← Back to team overview

yade-dev team mailing list archive

[svn] r1871 - in trunk: lib/py pkg/dem py

 

Author: gladky_anton
Date: 2009-07-16 14:44:34 +0200 (Thu, 16 Jul 2009)
New Revision: 1871

Removed:
   trunk/py/euclid.py
Modified:
   trunk/lib/py/README
   trunk/pkg/dem/RockPM.cpp
Log:
1. Deleted euclid.py



Modified: trunk/lib/py/README
===================================================================
--- trunk/lib/py/README	2009-07-16 10:16:39 UTC (rev 1870)
+++ trunk/lib/py/README	2009-07-16 12:44:34 UTC (rev 1871)
@@ -1,8 +1,3 @@
-euclid.py:
-	homepage: http://partiallydisassembled.net/euclid.html
-	latest SVN version: http://pyeuclid.googlecode.com/svn/trunk/euclid.py
-	documentation: http://partiallydisassembled.net/euclid/
-
 pygts-0.3.1:
 	homepage: http://pygts.sourceforge.net/
 	documentation: http://pygts.svn.sourceforge.net/viewvc/pygts/doc/gts.html

Modified: trunk/pkg/dem/RockPM.cpp
===================================================================
--- trunk/pkg/dem/RockPM.cpp	2009-07-16 10:16:39 UTC (rev 1870)
+++ trunk/pkg/dem/RockPM.cpp	2009-07-16 12:44:34 UTC (rev 1871)
@@ -92,7 +92,7 @@
 	Dem3DofGeom* contGeom=YADE_CAST<Dem3DofGeom*>(interaction->interactionGeometry.get());
 	
 	assert(contGeom);
-	
+	//LOG_WARN(Omega::instance().getCurrentIteration());
 	const shared_ptr<RpmMat>& rpm1=YADE_PTR_CAST<RpmMat>(pp1);
 	const shared_ptr<RpmMat>& rpm2=YADE_PTR_CAST<RpmMat>(pp2);
 	

Deleted: trunk/py/euclid.py
===================================================================
--- trunk/py/euclid.py	2009-07-16 10:16:39 UTC (rev 1870)
+++ trunk/py/euclid.py	2009-07-16 12:44:34 UTC (rev 1871)
@@ -1,2228 +0,0 @@
-#!/usr/bin/env python
-#
-# euclid graphics maths module
-#
-# Copyright (c) 2006 Alex Holkner
-# Alex.Holkner@xxxxxxxxxxxxxxx
-#
-# This library is free software; you can redistribute it and/or modify it
-# under the terms of the GNU Lesser General Public License as published by the
-# Free Software Foundation; either version 2.1 of the License, or (at your
-# option) any later version.
-# 
-# This library is distributed in the hope that it will be useful, but WITHOUT
-# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License
-# for more details.
-# 
-# You should have received a copy of the GNU Lesser General Public License
-# along with this library; if not, write to the Free Software Foundation,
-# Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA
-
-'''euclid graphics maths module
-
-Documentation and tests are included in the file "euclid.txt", or online
-at http://code.google.com/p/pyeuclid
-'''
-
-__docformat__ = 'restructuredtext'
-__version__ = '$Id$'
-__revision__ = '$Revision$'
-
-import math
-import operator
-import types
-
-# Some magic here.  If _use_slots is True, the classes will derive from
-# object and will define a __slots__ class variable.  If _use_slots is
-# False, classes will be old-style and will not define __slots__.
-#
-# _use_slots = True:   Memory efficient, probably faster in future versions
-#                      of Python, "better".
-# _use_slots = False:  Ordinary classes, much faster than slots in current
-#                      versions of Python (2.4 and 2.5).
-_use_slots = True
-
-# If True, allows components of Vector2 and Vector3 to be set via swizzling;
-# e.g.  v.xyz = (1, 2, 3).  This is much, much slower than the more verbose
-# v.x = 1; v.y = 2; v.z = 3,  and slows down ordinary element setting as
-# well.  Recommended setting is False.
-_enable_swizzle_set = False
-
-# Requires class to derive from object.
-if _enable_swizzle_set:
-    _use_slots = True
-
-# Implement _use_slots magic.
-class _EuclidMetaclass(type):
-    def __new__(cls, name, bases, dct):
-        if '__slots__' in dct:
-            dct['__getstate__'] = cls._create_getstate(dct['__slots__'])
-            dct['__setstate__'] = cls._create_setstate(dct['__slots__'])
-        if _use_slots:
-            return type.__new__(cls, name, bases + (object,), dct)
-        else:
-            if '__slots__' in dct:
-                del dct['__slots__']
-            return types.ClassType.__new__(types.ClassType, name, bases, dct)
-
-    @classmethod
-    def _create_getstate(cls, slots):
-        def __getstate__(self):
-            d = {}
-            for slot in slots:
-                d[slot] = getattr(self, slot)
-            return d
-        return __getstate__
-
-    @classmethod
-    def _create_setstate(cls, slots):
-        def __setstate__(self, state):
-            for name, value in state.items():
-                setattr(self, name, value)
-        return __setstate__
-
-__metaclass__ = _EuclidMetaclass
-
-class Vector2:
-    __slots__ = ['x', 'y']
-
-    def __init__(self, x=0, y=0):
-        self.x = x
-        self.y = y
-
-    def __copy__(self):
-        return self.__class__(self.x, self.y)
-
-    copy = __copy__
-
-    def __repr__(self):
-        return 'Vector2(%.2f, %.2f)' % (self.x, self.y)
-
-    def __eq__(self, other):
-        if isinstance(other, Vector2):
-            return self.x == other.x and \
-                   self.y == other.y
-        else:
-            assert hasattr(other, '__len__') and len(other) == 2
-            return self.x == other[0] and \
-                   self.y == other[1]
-
-    def __neq__(self, other):
-        return not self.__eq__(other)
-
-    def __nonzero__(self):
-        return self.x != 0 or self.y != 0
-
-    def __len__(self):
-        return 2
-
-    def __getitem__(self, key):
-        return (self.x, self.y)[key]
-
-    def __setitem__(self, key, value):
-        l = [self.x, self.y]
-        l[key] = value
-        self.x, self.y = l
-
-    def __iter__(self):
-        return iter((self.x, self.y))
-
-    def __getattr__(self, name):
-        try:
-            return tuple([(self.x, self.y)['xy'.index(c)] \
-                          for c in name])
-        except ValueError:
-            raise AttributeError, name
-
-    if _enable_swizzle_set:
-        # This has detrimental performance on ordinary setattr as well
-        # if enabled
-        def __setattr__(self, name, value):
-            if len(name) == 1:
-                object.__setattr__(self, name, value)
-            else:
-                try:
-                    l = [self.x, self.y]
-                    for c, v in map(None, name, value):
-                        l['xy'.index(c)] = v
-                    self.x, self.y = l
-                except ValueError:
-                    raise AttributeError, name
-
-    def __add__(self, other):
-        if isinstance(other, Vector2):
-            # Vector + Vector -> Vector
-            # Vector + Point -> Point
-            # Point + Point -> Vector
-            if self.__class__ is other.__class__:
-                _class = Vector2
-            else:
-                _class = Point2
-            return _class(self.x + other.x,
-                          self.y + other.y)
-        else:
-            assert hasattr(other, '__len__') and len(other) == 2
-            return Vector2(self.x + other[0],
-                           self.y + other[1])
-    __radd__ = __add__
-
-    def __iadd__(self, other):
-        if isinstance(other, Vector2):
-            self.x += other.x
-            self.y += other.y
-        else:
-            self.x += other[0]
-            self.y += other[1]
-        return self
-
-    def __sub__(self, other):
-        if isinstance(other, Vector2):
-            # Vector - Vector -> Vector
-            # Vector - Point -> Point
-            # Point - Point -> Vector
-            if self.__class__ is other.__class__:
-                _class = Vector2
-            else:
-                _class = Point2
-            return _class(self.x - other.x,
-                          self.y - other.y)
-        else:
-            assert hasattr(other, '__len__') and len(other) == 2
-            return Vector2(self.x - other[0],
-                           self.y - other[1])
-
-   
-    def __rsub__(self, other):
-        if isinstance(other, Vector2):
-            return Vector2(other.x - self.x,
-                           other.y - self.y)
-        else:
-            assert hasattr(other, '__len__') and len(other) == 2
-            return Vector2(other.x - self[0],
-                           other.y - self[1])
-
-    def __mul__(self, other):
-        assert type(other) in (int, long, float)
-        return Vector2(self.x * other,
-                       self.y * other)
-
-    __rmul__ = __mul__
-
-    def __imul__(self, other):
-        assert type(other) in (int, long, float)
-        self.x *= other
-        self.y *= other
-        return self
-
-    def __div__(self, other):
-        assert type(other) in (int, long, float)
-        return Vector2(operator.div(self.x, other),
-                       operator.div(self.y, other))
-
-
-    def __rdiv__(self, other):
-        assert type(other) in (int, long, float)
-        return Vector2(operator.div(other, self.x),
-                       operator.div(other, self.y))
-
-    def __floordiv__(self, other):
-        assert type(other) in (int, long, float)
-        return Vector2(operator.floordiv(self.x, other),
-                       operator.floordiv(self.y, other))
-
-
-    def __rfloordiv__(self, other):
-        assert type(other) in (int, long, float)
-        return Vector2(operator.floordiv(other, self.x),
-                       operator.floordiv(other, self.y))
-
-    def __truediv__(self, other):
-        assert type(other) in (int, long, float)
-        return Vector2(operator.truediv(self.x, other),
-                       operator.truediv(self.y, other))
-
-
-    def __rtruediv__(self, other):
-        assert type(other) in (int, long, float)
-        return Vector2(operator.truediv(other, self.x),
-                       operator.truediv(other, self.y))
-    
-    def __neg__(self):
-        return Vector2(-self.x,
-                        -self.y)
-
-    __pos__ = __copy__
-    
-    def __abs__(self):
-        return math.sqrt(self.x ** 2 + \
-                         self.y ** 2)
-
-    magnitude = __abs__
-
-    def magnitude_squared(self):
-        return self.x ** 2 + \
-               self.y ** 2
-
-    def normalize(self):
-        d = self.magnitude()
-        if d:
-            self.x /= d
-            self.y /= d
-        return self
-
-    def normalized(self):
-        d = self.magnitude()
-        if d:
-            return Vector2(self.x / d, 
-                           self.y / d)
-        return self.copy()
-
-    def dot(self, other):
-        assert isinstance(other, Vector2)
-        return self.x * other.x + \
-               self.y * other.y
-
-    def cross(self):
-        return Vector2(self.y, -self.x)
-
-    def reflect(self, normal):
-        # assume normal is normalized
-        assert isinstance(normal, Vector2)
-        d = 2 * (self.x * normal.x + self.y * normal.y)
-        return Vector2(self.x - d * normal.x,
-                       self.y - d * normal.y)
-
-class Vector3:
-    __slots__ = ['x', 'y', 'z']
-
-    def __init__(self, x=0, y=0, z=0):
-        self.x = x
-        self.y = y
-        self.z = z
-
-    def __copy__(self):
-        return self.__class__(self.x, self.y, self.z)
-
-    copy = __copy__
-
-    def __repr__(self):
-        return 'Vector3(%.2f, %.2f, %.2f)' % (self.x,
-                                              self.y,
-                                              self.z)
-
-    def __eq__(self, other):
-        if isinstance(other, Vector3):
-            return self.x == other.x and \
-                   self.y == other.y and \
-                   self.z == other.z
-        else:
-            assert hasattr(other, '__len__') and len(other) == 3
-            return self.x == other[0] and \
-                   self.y == other[1] and \
-                   self.z == other[2]
-
-    def __neq__(self, other):
-        return not self.__eq__(other)
-
-    def __nonzero__(self):
-        return self.x != 0 or self.y != 0 or self.z != 0
-
-    def __len__(self):
-        return 3
-
-    def __getitem__(self, key):
-        return (self.x, self.y, self.z)[key]
-
-    def __setitem__(self, key, value):
-        l = [self.x, self.y, self.z]
-        l[key] = value
-        self.x, self.y, self.z = l
-
-    def __iter__(self):
-        return iter((self.x, self.y, self.z))
-
-    def __getattr__(self, name):
-        try:
-            return tuple([(self.x, self.y, self.z)['xyz'.index(c)] \
-                          for c in name])
-        except ValueError:
-            raise AttributeError, name
-
-    if _enable_swizzle_set:
-        # This has detrimental performance on ordinary setattr as well
-        # if enabled
-        def __setattr__(self, name, value):
-            if len(name) == 1:
-                object.__setattr__(self, name, value)
-            else:
-                try:
-                    l = [self.x, self.y, self.z]
-                    for c, v in map(None, name, value):
-                        l['xyz'.index(c)] = v
-                    self.x, self.y, self.z = l
-                except ValueError:
-                    raise AttributeError, name
-
-
-    def __add__(self, other):
-        if isinstance(other, Vector3):
-            # Vector + Vector -> Vector
-            # Vector + Point -> Point
-            # Point + Point -> Vector
-            if self.__class__ is other.__class__:
-                _class = Vector3
-            else:
-                _class = Point3
-            return _class(self.x + other.x,
-                          self.y + other.y,
-                          self.z + other.z)
-        else:
-            assert hasattr(other, '__len__') and len(other) == 3
-            return Vector3(self.x + other[0],
-                           self.y + other[1],
-                           self.z + other[2])
-    __radd__ = __add__
-
-    def __iadd__(self, other):
-        if isinstance(other, Vector3):
-            self.x += other.x
-            self.y += other.y
-            self.z += other.z
-        else:
-            self.x += other[0]
-            self.y += other[1]
-            self.z += other[2]
-        return self
-
-    def __sub__(self, other):
-        if isinstance(other, Vector3):
-            # Vector - Vector -> Vector
-            # Vector - Point -> Point
-            # Point - Point -> Vector
-            if self.__class__ is other.__class__:
-                _class = Vector3
-            else:
-                _class = Point3
-            return Vector3(self.x - other.x,
-                           self.y - other.y,
-                           self.z - other.z)
-        else:
-            assert hasattr(other, '__len__') and len(other) == 3
-            return Vector3(self.x - other[0],
-                           self.y - other[1],
-                           self.z - other[2])
-
-   
-    def __rsub__(self, other):
-        if isinstance(other, Vector3):
-            return Vector3(other.x - self.x,
-                           other.y - self.y,
-                           other.z - self.z)
-        else:
-            assert hasattr(other, '__len__') and len(other) == 3
-            return Vector3(other.x - self[0],
-                           other.y - self[1],
-                           other.z - self[2])
-
-    def __mul__(self, other):
-        if isinstance(other, Vector3):
-            # TODO component-wise mul/div in-place and on Vector2; docs.
-            if self.__class__ is Point3 or other.__class__ is Point3:
-                _class = Point3
-            else:
-                _class = Vector3
-            return _class(self.x * other.x,
-                          self.y * other.y,
-                          self.z * other.z)
-        else: 
-            assert type(other) in (int, long, float)
-            return Vector3(self.x * other,
-                           self.y * other,
-                           self.z * other)
-
-    __rmul__ = __mul__
-
-    def __imul__(self, other):
-        assert type(other) in (int, long, float)
-        self.x *= other
-        self.y *= other
-        self.z *= other
-        return self
-
-    def __div__(self, other):
-        assert type(other) in (int, long, float)
-        return Vector3(operator.div(self.x, other),
-                       operator.div(self.y, other),
-                       operator.div(self.z, other))
-
-
-    def __rdiv__(self, other):
-        assert type(other) in (int, long, float)
-        return Vector3(operator.div(other, self.x),
-                       operator.div(other, self.y),
-                       operator.div(other, self.z))
-
-    def __floordiv__(self, other):
-        assert type(other) in (int, long, float)
-        return Vector3(operator.floordiv(self.x, other),
-                       operator.floordiv(self.y, other),
-                       operator.floordiv(self.z, other))
-
-
-    def __rfloordiv__(self, other):
-        assert type(other) in (int, long, float)
-        return Vector3(operator.floordiv(other, self.x),
-                       operator.floordiv(other, self.y),
-                       operator.floordiv(other, self.z))
-
-    def __truediv__(self, other):
-        assert type(other) in (int, long, float)
-        return Vector3(operator.truediv(self.x, other),
-                       operator.truediv(self.y, other),
-                       operator.truediv(self.z, other))
-
-
-    def __rtruediv__(self, other):
-        assert type(other) in (int, long, float)
-        return Vector3(operator.truediv(other, self.x),
-                       operator.truediv(other, self.y),
-                       operator.truediv(other, self.z))
-    
-    def __neg__(self):
-        return Vector3(-self.x,
-                        -self.y,
-                        -self.z)
-
-    __pos__ = __copy__
-    
-    def __abs__(self):
-        return math.sqrt(self.x ** 2 + \
-                         self.y ** 2 + \
-                         self.z ** 2)
-
-    magnitude = __abs__
-
-    def magnitude_squared(self):
-        return self.x ** 2 + \
-               self.y ** 2 + \
-               self.z ** 2
-
-    def normalize(self):
-        d = self.magnitude()
-        if d:
-            self.x /= d
-            self.y /= d
-            self.z /= d
-        return self
-
-    def normalized(self):
-        d = self.magnitude()
-        if d:
-            return Vector3(self.x / d, 
-                           self.y / d, 
-                           self.z / d)
-        return self.copy()
-
-    def dot(self, other):
-        assert isinstance(other, Vector3)
-        return self.x * other.x + \
-               self.y * other.y + \
-               self.z * other.z
-
-    def cross(self, other):
-        assert isinstance(other, Vector3)
-        return Vector3(self.y * other.z - self.z * other.y,
-                       -self.x * other.z + self.z * other.x,
-                       self.x * other.y - self.y * other.x)
-
-    def reflect(self, normal):
-        # assume normal is normalized
-        assert isinstance(normal, Vector3)
-        d = 2 * (self.x * normal.x + self.y * normal.y + self.z * normal.z)
-        return Vector3(self.x - d * normal.x,
-                       self.y - d * normal.y,
-                       self.z - d * normal.z)
-
-# a b c 
-# e f g 
-# i j k 
-
-class Matrix3:
-    __slots__ = list('abcefgijk')
-
-    def __init__(self):
-        self.identity()
-
-    def __copy__(self):
-        M = Matrix3()
-        M.a = self.a
-        M.b = self.b
-        M.c = self.c
-        M.e = self.e 
-        M.f = self.f
-        M.g = self.g
-        M.i = self.i
-        M.j = self.j
-        M.k = self.k
-        return M
-
-    copy = __copy__
-    def __repr__(self):
-        return ('Matrix3([% 8.2f % 8.2f % 8.2f\n'  \
-                '         % 8.2f % 8.2f % 8.2f\n'  \
-                '         % 8.2f % 8.2f % 8.2f])') \
-                % (self.a, self.b, self.c,
-                   self.e, self.f, self.g,
-                   self.i, self.j, self.k)
-
-    def __getitem__(self, key):
-        return [self.a, self.e, self.i,
-                self.b, self.f, self.j,
-                self.c, self.g, self.k][key]
-
-    def __setitem__(self, key, value):
-        L = self[:]
-        L[key] = value
-        (self.a, self.e, self.i,
-         self.b, self.f, self.j,
-         self.c, self.g, self.k) = L
-
-    def __mul__(self, other):
-        if isinstance(other, Matrix3):
-            # Caching repeatedly accessed attributes in local variables
-            # apparently increases performance by 20%.  Attrib: Will McGugan.
-            Aa = self.a
-            Ab = self.b
-            Ac = self.c
-            Ae = self.e
-            Af = self.f
-            Ag = self.g
-            Ai = self.i
-            Aj = self.j
-            Ak = self.k
-            Ba = other.a
-            Bb = other.b
-            Bc = other.c
-            Be = other.e
-            Bf = other.f
-            Bg = other.g
-            Bi = other.i
-            Bj = other.j
-            Bk = other.k
-            C = Matrix3()
-            C.a = Aa * Ba + Ab * Be + Ac * Bi
-            C.b = Aa * Bb + Ab * Bf + Ac * Bj
-            C.c = Aa * Bc + Ab * Bg + Ac * Bk
-            C.e = Ae * Ba + Af * Be + Ag * Bi
-            C.f = Ae * Bb + Af * Bf + Ag * Bj
-            C.g = Ae * Bc + Af * Bg + Ag * Bk
-            C.i = Ai * Ba + Aj * Be + Ak * Bi
-            C.j = Ai * Bb + Aj * Bf + Ak * Bj
-            C.k = Ai * Bc + Aj * Bg + Ak * Bk
-            return C
-        elif isinstance(other, Point2):
-            A = self
-            B = other
-            P = Point2(0, 0)
-            P.x = A.a * B.x + A.b * B.y + A.c
-            P.y = A.e * B.x + A.f * B.y + A.g
-            return P
-        elif isinstance(other, Vector2):
-            A = self
-            B = other
-            V = Vector2(0, 0)
-            V.x = A.a * B.x + A.b * B.y 
-            V.y = A.e * B.x + A.f * B.y 
-            return V
-        else:
-            other = other.copy()
-            other._apply_transform(self)
-            return other
-
-    def __imul__(self, other):
-        assert isinstance(other, Matrix3)
-        # Cache attributes in local vars (see Matrix3.__mul__).
-        Aa = self.a
-        Ab = self.b
-        Ac = self.c
-        Ae = self.e
-        Af = self.f
-        Ag = self.g
-        Ai = self.i
-        Aj = self.j
-        Ak = self.k
-        Ba = other.a
-        Bb = other.b
-        Bc = other.c
-        Be = other.e
-        Bf = other.f
-        Bg = other.g
-        Bi = other.i
-        Bj = other.j
-        Bk = other.k
-        self.a = Aa * Ba + Ab * Be + Ac * Bi
-        self.b = Aa * Bb + Ab * Bf + Ac * Bj
-        self.c = Aa * Bc + Ab * Bg + Ac * Bk
-        self.e = Ae * Ba + Af * Be + Ag * Bi
-        self.f = Ae * Bb + Af * Bf + Ag * Bj
-        self.g = Ae * Bc + Af * Bg + Ag * Bk
-        self.i = Ai * Ba + Aj * Be + Ak * Bi
-        self.j = Ai * Bb + Aj * Bf + Ak * Bj
-        self.k = Ai * Bc + Aj * Bg + Ak * Bk
-        return self
-
-    def identity(self):
-        self.a = self.f = self.k = 1.
-        self.b = self.c = self.e = self.g = self.i = self.j = 0
-        return self
-
-    def scale(self, x, y):
-        self *= Matrix3.new_scale(x, y)
-        return self
-
-    def translate(self, x, y):
-        self *= Matrix3.new_translate(x, y)
-        return self 
-
-    def rotate(self, angle):
-        self *= Matrix3.new_rotate(angle)
-        return self
-
-    # Static constructors
-    def new_identity(cls):
-        self = cls()
-        return self
-    new_identity = classmethod(new_identity)
-
-    def new_scale(cls, x, y):
-        self = cls()
-        self.a = x
-        self.f = y
-        return self
-    new_scale = classmethod(new_scale)
-
-    def new_translate(cls, x, y):
-        self = cls()
-        self.c = x
-        self.g = y
-        return self
-    new_translate = classmethod(new_translate)
-
-    def new_rotate(cls, angle):
-        self = cls()
-        s = math.sin(angle)
-        c = math.cos(angle)
-        self.a = self.f = c
-        self.b = -s
-        self.e = s
-        return self
-    new_rotate = classmethod(new_rotate)
-
-# a b c d
-# e f g h
-# i j k l
-# m n o p
-
-class Matrix4:
-    __slots__ = list('abcdefghijklmnop')
-
-    def __init__(self):
-        self.identity()
-
-    def __copy__(self):
-        M = Matrix4()
-        M.a = self.a
-        M.b = self.b
-        M.c = self.c
-        M.d = self.d
-        M.e = self.e 
-        M.f = self.f
-        M.g = self.g
-        M.h = self.h
-        M.i = self.i
-        M.j = self.j
-        M.k = self.k
-        M.l = self.l
-        M.m = self.m
-        M.n = self.n
-        M.o = self.o
-        M.p = self.p
-        return M
-
-    copy = __copy__
-
-
-    def __repr__(self):
-        return ('Matrix4([% 8.2f % 8.2f % 8.2f % 8.2f\n'  \
-                '         % 8.2f % 8.2f % 8.2f % 8.2f\n'  \
-                '         % 8.2f % 8.2f % 8.2f % 8.2f\n'  \
-                '         % 8.2f % 8.2f % 8.2f % 8.2f])') \
-                % (self.a, self.b, self.c, self.d,
-                   self.e, self.f, self.g, self.h,
-                   self.i, self.j, self.k, self.l,
-                   self.m, self.n, self.o, self.p)
-
-    def __getitem__(self, key):
-        return [self.a, self.e, self.i, self.m,
-                self.b, self.f, self.j, self.n,
-                self.c, self.g, self.k, self.o,
-                self.d, self.h, self.l, self.p][key]
-
-    def __setitem__(self, key, value):
-        L = self[:]
-        L[key] = value
-        (self.a, self.e, self.i, self.m,
-         self.b, self.f, self.j, self.n,
-         self.c, self.g, self.k, self.o,
-         self.d, self.h, self.l, self.p) = L
-
-    def __mul__(self, other):
-        if isinstance(other, Matrix4):
-            # Cache attributes in local vars (see Matrix3.__mul__).
-            Aa = self.a
-            Ab = self.b
-            Ac = self.c
-            Ad = self.d
-            Ae = self.e
-            Af = self.f
-            Ag = self.g
-            Ah = self.h
-            Ai = self.i
-            Aj = self.j
-            Ak = self.k
-            Al = self.l
-            Am = self.m
-            An = self.n
-            Ao = self.o
-            Ap = self.p
-            Ba = other.a
-            Bb = other.b
-            Bc = other.c
-            Bd = other.d
-            Be = other.e
-            Bf = other.f
-            Bg = other.g
-            Bh = other.h
-            Bi = other.i
-            Bj = other.j
-            Bk = other.k
-            Bl = other.l
-            Bm = other.m
-            Bn = other.n
-            Bo = other.o
-            Bp = other.p
-            C = Matrix4()
-            C.a = Aa * Ba + Ab * Be + Ac * Bi + Ad * Bm
-            C.b = Aa * Bb + Ab * Bf + Ac * Bj + Ad * Bn
-            C.c = Aa * Bc + Ab * Bg + Ac * Bk + Ad * Bo
-            C.d = Aa * Bd + Ab * Bh + Ac * Bl + Ad * Bp
-            C.e = Ae * Ba + Af * Be + Ag * Bi + Ah * Bm
-            C.f = Ae * Bb + Af * Bf + Ag * Bj + Ah * Bn
-            C.g = Ae * Bc + Af * Bg + Ag * Bk + Ah * Bo
-            C.h = Ae * Bd + Af * Bh + Ag * Bl + Ah * Bp
-            C.i = Ai * Ba + Aj * Be + Ak * Bi + Al * Bm
-            C.j = Ai * Bb + Aj * Bf + Ak * Bj + Al * Bn
-            C.k = Ai * Bc + Aj * Bg + Ak * Bk + Al * Bo
-            C.l = Ai * Bd + Aj * Bh + Ak * Bl + Al * Bp
-            C.m = Am * Ba + An * Be + Ao * Bi + Ap * Bm
-            C.n = Am * Bb + An * Bf + Ao * Bj + Ap * Bn
-            C.o = Am * Bc + An * Bg + Ao * Bk + Ap * Bo
-            C.p = Am * Bd + An * Bh + Ao * Bl + Ap * Bp
-            return C
-        elif isinstance(other, Point3):
-            A = self
-            B = other
-            P = Point3(0, 0, 0)
-            P.x = A.a * B.x + A.b * B.y + A.c * B.z + A.d
-            P.y = A.e * B.x + A.f * B.y + A.g * B.z + A.h
-            P.z = A.i * B.x + A.j * B.y + A.k * B.z + A.l
-            return P
-        elif isinstance(other, Vector3):
-            A = self
-            B = other
-            V = Vector3(0, 0, 0)
-            V.x = A.a * B.x + A.b * B.y + A.c * B.z
-            V.y = A.e * B.x + A.f * B.y + A.g * B.z
-            V.z = A.i * B.x + A.j * B.y + A.k * B.z
-            return V
-        else:
-            other = other.copy()
-            other._apply_transform(self)
-            return other
-
-    def __imul__(self, other):
-        assert isinstance(other, Matrix4)
-        # Cache attributes in local vars (see Matrix3.__mul__).
-        Aa = self.a
-        Ab = self.b
-        Ac = self.c
-        Ad = self.d
-        Ae = self.e
-        Af = self.f
-        Ag = self.g
-        Ah = self.h
-        Ai = self.i
-        Aj = self.j
-        Ak = self.k
-        Al = self.l
-        Am = self.m
-        An = self.n
-        Ao = self.o
-        Ap = self.p
-        Ba = other.a
-        Bb = other.b
-        Bc = other.c
-        Bd = other.d
-        Be = other.e
-        Bf = other.f
-        Bg = other.g
-        Bh = other.h
-        Bi = other.i
-        Bj = other.j
-        Bk = other.k
-        Bl = other.l
-        Bm = other.m
-        Bn = other.n
-        Bo = other.o
-        Bp = other.p
-        self.a = Aa * Ba + Ab * Be + Ac * Bi + Ad * Bm
-        self.b = Aa * Bb + Ab * Bf + Ac * Bj + Ad * Bn
-        self.c = Aa * Bc + Ab * Bg + Ac * Bk + Ad * Bo
-        self.d = Aa * Bd + Ab * Bh + Ac * Bl + Ad * Bp
-        self.e = Ae * Ba + Af * Be + Ag * Bi + Ah * Bm
-        self.f = Ae * Bb + Af * Bf + Ag * Bj + Ah * Bn
-        self.g = Ae * Bc + Af * Bg + Ag * Bk + Ah * Bo
-        self.h = Ae * Bd + Af * Bh + Ag * Bl + Ah * Bp
-        self.i = Ai * Ba + Aj * Be + Ak * Bi + Al * Bm
-        self.j = Ai * Bb + Aj * Bf + Ak * Bj + Al * Bn
-        self.k = Ai * Bc + Aj * Bg + Ak * Bk + Al * Bo
-        self.l = Ai * Bd + Aj * Bh + Ak * Bl + Al * Bp
-        self.m = Am * Ba + An * Be + Ao * Bi + Ap * Bm
-        self.n = Am * Bb + An * Bf + Ao * Bj + Ap * Bn
-        self.o = Am * Bc + An * Bg + Ao * Bk + Ap * Bo
-        self.p = Am * Bd + An * Bh + Ao * Bl + Ap * Bp
-        return self
-
-    def transform(self, other):
-        A = self
-        B = other
-        P = Point3(0, 0, 0)
-        P.x = A.a * B.x + A.b * B.y + A.c * B.z + A.d
-        P.y = A.e * B.x + A.f * B.y + A.g * B.z + A.h
-        P.z = A.i * B.x + A.j * B.y + A.k * B.z + A.l
-        w =   A.m * B.x + A.n * B.y + A.o * B.z + A.p
-        if w != 0:
-            P.x /= w
-            P.y /= w
-            P.z /= w
-        return P
-
-    def identity(self):
-        self.a = self.f = self.k = self.p = 1.
-        self.b = self.c = self.d = self.e = self.g = self.h = \
-        self.i = self.j = self.l = self.m = self.n = self.o = 0
-        return self
-
-    def scale(self, x, y, z):
-        self *= Matrix4.new_scale(x, y, z)
-        return self
-
-    def translate(self, x, y, z):
-        self *= Matrix4.new_translate(x, y, z)
-        return self 
-
-    def rotatex(self, angle):
-        self *= Matrix4.new_rotatex(angle)
-        return self
-
-    def rotatey(self, angle):
-        self *= Matrix4.new_rotatey(angle)
-        return self
-
-    def rotatez(self, angle):
-        self *= Matrix4.new_rotatez(angle)
-        return self
-
-    def rotate_axis(self, angle, axis):
-        self *= Matrix4.new_rotate_axis(angle, axis)
-        return self
-
-    def rotate_euler(self, heading, attitude, bank):
-        self *= Matrix4.new_rotate_euler(heading, attitude, bank)
-        return self
-
-    def rotate_triple_axis(self, x, y, z):
-        self *= Matrix4.new_rotate_triple_axis(x, y, z)
-        return self
-
-    def transpose(self):
-        (self.a, self.e, self.i, self.m,
-         self.b, self.f, self.j, self.n,
-         self.c, self.g, self.k, self.o,
-         self.d, self.h, self.l, self.p) = \
-        (self.a, self.b, self.c, self.d,
-         self.e, self.f, self.g, self.h,
-         self.i, self.j, self.k, self.l,
-         self.m, self.n, self.o, self.p)
-
-    def transposed(self):
-        M = self.copy()
-        M.transpose()
-        return M
-
-    # Static constructors
-    def new(cls, *values):
-        M = cls()
-        M[:] = values
-        return M
-    new = classmethod(new)
-
-    def new_identity(cls):
-        self = cls()
-        return self
-    new_identity = classmethod(new_identity)
-
-    def new_scale(cls, x, y, z):
-        self = cls()
-        self.a = x
-        self.f = y
-        self.k = z
-        return self
-    new_scale = classmethod(new_scale)
-
-    def new_translate(cls, x, y, z):
-        self = cls()
-        self.d = x
-        self.h = y
-        self.l = z
-        return self
-    new_translate = classmethod(new_translate)
-
-    def new_rotatex(cls, angle):
-        self = cls()
-        s = math.sin(angle)
-        c = math.cos(angle)
-        self.f = self.k = c
-        self.g = -s
-        self.j = s
-        return self
-    new_rotatex = classmethod(new_rotatex)
-
-    def new_rotatey(cls, angle):
-        self = cls()
-        s = math.sin(angle)
-        c = math.cos(angle)
-        self.a = self.k = c
-        self.c = s
-        self.i = -s
-        return self    
-    new_rotatey = classmethod(new_rotatey)
-    
-    def new_rotatez(cls, angle):
-        self = cls()
-        s = math.sin(angle)
-        c = math.cos(angle)
-        self.a = self.f = c
-        self.b = -s
-        self.e = s
-        return self
-    new_rotatez = classmethod(new_rotatez)
-
-    def new_rotate_axis(cls, angle, axis):
-        assert(isinstance(axis, Vector3))
-        vector = axis.normalized()
-        x = vector.x
-        y = vector.y
-        z = vector.z
-
-        self = cls()
-        s = math.sin(angle)
-        c = math.cos(angle)
-        c1 = 1. - c
-        
-        # from the glRotate man page
-        self.a = x * x * c1 + c
-        self.b = x * y * c1 - z * s
-        self.c = x * z * c1 + y * s
-        self.e = y * x * c1 + z * s
-        self.f = y * y * c1 + c
-        self.g = y * z * c1 - x * s
-        self.i = x * z * c1 - y * s
-        self.j = y * z * c1 + x * s
-        self.k = z * z * c1 + c
-        return self
-    new_rotate_axis = classmethod(new_rotate_axis)
-
-    def new_rotate_euler(cls, heading, attitude, bank):
-        # from http://www.euclideanspace.com/
-        ch = math.cos(heading)
-        sh = math.sin(heading)
-        ca = math.cos(attitude)
-        sa = math.sin(attitude)
-        cb = math.cos(bank)
-        sb = math.sin(bank)
-
-        self = cls()
-        self.a = ch * ca
-        self.b = sh * sb - ch * sa * cb
-        self.c = ch * sa * sb + sh * cb
-        self.e = sa
-        self.f = ca * cb
-        self.g = -ca * sb
-        self.i = -sh * ca
-        self.j = sh * sa * cb + ch * sb
-        self.k = -sh * sa * sb + ch * cb
-        return self
-    new_rotate_euler = classmethod(new_rotate_euler)
-
-    def new_rotate_triple_axis(cls, x, y, z):
-      m = cls()
-      
-      m.a, m.b, m.c = x.x, y.x, z.x
-      m.e, m.f, m.g = x.y, y.y, z.y
-      m.i, m.j, m.k = x.z, y.z, z.z
-      
-      return m
-    new_rotate_triple_axis = classmethod(new_rotate_triple_axis)
-
-    def new_look_at(cls, eye, at, up):
-      z = (eye - at).normalized()
-      x = up.cross(z).normalized()
-      y = z.cross(x)
-      
-      m = cls.new_rotate_triple_axis(x, y, z)
-      m.d, m.h, m.l = eye.x, eye.y, eye.z
-      return m
-    new_look_at = classmethod(new_look_at)
-    
-    def new_perspective(cls, fov_y, aspect, near, far):
-        # from the gluPerspective man page
-        f = 1 / math.tan(fov_y / 2)
-        self = cls()
-        assert near != 0.0 and near != far
-        self.a = f / aspect
-        self.f = f
-        self.k = (far + near) / (near - far)
-        self.l = 2 * far * near / (near - far)
-        self.o = -1
-        self.p = 0
-        return self
-    new_perspective = classmethod(new_perspective)
-
-    def determinant(self):
-        return ((self.a * self.f - self.e * self.b)
-              * (self.k * self.p - self.o * self.l)
-              - (self.a * self.j - self.i * self.b)
-              * (self.g * self.p - self.o * self.h)
-              + (self.a * self.n - self.m * self.b)
-              * (self.g * self.l - self.k * self.h)
-              + (self.e * self.j - self.i * self.f)
-              * (self.c * self.p - self.o * self.d)
-              - (self.e * self.n - self.m * self.f)
-              * (self.c * self.l - self.k * self.d)
-              + (self.i * self.n - self.m * self.j)
-              * (self.c * self.h - self.g * self.d))
-
-    def inverse(self):
-        tmp = Matrix4()
-        d = self.determinant();
-
-        if abs(d) < 0.001:
-            # No inverse, return identity
-            return tmp
-        else:
-            d = 1.0 / d;
-
-            tmp.a = d * (self.f * (self.k * self.p - self.o * self.l) + self.j * (self.o * self.h - self.g * self.p) + self.n * (self.g * self.l - self.k * self.h));
-            tmp.e = d * (self.g * (self.i * self.p - self.m * self.l) + self.k * (self.m * self.h - self.e * self.p) + self.o * (self.e * self.l - self.i * self.h));
-            tmp.i = d * (self.h * (self.i * self.n - self.m * self.j) + self.l * (self.m * self.f - self.e * self.n) + self.p * (self.e * self.j - self.i * self.f));
-            tmp.m = d * (self.e * (self.n * self.k - self.j * self.o) + self.i * (self.f * self.o - self.n * self.g) + self.m * (self.j * self.g - self.f * self.k));
-            
-            tmp.b = d * (self.j * (self.c * self.p - self.o * self.d) + self.n * (self.k * self.d - self.c * self.l) + self.b * (self.o * self.l - self.k * self.p));
-            tmp.f = d * (self.k * (self.a * self.p - self.m * self.d) + self.o * (self.i * self.d - self.a * self.l) + self.c * (self.m * self.l - self.i * self.p));
-            tmp.j = d * (self.l * (self.a * self.n - self.m * self.b) + self.p * (self.i * self.b - self.a * self.j) + self.d * (self.m * self.j - self.i * self.n));
-            tmp.n = d * (self.i * (self.n * self.c - self.b * self.o) + self.m * (self.b * self.k - self.j * self.c) + self.a * (self.j * self.o - self.n * self.k));
-            
-            tmp.c = d * (self.n * (self.c * self.h - self.g * self.d) + self.b * (self.g * self.p - self.o * self.h) + self.f * (self.o * self.d - self.c * self.p));
-            tmp.g = d * (self.o * (self.a * self.h - self.e * self.d) + self.c * (self.e * self.p - self.m * self.h) + self.g * (self.m * self.d - self.a * self.p));
-            tmp.k = d * (self.p * (self.a * self.f - self.e * self.b) + self.d * (self.e * self.n - self.m * self.f) + self.h * (self.m * self.b - self.a * self.n));
-            tmp.o = d * (self.m * (self.f * self.c - self.b * self.g) + self.a * (self.n * self.g - self.f * self.o) + self.e * (self.b * self.o - self.n * self.c));
-            
-            tmp.d = d * (self.b * (self.k * self.h - self.g * self.l) + self.f * (self.c * self.l - self.k * self.d) + self.j * (self.g * self.d - self.c * self.h));
-            tmp.h = d * (self.c * (self.i * self.h - self.e * self.l) + self.g * (self.a * self.l - self.i * self.d) + self.k * (self.e * self.d - self.a * self.h));
-            tmp.l = d * (self.d * (self.i * self.f - self.e * self.j) + self.h * (self.a * self.j - self.i * self.b) + self.l * (self.e * self.b - self.a * self.f));
-            tmp.p = d * (self.a * (self.f * self.k - self.j * self.g) + self.e * (self.j * self.c - self.b * self.k) + self.i * (self.b * self.g - self.f * self.c));
-
-        return tmp;
-        
-
-class Quaternion:
-    # All methods and naming conventions based off 
-    # http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions
-
-    # w is the real part, (x, y, z) are the imaginary parts
-    __slots__ = ['w', 'x', 'y', 'z']
-
-    def __init__(self, w=1, x=0, y=0, z=0):
-        self.w = w
-        self.x = x
-        self.y = y
-        self.z = z
-
-    def __copy__(self):
-        Q = Quaternion()
-        Q.w = self.w
-        Q.x = self.x
-        Q.y = self.y
-        Q.z = self.z
-        return Q
-
-    copy = __copy__
-
-    def __repr__(self):
-        return 'Quaternion(real=%.2f, imag=<%.2f, %.2f, %.2f>)' % \
-            (self.w, self.x, self.y, self.z)
-
-    def __mul__(self, other):
-        if isinstance(other, Quaternion):
-            Ax = self.x
-            Ay = self.y
-            Az = self.z
-            Aw = self.w
-            Bx = other.x
-            By = other.y
-            Bz = other.z
-            Bw = other.w
-            Q = Quaternion()
-            Q.x =  Ax * Bw + Ay * Bz - Az * By + Aw * Bx    
-            Q.y = -Ax * Bz + Ay * Bw + Az * Bx + Aw * By
-            Q.z =  Ax * By - Ay * Bx + Az * Bw + Aw * Bz
-            Q.w = -Ax * Bx - Ay * By - Az * Bz + Aw * Bw
-            return Q
-        elif isinstance(other, Vector3):
-            w = self.w
-            x = self.x
-            y = self.y
-            z = self.z
-            Vx = other.x
-            Vy = other.y
-            Vz = other.z
-            return other.__class__(\
-               w * w * Vx + 2 * y * w * Vz - 2 * z * w * Vy + \
-               x * x * Vx + 2 * y * x * Vy + 2 * z * x * Vz - \
-               z * z * Vx - y * y * Vx,
-               2 * x * y * Vx + y * y * Vy + 2 * z * y * Vz + \
-               2 * w * z * Vx - z * z * Vy + w * w * Vy - \
-               2 * x * w * Vz - x * x * Vy,
-               2 * x * z * Vx + 2 * y * z * Vy + \
-               z * z * Vz - 2 * w * y * Vx - y * y * Vz + \
-               2 * w * x * Vy - x * x * Vz + w * w * Vz)
-        else:
-            other = other.copy()
-            other._apply_transform(self)
-            return other
-
-    def __imul__(self, other):
-        assert isinstance(other, Quaternion)
-        Ax = self.x
-        Ay = self.y
-        Az = self.z
-        Aw = self.w
-        Bx = other.x
-        By = other.y
-        Bz = other.z
-        Bw = other.w
-        self.x =  Ax * Bw + Ay * Bz - Az * By + Aw * Bx    
-        self.y = -Ax * Bz + Ay * Bw + Az * Bx + Aw * By
-        self.z =  Ax * By - Ay * Bx + Az * Bw + Aw * Bz
-        self.w = -Ax * Bx - Ay * By - Az * Bz + Aw * Bw
-        return self
-
-    def __abs__(self):
-        return math.sqrt(self.w ** 2 + \
-                         self.x ** 2 + \
-                         self.y ** 2 + \
-                         self.z ** 2)
-
-    magnitude = __abs__
-
-    def magnitude_squared(self):
-        return self.w ** 2 + \
-               self.x ** 2 + \
-               self.y ** 2 + \
-               self.z ** 2 
-
-    def identity(self):
-        self.w = 1
-        self.x = 0
-        self.y = 0
-        self.z = 0
-        return self
-
-    def rotate_axis(self, angle, axis):
-        self *= Quaternion.new_rotate_axis(angle, axis)
-        return self
-
-    def rotate_euler(self, heading, attitude, bank):
-        self *= Quaternion.new_rotate_euler(heading, attitude, bank)
-        return self
-
-    def rotate_matrix(self, m):
-        self *= Quaternion.new_rotate_matrix(m)
-        return self
-
-    def conjugated(self):
-        Q = Quaternion()
-        Q.w = self.w
-        Q.x = -self.x
-        Q.y = -self.y
-        Q.z = -self.z
-        return Q
-
-    def normalize(self):
-        d = self.magnitude()
-        if d != 0:
-            self.w /= d
-            self.x /= d
-            self.y /= d
-            self.z /= d
-        return self
-
-    def normalized(self):
-        d = self.magnitude()
-        if d != 0:
-            Q = Quaternion()
-            Q.w = self.w / d
-            Q.x = self.x / d
-            Q.y = self.y / d
-            Q.z = self.z / d
-            return Q
-        else:
-            return self.copy()
-
-    def get_angle_axis(self):
-        if self.w > 1:
-            self = self.normalized()
-        angle = 2 * math.acos(self.w)
-        s = math.sqrt(1 - self.w ** 2)
-        if s < 0.001:
-            return angle, Vector3(1, 0, 0)
-        else:
-            return angle, Vector3(self.x / s, self.y / s, self.z / s)
-
-    def get_euler(self):
-        t = self.x * self.y + self.z * self.w
-        if t > 0.4999:
-            heading = 2 * math.atan2(self.x, self.w)
-            attitude = math.pi / 2
-            bank = 0
-        elif t < -0.4999:
-            heading = -2 * math.atan2(self.x, self.w)
-            attitude = -math.pi / 2
-            bank = 0
-        else:
-            sqx = self.x ** 2
-            sqy = self.y ** 2
-            sqz = self.z ** 2
-            heading = math.atan2(2 * self.y * self.w - 2 * self.x * self.z,
-                                 1 - 2 * sqy - 2 * sqz)
-            attitude = math.asin(2 * t)
-            bank = math.atan2(2 * self.x * self.w - 2 * self.y * self.z,
-                              1 - 2 * sqx - 2 * sqz)
-        return heading, attitude, bank
-
-    def get_matrix(self):
-        xx = self.x ** 2
-        xy = self.x * self.y
-        xz = self.x * self.z
-        xw = self.x * self.w
-        yy = self.y ** 2
-        yz = self.y * self.z
-        yw = self.y * self.w
-        zz = self.z ** 2
-        zw = self.z * self.w
-        M = Matrix4()
-        M.a = 1 - 2 * (yy + zz)
-        M.b = 2 * (xy - zw)
-        M.c = 2 * (xz + yw)
-        M.e = 2 * (xy + zw)
-        M.f = 1 - 2 * (xx + zz)
-        M.g = 2 * (yz - xw)
-        M.i = 2 * (xz - yw)
-        M.j = 2 * (yz + xw)
-        M.k = 1 - 2 * (xx + yy)
-        return M
-
-    # Static constructors
-    def new_identity(cls):
-        return cls()
-    new_identity = classmethod(new_identity)
-
-    def new_rotate_axis(cls, angle, axis):
-        assert(isinstance(axis, Vector3))
-        axis = axis.normalized()
-        s = math.sin(angle / 2)
-        Q = cls()
-        Q.w = math.cos(angle / 2)
-        Q.x = axis.x * s
-        Q.y = axis.y * s
-        Q.z = axis.z * s
-        return Q
-    new_rotate_axis = classmethod(new_rotate_axis)
-
-    def new_rotate_euler(cls, heading, attitude, bank):
-        Q = cls()
-        c1 = math.cos(heading / 2)
-        s1 = math.sin(heading / 2)
-        c2 = math.cos(attitude / 2)
-        s2 = math.sin(attitude / 2)
-        c3 = math.cos(bank / 2)
-        s3 = math.sin(bank / 2)
-
-        Q.w = c1 * c2 * c3 - s1 * s2 * s3
-        Q.x = s1 * s2 * c3 + c1 * c2 * s3
-        Q.y = s1 * c2 * c3 + c1 * s2 * s3
-        Q.z = c1 * s2 * c3 - s1 * c2 * s3
-        return Q
-    new_rotate_euler = classmethod(new_rotate_euler)
-    
-    def new_rotate_matrix(cls, m):
-      if m[0*4 + 0] + m[1*4 + 1] + m[2*4 + 2] > 0.00000001:
-        t = m[0*4 + 0] + m[1*4 + 1] + m[2*4 + 2] + 1.0
-        s = 0.5/math.sqrt(t)
-        
-        return cls(
-          s*t,
-          (m[1*4 + 2] - m[2*4 + 1])*s,
-          (m[2*4 + 0] - m[0*4 + 2])*s,
-          (m[0*4 + 1] - m[1*4 + 0])*s
-          )
-        
-      elif m[0*4 + 0] > m[1*4 + 1] and m[0*4 + 0] > m[2*4 + 2]:
-        t = m[0*4 + 0] - m[1*4 + 1] - m[2*4 + 2] + 1.0
-        s = 0.5/math.sqrt(t)
-        
-        return cls(
-          (m[1*4 + 2] - m[2*4 + 1])*s,
-          s*t,
-          (m[0*4 + 1] + m[1*4 + 0])*s,
-          (m[2*4 + 0] + m[0*4 + 2])*s
-          )
-        
-      elif m[1*4 + 1] > m[2*4 + 2]:
-        t = -m[0*4 + 0] + m[1*4 + 1] - m[2*4 + 2] + 1.0
-        s = 0.5/math.sqrt(t)
-        
-        return cls(
-          (m[2*4 + 0] - m[0*4 + 2])*s,
-          (m[0*4 + 1] + m[1*4 + 0])*s,
-          s*t,
-          (m[1*4 + 2] + m[2*4 + 1])*s
-          )
-        
-      else:
-        t = -m[0*4 + 0] - m[1*4 + 1] + m[2*4 + 2] + 1.0
-        s = 0.5/math.sqrt(t)
-        
-        return cls(
-          (m[0*4 + 1] - m[1*4 + 0])*s,
-          (m[2*4 + 0] + m[0*4 + 2])*s,
-          (m[1*4 + 2] + m[2*4 + 1])*s,
-          s*t
-          )
-    new_rotate_matrix = classmethod(new_rotate_matrix)
-    
-    def new_interpolate(cls, q1, q2, t):
-        assert isinstance(q1, Quaternion) and isinstance(q2, Quaternion)
-        Q = cls()
-
-        costheta = q1.w * q2.w + q1.x * q2.x + q1.y * q2.y + q1.z * q2.z
-        if costheta < 0.:
-            costheta = -costheta
-            q1 = q1.conjugated()
-        elif costheta > 1:
-            costheta = 1
-
-        theta = math.acos(costheta)
-        if abs(theta) < 0.01:
-            Q.w = q2.w
-            Q.x = q2.x
-            Q.y = q2.y
-            Q.z = q2.z
-            return Q
-
-        sintheta = math.sqrt(1.0 - costheta * costheta)
-        if abs(sintheta) < 0.01:
-            Q.w = (q1.w + q2.w) * 0.5
-            Q.x = (q1.x + q2.x) * 0.5
-            Q.y = (q1.y + q2.y) * 0.5
-            Q.z = (q1.z + q2.z) * 0.5
-            return Q
-
-        ratio1 = math.sin((1 - t) * theta) / sintheta
-        ratio2 = math.sin(t * theta) / sintheta
-
-        Q.w = q1.w * ratio1 + q2.w * ratio2
-        Q.x = q1.x * ratio1 + q2.x * ratio2
-        Q.y = q1.y * ratio1 + q2.y * ratio2
-        Q.z = q1.z * ratio1 + q2.z * ratio2
-        return Q
-    new_interpolate = classmethod(new_interpolate)
-
-# Geometry
-# Much maths thanks to Paul Bourke, http://astronomy.swin.edu.au/~pbourke
-# ---------------------------------------------------------------------------
-
-class Geometry:
-    def _connect_unimplemented(self, other):
-        raise AttributeError, 'Cannot connect %s to %s' % \
-            (self.__class__, other.__class__)
-
-    def _intersect_unimplemented(self, other):
-        raise AttributeError, 'Cannot intersect %s and %s' % \
-            (self.__class__, other.__class__)
-
-    _intersect_point2 = _intersect_unimplemented
-    _intersect_line2 = _intersect_unimplemented
-    _intersect_circle = _intersect_unimplemented
-    _connect_point2 = _connect_unimplemented
-    _connect_line2 = _connect_unimplemented
-    _connect_circle = _connect_unimplemented
-
-    _intersect_point3 = _intersect_unimplemented
-    _intersect_line3 = _intersect_unimplemented
-    _intersect_sphere = _intersect_unimplemented
-    _intersect_plane = _intersect_unimplemented
-    _connect_point3 = _connect_unimplemented
-    _connect_line3 = _connect_unimplemented
-    _connect_sphere = _connect_unimplemented
-    _connect_plane = _connect_unimplemented
-
-    def intersect(self, other):
-        raise NotImplementedError
-
-    def connect(self, other):
-        raise NotImplementedError
-
-    def distance(self, other):
-        c = self.connect(other)
-        if c:
-            return c.length
-        return 0.0
-
-def _intersect_point2_circle(P, C):
-    return abs(P - C.c) <= C.r
-    
-def _intersect_line2_line2(A, B):
-    d = B.v.y * A.v.x - B.v.x * A.v.y
-    if d == 0:
-        return None
-
-    dy = A.p.y - B.p.y
-    dx = A.p.x - B.p.x
-    ua = (B.v.x * dy - B.v.y * dx) / d
-    if not A._u_in(ua):
-        return None
-    ub = (A.v.x * dy - A.v.y * dx) / d
-    if not B._u_in(ub):
-        return None
-
-    return Point2(A.p.x + ua * A.v.x,
-                  A.p.y + ua * A.v.y)
-
-def _intersect_line2_circle(L, C):
-    a = L.v.magnitude_squared()
-    b = 2 * (L.v.x * (L.p.x - C.c.x) + \
-             L.v.y * (L.p.y - C.c.y))
-    c = C.c.magnitude_squared() + \
-        L.p.magnitude_squared() - \
-        2 * C.c.dot(L.p) - \
-        C.r ** 2
-    det = b ** 2 - 4 * a * c
-    if det < 0:
-        return None
-    sq = math.sqrt(det)
-    u1 = (-b + sq) / (2 * a)
-    u2 = (-b - sq) / (2 * a)
-    if not L._u_in(u1):
-        u1 = max(min(u1, 1.0), 0.0)
-    if not L._u_in(u2):
-        u2 = max(min(u2, 1.0), 0.0)
-
-    # Tangent
-    if u1 == u2:
-        return Point2(L.p.x + u1 * L.v.x,
-                      L.p.y + u1 * L.v.y)
-
-    return LineSegment2(Point2(L.p.x + u1 * L.v.x,
-                               L.p.y + u1 * L.v.y),
-                        Point2(L.p.x + u2 * L.v.x,
-                               L.p.y + u2 * L.v.y))
-
-def _connect_point2_line2(P, L):
-    d = L.v.magnitude_squared()
-    assert d != 0
-    u = ((P.x - L.p.x) * L.v.x + \
-         (P.y - L.p.y) * L.v.y) / d
-    if not L._u_in(u):
-        u = max(min(u, 1.0), 0.0)
-    return LineSegment2(P, 
-                        Point2(L.p.x + u * L.v.x,
-                               L.p.y + u * L.v.y))
-
-def _connect_point2_circle(P, C):
-    v = P - C.c
-    v.normalize()
-    v *= C.r
-    return LineSegment2(P, Point2(C.c.x + v.x, C.c.y + v.y))
-
-def _connect_line2_line2(A, B):
-    d = B.v.y * A.v.x - B.v.x * A.v.y
-    if d == 0:
-        # Parallel, connect an endpoint with a line
-        if isinstance(B, Ray2) or isinstance(B, LineSegment2):
-            p1, p2 = _connect_point2_line2(B.p, A)
-            return p2, p1
-        # No endpoint (or endpoint is on A), possibly choose arbitrary point
-        # on line.
-        return _connect_point2_line2(A.p, B)
-
-    dy = A.p.y - B.p.y
-    dx = A.p.x - B.p.x
-    ua = (B.v.x * dy - B.v.y * dx) / d
-    if not A._u_in(ua):
-        ua = max(min(ua, 1.0), 0.0)
-    ub = (A.v.x * dy - A.v.y * dx) / d
-    if not B._u_in(ub):
-        ub = max(min(ub, 1.0), 0.0)
-
-    return LineSegment2(Point2(A.p.x + ua * A.v.x, A.p.y + ua * A.v.y),
-                        Point2(B.p.x + ub * B.v.x, B.p.y + ub * B.v.y))
-
-def _connect_circle_line2(C, L):
-    d = L.v.magnitude_squared()
-    assert d != 0
-    u = ((C.c.x - L.p.x) * L.v.x + (C.c.y - L.p.y) * L.v.y) / d
-    if not L._u_in(u):
-        u = max(min(u, 1.0), 0.0)
-    point = Point2(L.p.x + u * L.v.x, L.p.y + u * L.v.y)
-    v = (point - C.c)
-    v.normalize()
-    v *= C.r
-    return LineSegment2(Point2(C.c.x + v.x, C.c.y + v.y), point)
-
-def _connect_circle_circle(A, B):
-    v = B.c - A.c
-    v.normalize()
-    return LineSegment2(Point2(A.c.x + v.x * A.r, A.c.y + v.y * A.r),
-                        Point2(B.c.x - v.x * B.r, B.c.y - v.y * B.r))
-
-
-class Point2(Vector2, Geometry):
-    def __repr__(self):
-        return 'Point2(%.2f, %.2f)' % (self.x, self.y)
-
-    def intersect(self, other):
-        return other._intersect_point2(self)
-
-    def _intersect_circle(self, other):
-        return _intersect_point2_circle(self, other)
-
-    def connect(self, other):
-        return other._connect_point2(self)
-
-    def _connect_point2(self, other):
-        return LineSegment2(other, self)
-    
-    def _connect_line2(self, other):
-        c = _connect_point2_line2(self, other)
-        if c:
-            return c._swap()
-
-    def _connect_circle(self, other):
-        c = _connect_point2_circle(self, other)
-        if c:
-            return c._swap()
-
-class Line2(Geometry):
-    __slots__ = ['p', 'v']
-
-    def __init__(self, *args):
-        if len(args) == 3:
-            assert isinstance(args[0], Point2) and \
-                   isinstance(args[1], Vector2) and \
-                   type(args[2]) == float
-            self.p = args[0].copy()
-            self.v = args[1] * args[2] / abs(args[1])
-        elif len(args) == 2:
-            if isinstance(args[0], Point2) and isinstance(args[1], Point2):
-                self.p = args[0].copy()
-                self.v = args[1] - args[0]
-            elif isinstance(args[0], Point2) and isinstance(args[1], Vector2):
-                self.p = args[0].copy()
-                self.v = args[1].copy()
-            else:
-                raise AttributeError, '%r' % (args,)
-        elif len(args) == 1:
-            if isinstance(args[0], Line2):
-                self.p = args[0].p.copy()
-                self.v = args[0].v.copy()
-            else:
-                raise AttributeError, '%r' % (args,)
-        else:
-            raise AttributeError, '%r' % (args,)
-        
-        if not self.v:
-            raise AttributeError, 'Line has zero-length vector'
-
-    def __copy__(self):
-        return self.__class__(self.p, self.v)
-
-    copy = __copy__
-
-    def __repr__(self):
-        return 'Line2(<%.2f, %.2f> + u<%.2f, %.2f>)' % \
-            (self.p.x, self.p.y, self.v.x, self.v.y)
-
-    p1 = property(lambda self: self.p)
-    p2 = property(lambda self: Point2(self.p.x + self.v.x, 
-                                      self.p.y + self.v.y))
-
-    def _apply_transform(self, t):
-        self.p = t * self.p
-        self.v = t * self.v
-
-    def _u_in(self, u):
-        return True
-
-    def intersect(self, other):
-        return other._intersect_line2(self)
-
-    def _intersect_line2(self, other):
-        return _intersect_line2_line2(self, other)
-
-    def _intersect_circle(self, other):
-        return _intersect_line2_circle(self, other)
-
-    def connect(self, other):
-        return other._connect_line2(self)
-
-    def _connect_point2(self, other):
-        return _connect_point2_line2(other, self)
-
-    def _connect_line2(self, other):
-        return _connect_line2_line2(other, self)
-
-    def _connect_circle(self, other):
-        return _connect_circle_line2(other, self)
-
-class Ray2(Line2):
-    def __repr__(self):
-        return 'Ray2(<%.2f, %.2f> + u<%.2f, %.2f>)' % \
-            (self.p.x, self.p.y, self.v.x, self.v.y)
-
-    def _u_in(self, u):
-        return u >= 0.0
-
-class LineSegment2(Line2):
-    def __repr__(self):
-        return 'LineSegment2(<%.2f, %.2f> to <%.2f, %.2f>)' % \
-            (self.p.x, self.p.y, self.p.x + self.v.x, self.p.y + self.v.y)
-
-    def _u_in(self, u):
-        return u >= 0.0 and u <= 1.0
-
-    def __abs__(self):
-        return abs(self.v)
-
-    def magnitude_squared(self):
-        return self.v.magnitude_squared()
-
-    def _swap(self):
-        # used by connect methods to switch order of points
-        self.p = self.p2
-        self.v *= -1
-        return self
-
-    length = property(lambda self: abs(self.v))
-
-class Circle(Geometry):
-    __slots__ = ['c', 'r']
-
-    def __init__(self, center, radius):
-        assert isinstance(center, Vector2) and type(radius) == float
-        self.c = center.copy()
-        self.r = radius
-
-    def __copy__(self):
-        return self.__class__(self.c, self.r)
-
-    copy = __copy__
-
-    def __repr__(self):
-        return 'Circle(<%.2f, %.2f>, radius=%.2f)' % \
-            (self.c.x, self.c.y, self.r)
-
-    def _apply_transform(self, t):
-        self.c = t * self.c
-
-    def intersect(self, other):
-        return other._intersect_circle(self)
-
-    def _intersect_point2(self, other):
-        return _intersect_point2_circle(other, self)
-
-    def _intersect_line2(self, other):
-        return _intersect_line2_circle(other, self)
-
-    def connect(self, other):
-        return other._connect_circle(self)
-
-    def _connect_point2(self, other):
-        return _connect_point2_circle(other, self)
-
-    def _connect_line2(self, other):
-        c = _connect_circle_line2(self, other)
-        if c:
-            return c._swap()
-
-    def _connect_circle(self, other):
-        return _connect_circle_circle(other, self)
-
-# 3D Geometry
-# -------------------------------------------------------------------------
-
-def _connect_point3_line3(P, L):
-    d = L.v.magnitude_squared()
-    assert d != 0
-    u = ((P.x - L.p.x) * L.v.x + \
-         (P.y - L.p.y) * L.v.y + \
-         (P.z - L.p.z) * L.v.z) / d
-    if not L._u_in(u):
-        u = max(min(u, 1.0), 0.0)
-    return LineSegment3(P, Point3(L.p.x + u * L.v.x,
-                                  L.p.y + u * L.v.y,
-                                  L.p.z + u * L.v.z))
-
-def _connect_point3_sphere(P, S):
-    v = P - S.c
-    v.normalize()
-    v *= S.r
-    return LineSegment3(P, Point3(S.c.x + v.x, S.c.y + v.y, S.c.z + v.z))
-
-def _connect_point3_plane(p, plane):
-    n = plane.n.normalized()
-    d = p.dot(plane.n) - plane.k
-    return LineSegment3(p, Point3(p.x - n.x * d, p.y - n.y * d, p.z - n.z * d))
-
-def _connect_line3_line3(A, B):
-    assert A.v and B.v
-    p13 = A.p - B.p
-    d1343 = p13.dot(B.v)
-    d4321 = B.v.dot(A.v)
-    d1321 = p13.dot(A.v)
-    d4343 = B.v.magnitude_squared()
-    denom = A.v.magnitude_squared() * d4343 - d4321 ** 2
-    if denom == 0:
-        # Parallel, connect an endpoint with a line
-        if isinstance(B, Ray3) or isinstance(B, LineSegment3):
-            return _connect_point3_line3(B.p, A)._swap()
-        # No endpoint (or endpoint is on A), possibly choose arbitrary
-        # point on line.
-        return _connect_point3_line3(A.p, B)
-
-    ua = (d1343 * d4321 - d1321 * d4343) / denom
-    if not A._u_in(ua):
-        ua = max(min(ua, 1.0), 0.0)
-    ub = (d1343 + d4321 * ua) / d4343
-    if not B._u_in(ub):
-        ub = max(min(ub, 1.0), 0.0)
-    return LineSegment3(Point3(A.p.x + ua * A.v.x,
-                               A.p.y + ua * A.v.y,
-                               A.p.z + ua * A.v.z),
-                        Point3(B.p.x + ub * B.v.x,
-                               B.p.y + ub * B.v.y,
-                               B.p.z + ub * B.v.z))
-
-def _connect_line3_plane(L, P):
-    d = P.n.dot(L.v)
-    if not d:
-        # Parallel, choose an endpoint
-        return _connect_point3_plane(L.p, P)
-    u = (P.k - P.n.dot(L.p)) / d
-    if not L._u_in(u):
-        # intersects out of range, choose nearest endpoint
-        u = max(min(u, 1.0), 0.0)
-        return _connect_point3_plane(Point3(L.p.x + u * L.v.x,
-                                            L.p.y + u * L.v.y,
-                                            L.p.z + u * L.v.z), P)
-    # Intersection
-    return None
-
-def _connect_sphere_line3(S, L):
-    d = L.v.magnitude_squared()
-    assert d != 0
-    u = ((S.c.x - L.p.x) * L.v.x + \
-         (S.c.y - L.p.y) * L.v.y + \
-         (S.c.z - L.p.z) * L.v.z) / d
-    if not L._u_in(u):
-        u = max(min(u, 1.0), 0.0)
-    point = Point3(L.p.x + u * L.v.x, L.p.y + u * L.v.y, L.p.z + u * L.v.z)
-    v = (point - S.c)
-    v.normalize()
-    v *= S.r
-    return LineSegment3(Point3(S.c.x + v.x, S.c.y + v.y, S.c.z + v.z), 
-                        point)
-
-def _connect_sphere_sphere(A, B):
-    v = B.c - A.c
-    v.normalize()
-    return LineSegment3(Point3(A.c.x + v.x * A.r,
-                               A.c.y + v.y * A.r,
-                               A.c.x + v.z * A.r),
-                        Point3(B.c.x + v.x * B.r,
-                               B.c.y + v.y * B.r,
-                               B.c.x + v.z * B.r))
-
-def _connect_sphere_plane(S, P):
-    c = _connect_point3_plane(S.c, P)
-    if not c:
-        return None
-    p2 = c.p2
-    v = p2 - S.c
-    v.normalize()
-    v *= S.r
-    return LineSegment3(Point3(S.c.x + v.x, S.c.y + v.y, S.c.z + v.z), 
-                        p2)
-
-def _connect_plane_plane(A, B):
-    if A.n.cross(B.n):
-        # Planes intersect
-        return None
-    else:
-        # Planes are parallel, connect to arbitrary point
-        return _connect_point3_plane(A._get_point(), B)
-
-def _intersect_point3_sphere(P, S):
-    return abs(P - S.c) <= S.r
-    
-def _intersect_line3_sphere(L, S):
-    a = L.v.magnitude_squared()
-    b = 2 * (L.v.x * (L.p.x - S.c.x) + \
-             L.v.y * (L.p.y - S.c.y) + \
-             L.v.z * (L.p.z - S.c.z))
-    c = S.c.magnitude_squared() + \
-        L.p.magnitude_squared() - \
-        2 * S.c.dot(L.p) - \
-        S.r ** 2
-    det = b ** 2 - 4 * a * c
-    if det < 0:
-        return None
-    sq = math.sqrt(det)
-    u1 = (-b + sq) / (2 * a)
-    u2 = (-b - sq) / (2 * a)
-    if not L._u_in(u1):
-        u1 = max(min(u1, 1.0), 0.0)
-    if not L._u_in(u2):
-        u2 = max(min(u2, 1.0), 0.0)
-    return LineSegment3(Point3(L.p.x + u1 * L.v.x,
-                               L.p.y + u1 * L.v.y,
-                               L.p.z + u1 * L.v.z),
-                        Point3(L.p.x + u2 * L.v.x,
-                               L.p.y + u2 * L.v.y,
-                               L.p.z + u2 * L.v.z))
-
-def _intersect_line3_plane(L, P):
-    d = P.n.dot(L.v)
-    if not d:
-        # Parallel
-        return None
-    u = (P.k - P.n.dot(L.p)) / d
-    if not L._u_in(u):
-        return None
-    return Point3(L.p.x + u * L.v.x,
-                  L.p.y + u * L.v.y,
-                  L.p.z + u * L.v.z)
-
-def _intersect_plane_plane(A, B):
-    n1_m = A.n.magnitude_squared()
-    n2_m = B.n.magnitude_squared()
-    n1d2 = A.n.dot(B.n)
-    det = n1_m * n2_m - n1d2 ** 2
-    if det == 0:
-        # Parallel
-        return None
-    c1 = (A.k * n2_m - B.k * n1d2) / det
-    c2 = (B.k * n1_m - A.k * n1d2) / det
-    return Line3(Point3(c1 * A.n.x + c2 * B.n.x,
-                        c1 * A.n.y + c2 * B.n.y,
-                        c1 * A.n.z + c2 * B.n.z), 
-                 A.n.cross(B.n))
-
-class Point3(Vector3, Geometry):
-    def __repr__(self):
-        return 'Point3(%.2f, %.2f, %.2f)' % (self.x, self.y, self.z)
-
-    def intersect(self, other):
-        return other._intersect_point3(self)
-
-    def _intersect_sphere(self, other):
-        return _intersect_point3_sphere(self, other)
-
-    def connect(self, other):
-        return other._connect_point3(self)
-
-    def _connect_point3(self, other):
-        if self != other:
-            return LineSegment3(other, self)
-        return None
-
-    def _connect_line3(self, other):
-        c = _connect_point3_line3(self, other)
-        if c:
-            return c._swap()
-        
-    def _connect_sphere(self, other):
-        c = _connect_point3_sphere(self, other)
-        if c:
-            return c._swap()
-
-    def _connect_plane(self, other):
-        c = _connect_point3_plane(self, other)
-        if c:
-            return c._swap()
-
-class Line3:
-    __slots__ = ['p', 'v']
-
-    def __init__(self, *args):
-        if len(args) == 3:
-            assert isinstance(args[0], Point3) and \
-                   isinstance(args[1], Vector3) and \
-                   type(args[2]) == float
-            self.p = args[0].copy()
-            self.v = args[1] * args[2] / abs(args[1])
-        elif len(args) == 2:
-            if isinstance(args[0], Point3) and isinstance(args[1], Point3):
-                self.p = args[0].copy()
-                self.v = args[1] - args[0]
-            elif isinstance(args[0], Point3) and isinstance(args[1], Vector3):
-                self.p = args[0].copy()
-                self.v = args[1].copy()
-            else:
-                raise AttributeError, '%r' % (args,)
-        elif len(args) == 1:
-            if isinstance(args[0], Line3):
-                self.p = args[0].p.copy()
-                self.v = args[0].v.copy()
-            else:
-                raise AttributeError, '%r' % (args,)
-        else:
-            raise AttributeError, '%r' % (args,)
-        
-        # XXX This is annoying.
-        #if not self.v:
-        #    raise AttributeError, 'Line has zero-length vector'
-
-    def __copy__(self):
-        return self.__class__(self.p, self.v)
-
-    copy = __copy__
-
-    def __repr__(self):
-        return 'Line3(<%.2f, %.2f, %.2f> + u<%.2f, %.2f, %.2f>)' % \
-            (self.p.x, self.p.y, self.p.z, self.v.x, self.v.y, self.v.z)
-
-    p1 = property(lambda self: self.p)
-    p2 = property(lambda self: Point3(self.p.x + self.v.x, 
-                                      self.p.y + self.v.y,
-                                      self.p.z + self.v.z))
-
-    def _apply_transform(self, t):
-        self.p = t * self.p
-        self.v = t * self.v
-
-    def _u_in(self, u):
-        return True
-
-    def intersect(self, other):
-        return other._intersect_line3(self)
-
-    def _intersect_sphere(self, other):
-        return _intersect_line3_sphere(self, other)
-
-    def _intersect_plane(self, other):
-        return _intersect_line3_plane(self, other)
-
-    def connect(self, other):
-        return other._connect_line3(self)
-
-    def _connect_point3(self, other):
-        return _connect_point3_line3(other, self)
-
-    def _connect_line3(self, other):
-        return _connect_line3_line3(other, self)
-
-    def _connect_sphere(self, other):
-        return _connect_sphere_line3(other, self)
-
-    def _connect_plane(self, other):
-        c = _connect_line3_plane(self, other)
-        if c:
-            return c
-
-class Ray3(Line3):
-    def __repr__(self):
-        return 'Ray3(<%.2f, %.2f, %.2f> + u<%.2f, %.2f, %.2f>)' % \
-            (self.p.x, self.p.y, self.p.z, self.v.x, self.v.y, self.v.z)
-
-    def _u_in(self, u):
-        return u >= 0.0
-
-class LineSegment3(Line3):
-    def __repr__(self):
-        return 'LineSegment3(<%.2f, %.2f, %.2f> to <%.2f, %.2f, %.2f>)' % \
-            (self.p.x, self.p.y, self.p.z,
-             self.p.x + self.v.x, self.p.y + self.v.y, self.p.z + self.v.z)
-
-    def _u_in(self, u):
-        return u >= 0.0 and u <= 1.0
-
-    def __abs__(self):
-        return abs(self.v)
-
-    def magnitude_squared(self):
-        return self.v.magnitude_squared()
-
-    def _swap(self):
-        # used by connect methods to switch order of points
-        self.p = self.p2
-        self.v *= -1
-        return self
-
-    length = property(lambda self: abs(self.v))
-
-class Sphere:
-    __slots__ = ['c', 'r']
-
-    def __init__(self, center, radius):
-        assert isinstance(center, Vector3) and type(radius) == float
-        self.c = center.copy()
-        self.r = radius
-
-    def __copy__(self):
-        return self.__class__(self.c, self.r)
-
-    copy = __copy__
-
-    def __repr__(self):
-        return 'Sphere(<%.2f, %.2f, %.2f>, radius=%.2f)' % \
-            (self.c.x, self.c.y, self.c.z, self.r)
-
-    def _apply_transform(self, t):
-        self.c = t * self.c
-
-    def intersect(self, other):
-        return other._intersect_sphere(self)
-
-    def _intersect_point3(self, other):
-        return _intersect_point3_sphere(other, self)
-
-    def _intersect_line3(self, other):
-        return _intersect_line3_sphere(other, self)
-
-    def connect(self, other):
-        return other._connect_sphere(self)
-
-    def _connect_point3(self, other):
-        return _connect_point3_sphere(other, self)
-
-    def _connect_line3(self, other):
-        c = _connect_sphere_line3(self, other)
-        if c:
-            return c._swap()
-
-    def _connect_sphere(self, other):
-        return _connect_sphere_sphere(other, self)
-
-    def _connect_plane(self, other):
-        c = _connect_sphere_plane(self, other)
-        if c:
-            return c
-
-class Plane:
-    # n.p = k, where n is normal, p is point on plane, k is constant scalar
-    __slots__ = ['n', 'k']
-
-    def __init__(self, *args):
-        if len(args) == 3:
-            assert isinstance(args[0], Point3) and \
-                   isinstance(args[1], Point3) and \
-                   isinstance(args[2], Point3)
-            self.n = (args[1] - args[0]).cross(args[2] - args[0])
-            self.n.normalize()
-            self.k = self.n.dot(args[0])
-        elif len(args) == 2:
-            if isinstance(args[0], Point3) and isinstance(args[1], Vector3):
-                self.n = args[1].normalized()
-                self.k = self.n.dot(args[0])
-            elif isinstance(args[0], Vector3) and type(args[1]) == float:
-                self.n = args[0].normalized()
-                self.k = args[1]
-            else:
-                raise AttributeError, '%r' % (args,)
-
-        else:
-            raise AttributeError, '%r' % (args,)
-        
-        if not self.n:
-            raise AttributeError, 'Points on plane are colinear'
-
-    def __copy__(self):
-        return self.__class__(self.n, self.k)
-
-    copy = __copy__
-
-    def __repr__(self):
-        return 'Plane(<%.2f, %.2f, %.2f>.p = %.2f)' % \
-            (self.n.x, self.n.y, self.n.z, self.k)
-
-    def _get_point(self):
-        # Return an arbitrary point on the plane
-        if self.n.z:
-            return Point3(0., 0., self.k / self.n.z)
-        elif self.n.y:
-            return Point3(0., self.k / self.n.y, 0.)
-        else:
-            return Point3(self.k / self.n.x, 0., 0.)
-
-    def _apply_transform(self, t):
-        p = t * self._get_point()
-        self.n = t * self.n
-        self.k = self.n.dot(p)
-
-    def intersect(self, other):
-        return other._intersect_plane(self)
-
-    def _intersect_line3(self, other):
-        return _intersect_line3_plane(other, self)
-
-    def _intersect_plane(self, other):
-        return _intersect_plane_plane(self, other)
-
-    def connect(self, other):
-        return other._connect_plane(self)
-
-    def _connect_point3(self, other):
-        return _connect_point3_plane(other, self)
-
-    def _connect_line3(self, other):
-        return _connect_line3_plane(other, self)
-
-    def _connect_sphere(self, other):
-        return _connect_sphere_plane(other, self)
-
-    def _connect_plane(self, other):
-        return _connect_plane_plane(other, self)
-