax * Bw + Ay * Bz - Az * By + Aw * Bx
+ self.y = -Ax * Bz + Ay * Bw + Az * Bx + Aw * By
+ self.z = Ax * By - Ay * Bx + Az * Bw + Aw * Bz
+ self.w = -Ax * Bx - Ay * By - Az * Bz + Aw * Bw
+ return self
+
+ def __abs__(self):
+ return math.sqrt(self.w ** 2 + \
+ self.x ** 2 + \
+ self.y ** 2 + \
+ self.z ** 2)
+
+ magnitude = __abs__
+
+ def magnitude_squared(self):
+ return self.w ** 2 + \
+ self.x ** 2 + \
+ self.y ** 2 + \
+ self.z ** 2
+
+ def identity(self):
+ self.w = 1
+ self.x = 0
+ self.y = 0
+ self.z = 0
+ return self
+
+ def rotate_axis(self, angle, axis):
+ self *= Quaternion.new_rotate_axis(angle, axis)
+ return self
+
+ def rotate_euler(self, heading, attitude, bank):
+ self *= Quaternion.new_rotate_euler(heading, attitude, bank)
+ return self
+
+ def rotate_matrix(self, m):
+ self *= Quaternion.new_rotate_matrix(m)
+ return self
+
+ def conjugated(self):
+ Q = Quaternion()
+ Q.w = self.w
+ Q.x = -self.x
+ Q.y = -self.y
+ Q.z = -self.z
+ return Q
+
+ def normalize(self):
+ d = self.magnitude()
+ if d != 0:
+ self.w /= d
+ self.x /= d
+ self.y /= d
+ self.z /= d
+ return self
+
+ def normalized(self):
+ d = self.magnitude()
+ if d != 0:
+ Q = Quaternion()
+ Q.w = self.w / d
+ Q.x = self.x / d
+ Q.y = self.y / d
+ Q.z = self.z / d
+ return Q
+ else:
+ return self.copy()
+
+ def get_angle_axis(self):
+ if self.w > 1:
+ self = self.normalized()
+ angle = 2 * math.acos(self.w)
+ s = math.sqrt(1 - self.w ** 2)
+ if s < 0.001:
+ return angle, Vector3(1, 0, 0)
+ else:
+ return angle, Vector3(self.x / s, self.y / s, self.z / s)
+
+ def get_euler(self):
+ t = self.x * self.y + self.z * self.w
+ if t > 0.4999:
+ heading = 2 * math.atan2(self.x, self.w)
+ attitude = math.pi / 2
+ bank = 0
+ elif t < -0.4999:
+ heading = -2 * math.atan2(self.x, self.w)
+ attitude = -math.pi / 2
+ bank = 0
+ else:
+ sqx = self.x ** 2
+ sqy = self.y ** 2
+ sqz = self.z ** 2
+ heading = math.atan2(2 * self.y * self.w - 2 * self.x * self.z,
+ 1 - 2 * sqy - 2 * sqz)
+ attitude = math.asin(2 * t)
+ bank = math.atan2(2 * self.x * self.w - 2 * self.y * self.z,
+ 1 - 2 * sqx - 2 * sqz)
+ return heading, attitude, bank
+
+ def get_matrix(self):
+ xx = self.x ** 2
+ xy = self.x * self.y
+ xz = self.x * self.z
+ xw = self.x * self.w
+ yy = self.y ** 2
+ yz = self.y * self.z
+ yw = self.y * self.w
+ zz = self.z ** 2
+ zw = self.z * self.w
+ M = Matrix4()
+ M.a = 1 - 2 * (yy + zz)
+ M.b = 2 * (xy - zw)
+ M.c = 2 * (xz + yw)
+ M.e = 2 * (xy + zw)
+ M.f = 1 - 2 * (xx + zz)
+ M.g = 2 * (yz - xw)
+ M.i = 2 * (xz - yw)
+ M.j = 2 * (yz + xw)
+ M.k = 1 - 2 * (xx + yy)
+ return M
+
+ # Static constructors
+ def new_identity(cls):
+ return cls()
+ new_identity = classmethod(new_identity)
+
+ def new_rotate_axis(cls, angle, axis):
+ assert(isinstance(axis, Vector3))
+ axis = axis.normalized()
+ s = math.sin(angle / 2)
+ Q = cls()
+ Q.w = math.cos(angle / 2)
+ Q.x = axis.x * s
+ Q.y = axis.y * s
+ Q.z = axis.z * s
+ return Q
+ new_rotate_axis = classmethod(new_rotate_axis)
+
+ def new_rotate_euler(cls, heading, attitude, bank):
+ Q = cls()
+ c1 = math.cos(heading / 2)
+ s1 = math.sin(heading / 2)
+ c2 = math.cos(attitude / 2)
+ s2 = math.sin(attitude / 2)
+ c3 = math.cos(bank / 2)
+ s3 = math.sin(bank / 2)
+
+ Q.w = c1 * c2 * c3 - s1 * s2 * s3
+ Q.x = s1 * s2 * c3 + c1 * c2 * s3
+ Q.y = s1 * c2 * c3 + c1 * s2 * s3
+ Q.z = c1 * s2 * c3 - s1 * c2 * s3
+ return Q
+ new_rotate_euler = classmethod(new_rotate_euler)
+
+ def new_rotate_matrix(cls, m):
+ if m[0*4 + 0] + m[1*4 + 1] + m[2*4 + 2] > 0.00000001:
+ t = m[0*4 + 0] + m[1*4 + 1] + m[2*4 + 2] + 1.0
+ s = 0.5/math.sqrt(t)
+
+ return cls(
+ s*t,
+ (m[1*4 + 2] - m[2*4 + 1])*s,
+ (m[2*4 + 0] - m[0*4 + 2])*s,
+ (m[0*4 + 1] - m[1*4 + 0])*s
+ )
+
+ elif m[0*4 + 0] > m[1*4 + 1] and m[0*4 + 0] > m[2*4 + 2]:
+ t = m[0*4 + 0] - m[1*4 + 1] - m[2*4 + 2] + 1.0
+ s = 0.5/math.sqrt(t)
+
+ return cls(
+ (m[1*4 + 2] - m[2*4 + 1])*s,
+ s*t,
+ (m[0*4 + 1] + m[1*4 + 0])*s,
+ (m[2*4 + 0] + m[0*4 + 2])*s
+ )
+
+ elif m[1*4 + 1] > m[2*4 + 2]:
+ t = -m[0*4 + 0] + m[1*4 + 1] - m[2*4 + 2] + 1.0
+ s = 0.5/math.sqrt(t)
+
+ return cls(
+ (m[2*4 + 0] - m[0*4 + 2])*s,
+ (m[0*4 + 1] + m[1*4 + 0])*s,
+ s*t,
+ (m[1*4 + 2] + m[2*4 + 1])*s
+ )
+
+ else:
+ t = -m[0*4 + 0] - m[1*4 + 1] + m[2*4 + 2] + 1.0
+ s = 0.5/math.sqrt(t)
+
+ return cls(
+ (m[0*4 + 1] - m[1*4 + 0])*s,
+ (m[2*4 + 0] + m[0*4 + 2])*s,
+ (m[1*4 + 2] + m[2*4 + 1])*s,
+ s*t
+ )
+ new_rotate_matrix = classmethod(new_rotate_matrix)
+
+ def new_interpolate(cls, q1, q2, t):
+ assert isinstance(q1, Quaternion) and isinstance(q2, Quaternion)
+ Q = cls()
+
+ costheta = q1.w * q2.w + q1.x * q2.x + q1.y * q2.y + q1.z * q2.z
+ if costheta < 0.:
+ costheta = -costheta
+ q1 = q1.conjugated()
+ elif costheta > 1:
+ costheta = 1
+
+ theta = math.acos(costheta)
+ if abs(theta) < 0.01:
+ Q.w = q2.w
+ Q.x = q2.x
+ Q.y = q2.y
+ Q.z = q2.z
+ return Q
+
+ sintheta = math.sqrt(1.0 - costheta * costheta)
+ if abs(sintheta) < 0.01:
+ Q.w = (q1.w + q2.w) * 0.5
+ Q.x = (q1.x + q2.x) * 0.5
+ Q.y = (q1.y + q2.y) * 0.5
+ Q.z = (q1.z + q2.z) * 0.5
+ return Q
+
+ ratio1 = math.sin((1 - t) * theta) / sintheta
+ ratio2 = math.sin(t * theta) / sintheta
+
+ Q.w = q1.w * ratio1 + q2.w * ratio2
+ Q.x = q1.x * ratio1 + q2.x * ratio2
+ Q.y = q1.y * ratio1 + q2.y * ratio2
+ Q.z = q1.z * ratio1 + q2.z * ratio2
+ return Q
+ new_interpolate = classmethod(new_interpolate)
+
+# Geometry
+# Much maths thanks to Paul Bourke, http://astronomy.swin.edu.au/~pbourke
+# ---------------------------------------------------------------------------
+
+class Geometry:
+ def _connect_unimplemented(self, other):
+ raise AttributeError, 'Cannot connect %s to %s' % \
+ (self.__class__, other.__class__)
+
+ def _intersect_unimplemented(self, other):
+ raise AttributeError, 'Cannot intersect %s and %s' % \
+ (self.__class__, other.__class__)
+
+ _intersect_point2 = _intersect_unimplemented
+ _intersect_line2 = _intersect_unimplemented
+ _intersect_circle = _intersect_unimplemented
+ _connect_point2 = _connect_unimplemented
+ _connect_line2 = _connect_unimplemented
+ _connect_circle = _connect_unimplemented
+
+ _intersect_point3 = _intersect_unimplemented
+ _intersect_line3 = _intersect_unimplemented
+ _intersect_sphere = _intersect_unimplemented
+ _intersect_plane = _intersect_unimplemented
+ _connect_point3 = _connect_unimplemented
+ _connect_line3 = _connect_unimplemented
+ _connect_sphere = _connect_unimplemented
+ _connect_plane = _connect_unimplemented
+
+ def intersect(self, other):
+ raise NotImplementedError
+
+ def connect(self, other):
+ raise NotImplementedError
+
+ def distance(self, other):
+ c = self.connect(other)
+ if c:
+ return c.length
+ return 0.0
+
+def _intersect_point2_circle(P, C):
+ return abs(P - C.c) <= C.r
+
+def _intersect_line2_line2(A, B):
+ d = B.v.y * A.v.x - B.v.x * A.v.y
+ if d == 0:
+ return None
+
+ dy = A.p.y - B.p.y
+ dx = A.p.x - B.p.x
+ ua = (B.v.x * dy - B.v.y * dx) / d
+ if not A._u_in(ua):
+ return None
+ ub = (A.v.x * dy - A.v.y * dx) / d
+ if not B._u_in(ub):
+ return None
+
+ return Point2(A.p.x + ua * A.v.x,
+ A.p.y + ua * A.v.y)
+
+def _intersect_line2_circle(L, C):
+ a = L.v.magnitude_squared()
+ b = 2 * (L.v.x * (L.p.x - C.c.x) + \
+ L.v.y * (L.p.y - C.c.y))
+ c = C.c.magnitude_squared() + \
+ L.p.magnitude_squared() - \
+ 2 * C.c.dot(L.p) - \
+ C.r ** 2
+ det = b ** 2 - 4 * a * c
+ if det < 0:
+ return None
+ sq = math.sqrt(det)
+ u1 = (-b + sq) / (2 * a)
+ u2 = (-b - sq) / (2 * a)
+ if not L._u_in(u1):
+ u1 = max(min(u1, 1.0), 0.0)
+ if not L._u_in(u2):
+ u2 = max(min(u2, 1.0), 0.0)
+
+ # Tangent
+ if u1 == u2:
+ return Point2(L.p.x + u1 * L.v.x,
+ L.p.y + u1 * L.v.y)
+
+ return LineSegment2(Point2(L.p.x + u1 * L.v.x,
+ L.p.y + u1 * L.v.y),
+ Point2(L.p.x + u2 * L.v.x,
+ L.p.y + u2 * L.v.y))
+
+def _connect_point2_line2(P, L):
+ d = L.v.magnitude_squared()
+ assert d != 0
+ u = ((P.x - L.p.x) * L.v.x + \
+ (P.y - L.p.y) * L.v.y) / d
+ if not L._u_in(u):
+ u = max(min(u, 1.0), 0.0)
+ return LineSegment2(P,
+ Point2(L.p.x + u * L.v.x,
+ L.p.y + u * L.v.y))
+
+def _connect_point2_circle(P, C):
+ v = P - C.c
+ v.normalize()
+ v *= C.r
+ return LineSegment2(P, Point2(C.c.x + v.x, C.c.y + v.y))
+
+def _connect_line2_line2(A, B):
+ d = B.v.y * A.v.x - B.v.x * A.v.y
+ if d == 0:
+ # Parallel, connect an endpoint with a line
+ if isinstance(B, Ray2) or isinstance(B, LineSegment2):
+ p1, p2 = _connect_point2_line2(B.p, A)
+ return p2, p1
+ # No endpoint (or endpoint is on A), possibly choose arbitrary point
+ # on line.
+ return _connect_point2_line2(A.p, B)
+
+ dy = A.p.y - B.p.y
+ dx = A.p.x - B.p.x
+ ua = (B.v.x * dy - B.v.y * dx) / d
+ if not A._u_in(ua):
+ ua = max(min(ua, 1.0), 0.0)
+ ub = (A.v.x * dy - A.v.y * dx) / d
+ if not B._u_in(ub):
+ ub = max(min(ub, 1.0), 0.0)
+
+ return LineSegment2(Point2(A.p.x + ua * A.v.x, A.p.y + ua * A.v.y),
+ Point2(B.p.x + ub * B.v.x, B.p.y + ub * B.v.y))
+
+def _connect_circle_line2(C, L):
+ d = L.v.magnitude_squared()
+ assert d != 0
+ u = ((C.c.x - L.p.x) * L.v.x + (C.c.y - L.p.y) * L.v.y) / d
+ if not L._u_in(u):
+ u = max(min(u, 1.0), 0.0)
+ point = Point2(L.p.x + u * L.v.x, L.p.y + u * L.v.y)
+ v = (point - C.c)
+ v.normalize()
+ v *= C.r
+ return LineSegment2(Point2(C.c.x + v.x, C.c.y + v.y), point)
+
+def _connect_circle_circle(A, B):
+ v = B.c - A.c
+ v.normalize()
+ return LineSegment2(Point2(A.c.x + v.x * A.r, A.c.y + v.y * A.r),
+ Point2(B.c.x - v.x * B.r, B.c.y - v.y * B.r))
+
+
+class Point2(Vector2, Geometry):
+ def __repr__(self):
+ return 'Point2(%.2f, %.2f)' % (self.x, self.y)
+
+ def intersect(self, other):
+ return other._intersect_point2(self)
+
+ def _intersect_circle(self, other):
+ return _intersect_point2_circle(self, other)
+
+ def connect(self, other):
+ return other._connect_point2(self)
+
+ def _connect_point2(self, other):
+ return LineSegment2(other, self)
+
+ def _connect_line2(self, other):
+ c = _connect_point2_line2(self, other)
+ if c:
+ return c._swap()
+
+ def _connect_circle(self, other):
+ c = _connect_point2_circle(self, other)
+ if c:
+ return c._swap()
+
+class Line2(Geometry):
+ __slots__ = ['p', 'v']
+
+ def __init__(self, *args):
+ if len(args) == 3:
+ assert isinstance(args[0], Point2) and \
+ isinstance(args[1], Vector2) and \
+ type(args[2]) == float
+ self.p = args[0].copy()
+ self.v = args[1] * args[2] / abs(args[1])
+ elif len(args) == 2:
+ if isinstance(args[0], Point2) and isinstance(args[1], Point2):
+ self.p = args[0].copy()
+ self.v = args[1] - args[0]
+ elif isinstance(args[0], Point2) and isinstance(args[1], Vector2):
+ self.p = args[0].copy()
+ self.v = args[1].copy()
+ else:
+ raise AttributeError, '%r' % (args,)
+ elif len(args) == 1:
+ if isinstance(args[0], Line2):
+ self.p = args[0].p.copy()
+ self.v = args[0].v.copy()
+ else:
+ raise AttributeError, '%r' % (args,)
+ else:
+ raise AttributeError, '%r' % (args,)
+
+ if not self.v:
+ raise AttributeError, 'Line has zero-length vector'
+
+ def __copy__(self):
+ return self.__class__(self.p, self.v)
+
+ copy = __copy__
+
+ def __repr__(self):
+ return 'Line2(<%.2f, %.2f> + u<%.2f, %.2f>)' % \
+ (self.p.x, self.p.y, self.v.x, self.v.y)
+
+ p1 = property(lambda self: self.p)
+ p2 = property(lambda self: Point2(self.p.x + self.v.x,
+ self.p.y + self.v.y))
+
+ def _apply_transform(self, t):
+ self.p = t * self.p
+ self.v = t * self.v
+
+ def _u_in(self, u):
+ return True
+
+ def intersect(self, other):
+ return other._intersect_line2(self)
+
+ def _intersect_line2(self, other):
+ return _intersect_line2_line2(self, other)
+
+ def _intersect_circle(self, other):
+ return _intersect_line2_circle(self, other)
+
+ def connect(self, other):
+ return other._connect_line2(self)
+
+ def _connect_point2(self, other):
+ return _connect_point2_line2(other, self)
+
+ def _connect_line2(self, other):
+ return _connect_line2_line2(other, self)
+
+ def _connect_circle(self, other):
+ return _connect_circle_line2(other, self)
+
+class Ray2(Line2):
+ def __repr__(self):
+ return 'Ray2(<%.2f, %.2f> + u<%.2f, %.2f>)' % \
+ (self.p.x, self.p.y, self.v.x, self.v.y)
+
+ def _u_in(self, u):
+ return u >= 0.0
+
+class LineSegment2(Line2):
+ def __repr__(self):
+ return 'LineSegment2(<%.2f, %.2f> to <%.2f, %.2f>)' % \
+ (self.p.x, self.p.y, self.p.x + self.v.x, self.p.y + self.v.y)
+
+ def _u_in(self, u):
+ return u >= 0.0 and u <= 1.0
+
+ def __abs__(self):
+ return abs(self.v)
+
+ def magnitude_squared(self):
+ return self.v.magnitude_squared()
+
+ def _swap(self):
+ # used by connect methods to switch order of points
+ self.p = self.p2
+ self.v *= -1
+ return self
+
+ length = property(lambda self: abs(self.v))
+
+class Circle(Geometry):
+ __slots__ = ['c', 'r']
+
+ def __init__(self, center, radius):
+ assert isinstance(center, Vector2) and type(radius) == float
+ self.c = center.copy()
+ self.r = radius
+
+ def __copy__(self):
+ return self.__class__(self.c, self.r)
+
+ copy = __copy__
+
+ def __repr__(self):
+ return 'Circle(<%.2f, %.2f>, radius=%.2f)' % \
+ (self.c.x, self.c.y, self.r)
+
+ def _apply_transform(self, t):
+ self.c = t * self.c
+
+ def intersect(self, other):
+ return other._intersect_circle(self)
+
+ def _intersect_point2(self, other):
+ return _intersect_point2_circle(other, self)
+
+ def _intersect_line2(self, other):
+ return _intersect_line2_circle(other, self)
+
+ def connect(self, other):
+ return other._connect_circle(self)
+
+ def _connect_point2(self, other):
+ return _connect_point2_circle(other, self)
+
+ def _connect_line2(self, other):
+ c = _connect_circle_line2(self, other)
+ if c:
+ return c._swap()
+
+ def _connect_circle(self, other):
+ return _connect_circle_circle(other, self)
+
+# 3D Geometry
+# -------------------------------------------------------------------------
+
+def _connect_point3_line3(P, L):
+ d = L.v.magnitude_squared()
+ assert d != 0
+ u = ((P.x - L.p.x) * L.v.x + \
+ (P.y - L.p.y) * L.v.y + \
+ (P.z - L.p.z) * L.v.z) / d
+ if not L._u_in(u):
+ u = max(min(u, 1.0), 0.0)
+ return LineSegment3(P, Point3(L.p.x + u * L.v.x,
+ L.p.y + u * L.v.y,
+ L.p.z + u * L.v.z))
+
+def _connect_point3_sphere(P, S):
+ v = P - S.c
+ v.normalize()
+ v *= S.r
+ return LineSegment3(P, Point3(S.c.x + v.x, S.c.y + v.y, S.c.z + v.z))
+
+def _connect_point3_plane(p, plane):
+ n = plane.n.normalized()
+ d = p.dot(plane.n) - plane.k
+ return LineSegment3(p, Point3(p.x - n.x * d, p.y - n.y * d, p.z - n.z * d))
+
+def _connect_line3_line3(A, B):
+ assert A.v and B.v
+ p13 = A.p - B.p
+ d1343 = p13.dot(B.v)
+ d4321 = B.v.dot(A.v)
+ d1321 = p13.dot(A.v)
+ d4343 = B.v.magnitude_squared()
+ denom = A.v.magnitude_squared() * d4343 - d4321 ** 2
+ if denom == 0:
+ # Parallel, connect an endpoint with a line
+ if isinstance(B, Ray3) or isinstance(B, LineSegment3):
+ return _connect_point3_line3(B.p, A)._swap()
+ # No endpoint (or endpoint is on A), possibly choose arbitrary
+ # point on line.
+ return _connect_point3_line3(A.p, B)
+
+ ua = (d1343 * d4321 - d1321 * d4343) / denom
+ if not A._u_in(ua):
+ ua = max(min(ua, 1.0), 0.0)
+ ub = (d1343 + d4321 * ua) / d4343
+ if not B._u_in(ub):
+ ub = max(min(ub, 1.0), 0.0)
+ return LineSegment3(Point3(A.p.x + ua * A.v.x,
+ A.p.y + ua * A.v.y,
+ A.p.z + ua * A.v.z),
+ Point3(B.p.x + ub * B.v.x,
+ B.p.y + ub * B.v.y,
+ B.p.z + ub * B.v.z))
+
+def _connect_line3_plane(L, P):
+ d = P.n.dot(L.v)
+ if not d:
+ # Parallel, choose an endpoint
+ return _connect_point3_plane(L.p, P)
+ u = (P.k - P.n.dot(L.p)) / d
+ if not L._u_in(u):
+ # intersects out of range, choose nearest endpoint
+ u = max(min(u, 1.0), 0.0)
+ return _connect_point3_plane(Point3(L.p.x + u * L.v.x,
+ L.p.y + u * L.v.y,
+ L.p.z + u * L.v.z), P)
+ # Intersection
+ return None
+
+def _connect_sphere_line3(S, L):
+ d = L.v.magnitude_squared()
+ assert d != 0
+ u = ((S.c.x - L.p.x) * L.v.x + \
+ (S.c.y - L.p.y) * L.v.y + \
+ (S.c.z - L.p.z) * L.v.z) / d
+ if not L._u_in(u):
+ u = max(min(u, 1.0), 0.0)
+ point = Point3(L.p.x + u * L.v.x, L.p.y + u * L.v.y, L.p.z + u * L.v.z)
+ v = (point - S.c)
+ v.normalize()
+ v *= S.r
+ return LineSegment3(Point3(S.c.x + v.x, S.c.y + v.y, S.c.z + v.z),
+ point)
+
+def _connect_sphere_sphere(A, B):
+ v = B.c - A.c
+ v.normalize()
+ return LineSegment3(Point3(A.c.x + v.x * A.r,
+ A.c.y + v.y * A.r,
+ A.c.x + v.z * A.r),
+ Point3(B.c.x + v.x * B.r,
+ B.c.y + v.y * B.r,
+ B.c.x + v.z * B.r))
+
+def _connect_sphere_plane(S, P):
+ c = _connect_point3_plane(S.c, P)
+ if not c:
+ return None
+ p2 = c.p2
+ v = p2 - S.c
+ v.normalize()
+ v *= S.r
+ return LineSegment3(Point3(S.c.x + v.x, S.c.y + v.y, S.c.z + v.z),
+ p2)
+
+def _connect_plane_plane(A, B):
+ if A.n.cross(B.n):
+ # Planes intersect
+ return None
+ else:
+ # Planes are parallel, connect to arbitrary point
+ return _connect_point3_plane(A._get_point(), B)
+
+def _intersect_point3_sphere(P, S):
+ return abs(P - S.c) <= S.r
+
+def _intersect_line3_sphere(L, S):
+ a = L.v.magnitude_squared()
+ b = 2 * (L.v.x * (L.p.x - S.c.x) + \
+ L.v.y * (L.p.y - S.c.y) + \
+ L.v.z * (L.p.z - S.c.z))
+ c = S.c.magnitude_squared() + \
+ L.p.magnitude_squared() - \
+ 2 * S.c.dot(L.p) - \
+ S.r ** 2
+ det = b ** 2 - 4 * a * c
+ if det < 0:
+ return None
+ sq = math.sqrt(det)
+ u1 = (-b + sq) / (2 * a)
+ u2 = (-b - sq) / (2 * a)
+ if not L._u_in(u1):
+ u1 = max(min(u1, 1.0), 0.0)
+ if not L._u_in(u2):
+ u2 = max(min(u2, 1.0), 0.0)
+ return LineSegment3(Point3(L.p.x + u1 * L.v.x,
+ L.p.y + u1 * L.v.y,
+ L.p.z + u1 * L.v.z),
+ Point3(L.p.x + u2 * L.v.x,
+ L.p.y + u2 * L.v.y,
+ L.p.z + u2 * L.v.z))
+
+def _intersect_line3_plane(L, P):
+ d = P.n.dot(L.v)
+ if not d:
+ # Parallel
+ return None
+ u = (P.k - P.n.dot(L.p)) / d
+ if not L._u_in(u):
+ return None
+ return Point3(L.p.x + u * L.v.x,
+ L.p.y + u * L.v.y,
+ L.p.z + u * L.v.z)
+
+def _intersect_plane_plane(A, B):
+ n1_m = A.n.magnitude_squared()
+ n2_m = B.n.magnitude_squared()
+ n1d2 = A.n.dot(B.n)
+ det = n1_m * n2_m - n1d2 ** 2
+ if det == 0:
+ # Parallel
+ return None
+ c1 = (A.k * n2_m - B.k * n1d2) / det
+ c2 = (B.k * n1_m - A.k * n1d2) / det
+ return Line3(Point3(c1 * A.n.x + c2 * B.n.x,
+ c1 * A.n.y + c2 * B.n.y,
+ c1 * A.n.z + c2 * B.n.z),
+ A.n.cross(B.n))
+
+class Point3(Vector3, Geometry):
+ def __repr__(self):
+ return 'Point3(%.2f, %.2f, %.2f)' % (self.x, self.y, self.z)
+
+ def intersect(self, other):
+ return other._intersect_point3(self)
+
+ def _intersect_sphere(self, other):
+ return _intersect_point3_sphere(self, other)
+
+ def connect(self, other):
+ return other._connect_point3(self)
+
+ def _connect_point3(self, other):
+ if self != other:
+ return LineSegment3(other, self)
+ return None
+
+ def _connect_line3(self, other):
+ c = _connect_point3_line3(self, other)
+ if c:
+ return c._swap()
+
+ def _connect_sphere(self, other):
+ c = _connect_point3_sphere(self, other)
+ if c:
+ return c._swap()
+
+ def _connect_plane(self, other):
+ c = _connect_point3_plane(self, other)
+ if c:
+ return c._swap()
+
+class Line3:
+ __slots__ = ['p', 'v']
+
+ def __init__(self, *args):
+ if len(args) == 3:
+ assert isinstance(args[0], Point3) and \
+ isinstance(args[1], Vector3) and \
+ type(args[2]) == float
+ self.p = args[0].copy()
+ self.v = args[1] * args[2] / abs(args[1])
+ elif len(args) == 2:
+ if isinstance(args[0], Point3) and isinstance(args[1], Point3):
+ self.p = args[0].copy()
+ self.v = args[1] - args[0]
+ elif isinstance(args[0], Point3) and isinstance(args[1], Vector3):
+ self.p = args[0].copy()
+ self.v = args[1].copy()
+ else:
+ raise AttributeError, '%r' % (args,)
+ elif len(args) == 1:
+ if isinstance(args[0], Line3):
+ self.p = args[0].p.copy()
+ self.v = args[0].v.copy()
+ else:
+ raise AttributeError, '%r' % (args,)
+ else:
+ raise AttributeError, '%r' % (args,)
+
+ # XXX This is annoying.
+ #if not self.v:
+ # raise AttributeError, 'Line has zero-length vector'
+
+ def __copy__(self):
+ return self.__class__(self.p, self.v)
+
+ copy = __copy__
+
+ def __repr__(self):
+ return 'Line3(<%.2f, %.2f, %.2f> + u<%.2f, %.2f, %.2f>)' % \
+ (self.p.x, self.p.y, self.p.z, self.v.x, self.v.y, self.v.z)
+
+ p1 = property(lambda self: self.p)
+ p2 = property(lambda self: Point3(self.p.x + self.v.x,
+ self.p.y + self.v.y,
+ self.p.z + self.v.z))
+
+ def _apply_transform(self, t):
+ self.p = t * self.p
+ self.v = t * self.v
+
+ def _u_in(self, u):
+ return True
+
+ def intersect(self, other):
+ return other._intersect_line3(self)
+
+ def _intersect_sphere(self, other):
+ return _intersect_line3_sphere(self, other)
+
+ def _intersect_plane(self, other):
+ return _intersect_line3_plane(self, other)
+
+ def connect(self, other):
+ return other._connect_line3(self)
+
+ def _connect_point3(self, other):
+ return _connect_point3_line3(other, self)
+
+ def _connect_line3(self, other):
+ return _connect_line3_line3(other, self)
+
+ def _connect_sphere(self, other):
+ return _connect_sphere_line3(other, self)
+
+ def _connect_plane(self, other):
+ c = _connect_line3_plane(self, other)
+ if c:
+ return c
+
+class Ray3(Line3):
+ def __repr__(self):
+ return 'Ray3(<%.2f, %.2f, %.2f> + u<%.2f, %.2f, %.2f>)' % \
+ (self.p.x, self.p.y, self.p.z, self.v.x, self.v.y, self.v.z)
+
+ def _u_in(self, u):
+ return u >= 0.0
+
+class LineSegment3(Line3):
+ def __repr__(self):
+ return 'LineSegment3(<%.2f, %.2f, %.2f> to <%.2f, %.2f, %.2f>)' % \
+ (self.p.x, self.p.y, self.p.z,
+ self.p.x + self.v.x, self.p.y + self.v.y, self.p.z + self.v.z)
+
+ def _u_in(self, u):
+ return u >= 0.0 and u <= 1.0
+
+ def __abs__(self):
+ return abs(self.v)
+
+ def magnitude_squared(self):
+ return self.v.magnitude_squared()
+
+ def _swap(self):
+ # used by connect methods to switch order of points
+ self.p = self.p2
+ self.v *= -1
+ return self
+
+ length = property(lambda self: abs(self.v))
+
+class Sphere:
+ __slots__ = ['c', 'r']
+
+ def __init__(self, center, radius):
+ assert isinstance(center, Vector3) and type(radius) == float
+ self.c = center.copy()
+ self.r = radius
+
+ def __copy__(self):
+ return self.__class__(self.c, self.r)
+
+ copy = __copy__
+
+ def __repr__(self):
+ return 'Sphere(<%.2f, %.2f, %.2f>, radius=%.2f)' % \
+ (self.c.x, self.c.y, self.c.z, self.r)
+
+ def _apply_transform(self, t):
+ self.c = t * self.c
+
+ def intersect(self, other):
+ return other._intersect_sphere(self)
+
+ def _intersect_point3(self, other):
+ return _intersect_point3_sphere(other, self)
+
+ def _intersect_line3(self, other):
+ return _intersect_line3_sphere(other, self)
+
+ def connect(self, other):
+ return other._connect_sphere(self)
+
+ def _connect_point3(self, other):
+ return _connect_point3_sphere(other, self)
+
+ def _connect_line3(self, other):
+ c = _connect_sphere_line3(self, other)
+ if c:
+ return c._swap()
+
+ def _connect_sphere(self, other):
+ return _connect_sphere_sphere(other, self)
+
+ def _connect_plane(self, other):
+ c = _connect_sphere_plane(self, other)
+ if c:
+ return c
+
+class Plane:
+ # n.p = k, where n is normal, p is point on plane, k is constant scalar
+ __slots__ = ['n', 'k']
+
+ def __init__(self, *args):
+ if len(args) == 3:
+ assert isinstance(args[0], Point3) and \
+ isinstance(args[1], Point3) and \
+ isinstance(args[2], Point3)
+ self.n = (args[1] - args[0]).cross(args[2] - args[0])
+ self.n.normalize()
+ self.k = self.n.dot(args[0])
+ elif len(args) == 2:
+ if isinstance(args[0], Point3) and isinstance(args[1], Vector3):
+ self.n = args[1].normalized()
+ self.k = self.n.dot(args[0])
+ elif isinstance(args[0], Vector3) and type(args[1]) == float:
+ self.n = args[0].normalized()
+ self.k = args[1]
+ else:
+ raise AttributeError, '%r' % (args,)
+
+ else:
+ raise AttributeError, '%r' % (args,)
+
+ if not self.n:
+ raise AttributeError, 'Points on plane are colinear'
+
+ def __copy__(self):
+ return self.__class__(self.n, self.k)
+
+ copy = __copy__
+
+ def __repr__(self):
+ return 'Plane(<%.2f, %.2f, %.2f>.p = %.2f)' % \
+ (self.n.x, self.n.y, self.n.z, self.k)
+
+ def _get_point(self):
+ # Return an arbitrary point on the plane
+ if self.n.z:
+ return Point3(0., 0., self.k / self.n.z)
+ elif self.n.y:
+ return Point3(0., self.k / self.n.y, 0.)
+ else:
+ return Point3(self.k / self.n.x, 0., 0.)
+
+ def _apply_transform(self, t):
+ p = t * self._get_point()
+ self.n = t * self.n
+ self.k = self.n.dot(p)
+
+ def intersect(self, other):
+ return other._intersect_plane(self)
+
+ def _intersect_line3(self, other):
+ return _intersect_line3_plane(other, self)
+
+ def _intersect_plane(self, other):
+ return _intersect_plane_plane(self, other)
+
+ def connect(self, other):
+ return other._connect_plane(self)
+
+ def _connect_point3(self, other):
+ return _connect_point3_plane(other, self)
+
+ def _connect_line3(self, other):
+ return _connect_line3_plane(other, self)
+
+ def _connect_sphere(self, other):
+ return _connect_sphere_plane(other, self)
+
+ def _connect_plane(self, other):
+ return _connect_plane_plane(other, self)
+