yade-dev team mailing list archive
-
yade-dev team
-
Mailing list archive
-
Message #04406
Re: straight clumps with eigen?
-
To:
yade-dev@xxxxxxxxxxxxxxxxxxx
-
From:
Janek Kozicki <janek_listy@xxxxx>
-
Date:
Fri, 14 May 2010 16:14:06 +0200
-
Face:
iVBORw0KGgoAAAANSUhEUgAAADAAAAAwBAMAAAClLOS0AAAALVBMVEUBAQEtLS1KSkpRUVFXV1dYWFhjY2Nzc3N3d3eHh4eKioqdnZ24uLjLy8vc3NxVIagyAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAB3RJTUUH2AIVEzgS1fgQtQAAAjRJREFUOMtt1DFv00AUAOAzFQNbjigSyoQaRaBMhKgLUyKXpVNNeUpk9vyDqFJhQ1kiBuaqAwJCqvPtSLY7RlTn5+5IdnYkkt/AOyfxXVLe5vf53Z1875kd34tOEax8djmj6GyjhB5bxz50GdsVZr9fqRjZwAtKOJw5Wqs2MMZ16ALHsaDncF7xAHix1oEFHAB8f+pRjcO4gfZDykcYzbiucRolOLUJ6kjA0xtVt+A6TySlM0RajIpK6DzwKZ/nOYbF/gclHMo1ZOHYY/+Ha+AWuM+3oMS4eeqYzZ8FiCltgUqI8cd2wwAVpJk+8LWYjBtnJdQpHQqJMd4Oxt4bU9ESiFGc5hkqaH74asAX4iabP5I5gZ+qjgGlJCqZa3h3lxhoeVcSE1qLQC4sqKOK9MGW9E3izFqqHokoztLFEgXg31sbZEKnWi2T74A4NxfVQqlkjKtcAWD+zcArFEES01dR0E/nnV0IgugmDd/2L84sOAouRBBHEc7gtc8teDkRlE0iNQPo2w3Xhh/D4TCIQ4LRLoTvgwjj6RRgavdurxYGMaIuGOyAW/PpNlCcU9/93AHenAWYjPoAwa+G3e3to/MgFNTAEKvKDjzuCzHTnY3qqdXtx24VijzQfZ0yewZ5cwRFQaa+mIYr1uI0I76+3W4xhlvoVRwOA0Fdl64HlJnxP6T8YpX/Lga4Wv4A3ErrU5oTfN7Mu/llXMl8RXEPji/lQkN3H7qXqgC2By47EXeU/7PJ/wPxRKMnuZwIeAAAAABJRU5ErkJggg==
-
In-reply-to:
<1273840400.2324.13.camel@flux>
Václav Šmilauer said: (by the date of Fri, 14 May 2010 14:33:20 +0200)
> Yes, I know they are straight. Their relative position is computed
> wrong, which seems to come from different rotation matrix ordering from
> Eigen in lib/base/Math.hpp, function matrixEigenDecomposition.
> https://bugs.launchpad.net/yade/+bug/577581
Ok, thanks.
Could it be a problem with left handed vs. right handed coordinate system?
> If you could compare in depth (by source) what wm3 and eigen computes,
"computes" - but in which place?
> that would be great. (BTW eigen has excellent docs, you don't have to go
> to sources for that one, I think: http://eigen.tuxfamily.org)
Do you mean comparing:
lib/miniWm3/Wm3Matrix3.inl:830
template <class Real>
void Matrix3<Real>::EigenDecomposition_ (Matrix3& rkRot, Matrix3& rkDiag) const
with
EigenSolver.h from libeigen2-dev ?
Could be hard. But I am attaching that file :)
--
Janek Kozicki http://janek.kozicki.pl/ |
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@xxxxxxx>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_EIGENSOLVER_H
#define EIGEN_EIGENSOLVER_H
/** \ingroup QR_Module
* \nonstableyet
*
* \class EigenSolver
*
* \brief Eigen values/vectors solver for non selfadjoint matrices
*
* \param MatrixType the type of the matrix of which we are computing the eigen decomposition
*
* Currently it only support real matrices.
*
* \note this code was adapted from JAMA (public domain)
*
* \sa MatrixBase::eigenvalues(), SelfAdjointEigenSolver
*/
template<typename _MatrixType> class EigenSolver
{
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef std::complex<RealScalar> Complex;
typedef Matrix<Complex, MatrixType::ColsAtCompileTime, 1> EigenvalueType;
typedef Matrix<Complex, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> EigenvectorType;
typedef Matrix<RealScalar, MatrixType::ColsAtCompileTime, 1> RealVectorType;
typedef Matrix<RealScalar, Dynamic, 1> RealVectorTypeX;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via EigenSolver::compute(const MatrixType&).
*/
EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false) {}
EigenSolver(const MatrixType& matrix)
: m_eivec(matrix.rows(), matrix.cols()),
m_eivalues(matrix.cols()),
m_isInitialized(false)
{
compute(matrix);
}
EigenvectorType eigenvectors(void) const;
/** \returns a real matrix V of pseudo eigenvectors.
*
* Let D be the block diagonal matrix with the real eigenvalues in 1x1 blocks,
* and any complex values u+iv in 2x2 blocks [u v ; -v u]. Then, the matrices D
* and V satisfy A*V = V*D.
*
* More precisely, if the diagonal matrix of the eigen values is:\n
* \f$
* \left[ \begin{array}{cccccc}
* u+iv & & & & & \\
* & u-iv & & & & \\
* & & a+ib & & & \\
* & & & a-ib & & \\
* & & & & x & \\
* & & & & & y \\
* \end{array} \right]
* \f$ \n
* then, we have:\n
* \f$
* D =\left[ \begin{array}{cccccc}
* u & v & & & & \\
* -v & u & & & & \\
* & & a & b & & \\
* & & -b & a & & \\
* & & & & x & \\
* & & & & & y \\
* \end{array} \right]
* \f$
*
* \sa pseudoEigenvalueMatrix()
*/
const MatrixType& pseudoEigenvectors() const
{
ei_assert(m_isInitialized && "EigenSolver is not initialized.");
return m_eivec;
}
MatrixType pseudoEigenvalueMatrix() const;
/** \returns the eigenvalues as a column vector */
EigenvalueType eigenvalues() const
{
ei_assert(m_isInitialized && "EigenSolver is not initialized.");
return m_eivalues;
}
void compute(const MatrixType& matrix);
private:
void orthes(MatrixType& matH, RealVectorType& ort);
void hqr2(MatrixType& matH);
protected:
MatrixType m_eivec;
EigenvalueType m_eivalues;
bool m_isInitialized;
};
/** \returns the real block diagonal matrix D of the eigenvalues.
*
* See pseudoEigenvectors() for the details.
*/
template<typename MatrixType>
MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
{
ei_assert(m_isInitialized && "EigenSolver is not initialized.");
int n = m_eivec.cols();
MatrixType matD = MatrixType::Zero(n,n);
for (int i=0; i<n; ++i)
{
if (ei_isMuchSmallerThan(ei_imag(m_eivalues.coeff(i)), ei_real(m_eivalues.coeff(i))))
matD.coeffRef(i,i) = ei_real(m_eivalues.coeff(i));
else
{
matD.template block<2,2>(i,i) << ei_real(m_eivalues.coeff(i)), ei_imag(m_eivalues.coeff(i)),
-ei_imag(m_eivalues.coeff(i)), ei_real(m_eivalues.coeff(i));
++i;
}
}
return matD;
}
/** \returns the normalized complex eigenvectors as a matrix of column vectors.
*
* \sa eigenvalues(), pseudoEigenvectors()
*/
template<typename MatrixType>
typename EigenSolver<MatrixType>::EigenvectorType EigenSolver<MatrixType>::eigenvectors(void) const
{
ei_assert(m_isInitialized && "EigenSolver is not initialized.");
int n = m_eivec.cols();
EigenvectorType matV(n,n);
for (int j=0; j<n; ++j)
{
if (ei_isMuchSmallerThan(ei_abs(ei_imag(m_eivalues.coeff(j))), ei_abs(ei_real(m_eivalues.coeff(j)))))
{
// we have a real eigen value
matV.col(j) = m_eivec.col(j).template cast<Complex>();
}
else
{
// we have a pair of complex eigen values
for (int i=0; i<n; ++i)
{
matV.coeffRef(i,j) = Complex(m_eivec.coeff(i,j), m_eivec.coeff(i,j+1));
matV.coeffRef(i,j+1) = Complex(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1));
}
matV.col(j).normalize();
matV.col(j+1).normalize();
++j;
}
}
return matV;
}
template<typename MatrixType>
void EigenSolver<MatrixType>::compute(const MatrixType& matrix)
{
assert(matrix.cols() == matrix.rows());
int n = matrix.cols();
m_eivalues.resize(n,1);
MatrixType matH = matrix;
RealVectorType ort(n);
// Reduce to Hessenberg form.
orthes(matH, ort);
// Reduce Hessenberg to real Schur form.
hqr2(matH);
m_isInitialized = true;
}
// Nonsymmetric reduction to Hessenberg form.
template<typename MatrixType>
void EigenSolver<MatrixType>::orthes(MatrixType& matH, RealVectorType& ort)
{
// This is derived from the Algol procedures orthes and ortran,
// by Martin and Wilkinson, Handbook for Auto. Comp.,
// Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutines in EISPACK.
int n = m_eivec.cols();
int low = 0;
int high = n-1;
for (int m = low+1; m <= high-1; ++m)
{
// Scale column.
RealScalar scale = matH.block(m, m-1, high-m+1, 1).cwise().abs().sum();
if (scale != 0.0)
{
// Compute Householder transformation.
RealScalar h = 0.0;
// FIXME could be rewritten, but this one looks better wrt cache
for (int i = high; i >= m; i--)
{
ort.coeffRef(i) = matH.coeff(i,m-1)/scale;
h += ort.coeff(i) * ort.coeff(i);
}
RealScalar g = ei_sqrt(h);
if (ort.coeff(m) > 0)
g = -g;
h = h - ort.coeff(m) * g;
ort.coeffRef(m) = ort.coeff(m) - g;
// Apply Householder similarity transformation
// H = (I-u*u'/h)*H*(I-u*u')/h)
int bSize = high-m+1;
matH.block(m, m, bSize, n-m) -= ((ort.segment(m, bSize)/h)
* (ort.segment(m, bSize).transpose() * matH.block(m, m, bSize, n-m)).lazy()).lazy();
matH.block(0, m, high+1, bSize) -= ((matH.block(0, m, high+1, bSize) * ort.segment(m, bSize)).lazy()
* (ort.segment(m, bSize)/h).transpose()).lazy();
ort.coeffRef(m) = scale*ort.coeff(m);
matH.coeffRef(m,m-1) = scale*g;
}
}
// Accumulate transformations (Algol's ortran).
m_eivec.setIdentity();
for (int m = high-1; m >= low+1; m--)
{
if (matH.coeff(m,m-1) != 0.0)
{
ort.segment(m+1, high-m) = matH.col(m-1).segment(m+1, high-m);
int bSize = high-m+1;
m_eivec.block(m, m, bSize, bSize) += ( (ort.segment(m, bSize) / (matH.coeff(m,m-1) * ort.coeff(m) ) )
* (ort.segment(m, bSize).transpose() * m_eivec.block(m, m, bSize, bSize)).lazy());
}
}
}
// Complex scalar division.
template<typename Scalar>
std::complex<Scalar> cdiv(Scalar xr, Scalar xi, Scalar yr, Scalar yi)
{
Scalar r,d;
if (ei_abs(yr) > ei_abs(yi))
{
r = yi/yr;
d = yr + r*yi;
return std::complex<Scalar>((xr + r*xi)/d, (xi - r*xr)/d);
}
else
{
r = yr/yi;
d = yi + r*yr;
return std::complex<Scalar>((r*xr + xi)/d, (r*xi - xr)/d);
}
}
// Nonsymmetric reduction from Hessenberg to real Schur form.
template<typename MatrixType>
void EigenSolver<MatrixType>::hqr2(MatrixType& matH)
{
// This is derived from the Algol procedure hqr2,
// by Martin and Wilkinson, Handbook for Auto. Comp.,
// Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
// Initialize
int nn = m_eivec.cols();
int n = nn-1;
int low = 0;
int high = nn-1;
Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52));
Scalar exshift = 0.0;
Scalar p=0,q=0,r=0,s=0,z=0,t,w,x,y;
// Store roots isolated by balanc and compute matrix norm
// FIXME to be efficient the following would requires a triangular reduxion code
// Scalar norm = matH.upper().cwise().abs().sum() + matH.corner(BottomLeft,n,n).diagonal().cwise().abs().sum();
Scalar norm = 0.0;
for (int j = 0; j < nn; ++j)
{
// FIXME what's the purpose of the following since the condition is always false
if ((j < low) || (j > high))
{
m_eivalues.coeffRef(j) = Complex(matH.coeff(j,j), 0.0);
}
norm += matH.row(j).segment(std::max(j-1,0), nn-std::max(j-1,0)).cwise().abs().sum();
}
// Outer loop over eigenvalue index
int iter = 0;
while (n >= low)
{
// Look for single small sub-diagonal element
int l = n;
while (l > low)
{
s = ei_abs(matH.coeff(l-1,l-1)) + ei_abs(matH.coeff(l,l));
if (s == 0.0)
s = norm;
if (ei_abs(matH.coeff(l,l-1)) < eps * s)
break;
l--;
}
// Check for convergence
// One root found
if (l == n)
{
matH.coeffRef(n,n) = matH.coeff(n,n) + exshift;
m_eivalues.coeffRef(n) = Complex(matH.coeff(n,n), 0.0);
n--;
iter = 0;
}
else if (l == n-1) // Two roots found
{
w = matH.coeff(n,n-1) * matH.coeff(n-1,n);
p = (matH.coeff(n-1,n-1) - matH.coeff(n,n)) * Scalar(0.5);
q = p * p + w;
z = ei_sqrt(ei_abs(q));
matH.coeffRef(n,n) = matH.coeff(n,n) + exshift;
matH.coeffRef(n-1,n-1) = matH.coeff(n-1,n-1) + exshift;
x = matH.coeff(n,n);
// Scalar pair
if (q >= 0)
{
if (p >= 0)
z = p + z;
else
z = p - z;
m_eivalues.coeffRef(n-1) = Complex(x + z, 0.0);
m_eivalues.coeffRef(n) = Complex(z!=0.0 ? x - w / z : m_eivalues.coeff(n-1).real(), 0.0);
x = matH.coeff(n,n-1);
s = ei_abs(x) + ei_abs(z);
p = x / s;
q = z / s;
r = ei_sqrt(p * p+q * q);
p = p / r;
q = q / r;
// Row modification
for (int j = n-1; j < nn; ++j)
{
z = matH.coeff(n-1,j);
matH.coeffRef(n-1,j) = q * z + p * matH.coeff(n,j);
matH.coeffRef(n,j) = q * matH.coeff(n,j) - p * z;
}
// Column modification
for (int i = 0; i <= n; ++i)
{
z = matH.coeff(i,n-1);
matH.coeffRef(i,n-1) = q * z + p * matH.coeff(i,n);
matH.coeffRef(i,n) = q * matH.coeff(i,n) - p * z;
}
// Accumulate transformations
for (int i = low; i <= high; ++i)
{
z = m_eivec.coeff(i,n-1);
m_eivec.coeffRef(i,n-1) = q * z + p * m_eivec.coeff(i,n);
m_eivec.coeffRef(i,n) = q * m_eivec.coeff(i,n) - p * z;
}
}
else // Complex pair
{
m_eivalues.coeffRef(n-1) = Complex(x + p, z);
m_eivalues.coeffRef(n) = Complex(x + p, -z);
}
n = n - 2;
iter = 0;
}
else // No convergence yet
{
// Form shift
x = matH.coeff(n,n);
y = 0.0;
w = 0.0;
if (l < n)
{
y = matH.coeff(n-1,n-1);
w = matH.coeff(n,n-1) * matH.coeff(n-1,n);
}
// Wilkinson's original ad hoc shift
if (iter == 10)
{
exshift += x;
for (int i = low; i <= n; ++i)
matH.coeffRef(i,i) -= x;
s = ei_abs(matH.coeff(n,n-1)) + ei_abs(matH.coeff(n-1,n-2));
x = y = Scalar(0.75) * s;
w = Scalar(-0.4375) * s * s;
}
// MATLAB's new ad hoc shift
if (iter == 30)
{
s = Scalar((y - x) / 2.0);
s = s * s + w;
if (s > 0)
{
s = ei_sqrt(s);
if (y < x)
s = -s;
s = Scalar(x - w / ((y - x) / 2.0 + s));
for (int i = low; i <= n; ++i)
matH.coeffRef(i,i) -= s;
exshift += s;
x = y = w = Scalar(0.964);
}
}
iter = iter + 1; // (Could check iteration count here.)
// Look for two consecutive small sub-diagonal elements
int m = n-2;
while (m >= l)
{
z = matH.coeff(m,m);
r = x - z;
s = y - z;
p = (r * s - w) / matH.coeff(m+1,m) + matH.coeff(m,m+1);
q = matH.coeff(m+1,m+1) - z - r - s;
r = matH.coeff(m+2,m+1);
s = ei_abs(p) + ei_abs(q) + ei_abs(r);
p = p / s;
q = q / s;
r = r / s;
if (m == l) {
break;
}
if (ei_abs(matH.coeff(m,m-1)) * (ei_abs(q) + ei_abs(r)) <
eps * (ei_abs(p) * (ei_abs(matH.coeff(m-1,m-1)) + ei_abs(z) +
ei_abs(matH.coeff(m+1,m+1)))))
{
break;
}
m--;
}
for (int i = m+2; i <= n; ++i)
{
matH.coeffRef(i,i-2) = 0.0;
if (i > m+2)
matH.coeffRef(i,i-3) = 0.0;
}
// Double QR step involving rows l:n and columns m:n
for (int k = m; k <= n-1; ++k)
{
int notlast = (k != n-1);
if (k != m) {
p = matH.coeff(k,k-1);
q = matH.coeff(k+1,k-1);
r = notlast ? matH.coeff(k+2,k-1) : Scalar(0);
x = ei_abs(p) + ei_abs(q) + ei_abs(r);
if (x != 0.0)
{
p = p / x;
q = q / x;
r = r / x;
}
}
if (x == 0.0)
break;
s = ei_sqrt(p * p + q * q + r * r);
if (p < 0)
s = -s;
if (s != 0)
{
if (k != m)
matH.coeffRef(k,k-1) = -s * x;
else if (l != m)
matH.coeffRef(k,k-1) = -matH.coeff(k,k-1);
p = p + s;
x = p / s;
y = q / s;
z = r / s;
q = q / p;
r = r / p;
// Row modification
for (int j = k; j < nn; ++j)
{
p = matH.coeff(k,j) + q * matH.coeff(k+1,j);
if (notlast)
{
p = p + r * matH.coeff(k+2,j);
matH.coeffRef(k+2,j) = matH.coeff(k+2,j) - p * z;
}
matH.coeffRef(k,j) = matH.coeff(k,j) - p * x;
matH.coeffRef(k+1,j) = matH.coeff(k+1,j) - p * y;
}
// Column modification
for (int i = 0; i <= std::min(n,k+3); ++i)
{
p = x * matH.coeff(i,k) + y * matH.coeff(i,k+1);
if (notlast)
{
p = p + z * matH.coeff(i,k+2);
matH.coeffRef(i,k+2) = matH.coeff(i,k+2) - p * r;
}
matH.coeffRef(i,k) = matH.coeff(i,k) - p;
matH.coeffRef(i,k+1) = matH.coeff(i,k+1) - p * q;
}
// Accumulate transformations
for (int i = low; i <= high; ++i)
{
p = x * m_eivec.coeff(i,k) + y * m_eivec.coeff(i,k+1);
if (notlast)
{
p = p + z * m_eivec.coeff(i,k+2);
m_eivec.coeffRef(i,k+2) = m_eivec.coeff(i,k+2) - p * r;
}
m_eivec.coeffRef(i,k) = m_eivec.coeff(i,k) - p;
m_eivec.coeffRef(i,k+1) = m_eivec.coeff(i,k+1) - p * q;
}
} // (s != 0)
} // k loop
} // check convergence
} // while (n >= low)
// Backsubstitute to find vectors of upper triangular form
if (norm == 0.0)
{
return;
}
for (n = nn-1; n >= 0; n--)
{
p = m_eivalues.coeff(n).real();
q = m_eivalues.coeff(n).imag();
// Scalar vector
if (q == 0)
{
int l = n;
matH.coeffRef(n,n) = 1.0;
for (int i = n-1; i >= 0; i--)
{
w = matH.coeff(i,i) - p;
r = (matH.row(i).segment(l,n-l+1) * matH.col(n).segment(l, n-l+1))(0,0);
if (m_eivalues.coeff(i).imag() < 0.0)
{
z = w;
s = r;
}
else
{
l = i;
if (m_eivalues.coeff(i).imag() == 0.0)
{
if (w != 0.0)
matH.coeffRef(i,n) = -r / w;
else
matH.coeffRef(i,n) = -r / (eps * norm);
}
else // Solve real equations
{
x = matH.coeff(i,i+1);
y = matH.coeff(i+1,i);
q = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
t = (x * s - z * r) / q;
matH.coeffRef(i,n) = t;
if (ei_abs(x) > ei_abs(z))
matH.coeffRef(i+1,n) = (-r - w * t) / x;
else
matH.coeffRef(i+1,n) = (-s - y * t) / z;
}
// Overflow control
t = ei_abs(matH.coeff(i,n));
if ((eps * t) * t > 1)
matH.col(n).end(nn-i) /= t;
}
}
}
else if (q < 0) // Complex vector
{
std::complex<Scalar> cc;
int l = n-1;
// Last vector component imaginary so matrix is triangular
if (ei_abs(matH.coeff(n,n-1)) > ei_abs(matH.coeff(n-1,n)))
{
matH.coeffRef(n-1,n-1) = q / matH.coeff(n,n-1);
matH.coeffRef(n-1,n) = -(matH.coeff(n,n) - p) / matH.coeff(n,n-1);
}
else
{
cc = cdiv<Scalar>(0.0,-matH.coeff(n-1,n),matH.coeff(n-1,n-1)-p,q);
matH.coeffRef(n-1,n-1) = ei_real(cc);
matH.coeffRef(n-1,n) = ei_imag(cc);
}
matH.coeffRef(n,n-1) = 0.0;
matH.coeffRef(n,n) = 1.0;
for (int i = n-2; i >= 0; i--)
{
Scalar ra,sa,vr,vi;
ra = (matH.block(i,l, 1, n-l+1) * matH.block(l,n-1, n-l+1, 1)).lazy()(0,0);
sa = (matH.block(i,l, 1, n-l+1) * matH.block(l,n, n-l+1, 1)).lazy()(0,0);
w = matH.coeff(i,i) - p;
if (m_eivalues.coeff(i).imag() < 0.0)
{
z = w;
r = ra;
s = sa;
}
else
{
l = i;
if (m_eivalues.coeff(i).imag() == 0)
{
cc = cdiv(-ra,-sa,w,q);
matH.coeffRef(i,n-1) = ei_real(cc);
matH.coeffRef(i,n) = ei_imag(cc);
}
else
{
// Solve complex equations
x = matH.coeff(i,i+1);
y = matH.coeff(i+1,i);
vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
if ((vr == 0.0) && (vi == 0.0))
vr = eps * norm * (ei_abs(w) + ei_abs(q) + ei_abs(x) + ei_abs(y) + ei_abs(z));
cc= cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi);
matH.coeffRef(i,n-1) = ei_real(cc);
matH.coeffRef(i,n) = ei_imag(cc);
if (ei_abs(x) > (ei_abs(z) + ei_abs(q)))
{
matH.coeffRef(i+1,n-1) = (-ra - w * matH.coeff(i,n-1) + q * matH.coeff(i,n)) / x;
matH.coeffRef(i+1,n) = (-sa - w * matH.coeff(i,n) - q * matH.coeff(i,n-1)) / x;
}
else
{
cc = cdiv(-r-y*matH.coeff(i,n-1),-s-y*matH.coeff(i,n),z,q);
matH.coeffRef(i+1,n-1) = ei_real(cc);
matH.coeffRef(i+1,n) = ei_imag(cc);
}
}
// Overflow control
t = std::max(ei_abs(matH.coeff(i,n-1)),ei_abs(matH.coeff(i,n)));
if ((eps * t) * t > 1)
matH.block(i, n-1, nn-i, 2) /= t;
}
}
}
}
// Vectors of isolated roots
for (int i = 0; i < nn; ++i)
{
// FIXME again what's the purpose of this test ?
// in this algo low==0 and high==nn-1 !!
if (i < low || i > high)
{
m_eivec.row(i).end(nn-i) = matH.row(i).end(nn-i);
}
}
// Back transformation to get eigenvectors of original matrix
int bRows = high-low+1;
for (int j = nn-1; j >= low; j--)
{
int bSize = std::min(j,high)-low+1;
m_eivec.col(j).segment(low, bRows) = (m_eivec.block(low, low, bRows, bSize) * matH.col(j).segment(low, bSize));
}
}
#endif // EIGEN_EIGENSOLVER_H
Follow ups
References