← Back to team overview

yade-dev team mailing list archive

[Branch ~yade-dev/yade/trunk] Rev 2688: - update bodyStressTensor doc.

 

------------------------------------------------------------
revno: 2688
committer: Bruno Chareyre <bruno.chareyre@xxxxxxxxxxx>
branch nick: yade
timestamp: Thu 2011-01-27 20:15:35 +0100
message:
  - update bodyStressTensor doc.
modified:
  py/_utils.cpp


--
lp:yade
https://code.launchpad.net/~yade-dev/yade/trunk

Your team Yade developers is subscribed to branch lp:yade.
To unsubscribe from this branch go to https://code.launchpad.net/~yade-dev/yade/trunk/+edit-subscription
=== modified file 'py/_utils.cpp'
--- py/_utils.cpp	2011-01-17 15:44:53 +0000
+++ py/_utils.cpp	2011-01-27 19:15:35 +0000
@@ -471,6 +471,6 @@
 	py::def("getViscoelasticFromSpheresInteraction",getViscoelasticFromSpheresInteraction,(py::arg("tc"),py::arg("en"),py::arg("es")),"Compute viscoelastic interaction parameters from analytical solution of a pair spheres collision problem:\n\n\n.. math::\n\t:nowrap:\n\n\n\t\\begin{align*}k_n&=\\frac{m}{t_c^2}\\left(\\pi^2+(\\ln e_n)^2\\right)\\\\  c_n&=-\\frac{2m}{t_c}\\ln e_n \\\\k_t&=\\frac27\\frac{m}{t_c^2}\\left(\\pi^2+(\\ln e_t)^2\\right)  \\\\ c_t=-\\frac27\\frac{m}{t_c}\\ln e_t \\end{align*}\n\n\nwhere $k_n$, $c_n$ are normal elastic and viscous coefficients and $k_t$, $c_t$ shear elastic and viscous coefficients. For details see [Pournin2001]_.\n\n:param float m: sphere mass $m$\n:param float tc: collision time $t_c$\n:param float en: normal restitution coefficient $e_n$\n:param float es: tangential restitution coefficient $e_s$\n:return: dictionary with keys ``kn`` (the value of $k_n$), ``cn`` ($c_n$), ``kt`` ($k_t$), ``ct`` ($c_t$).");
 	py::def("stressTensorOfPeriodicCell",Shop__stressTensorOfPeriodicCell,(py::args("smallStrains")=false),"Compute overall (macroscopic) stress of periodic cell using equation published in [Kuhl2001]_:\n\n.. math:: \\vec{\\sigma}=\\frac{1}{V}\\sum_cl^c[\\vec{N}^cf_N^c+\\vec{T}^{cT}\\cdot\\vec{f}^c_T],\n\nwhere $V$ is volume of the cell, $l^c$ length of interaction $c$, $f^c_N$ normal force and $\\vec{f}^c_T$ shear force. Sumed are values over all interactions $c$. $\\vec{N}^c$ and $\\vec{T}^{cT}$ are projection tensors (see the original publication for more details):\n\n.. math:: \\vec{N}=\\vec{n}\\otimes\\vec{n}\\rightarrow N_{ij}=n_in_j\n\n.. math:: \\vec{T}^T=\\vec{I}_{sym}\\cdot\\vec{n}-\\vec{n}\\otimes\\vec{n}\\otimes\\vec{n}\\rightarrow T^T_{ijk}=\\frac{1}{2}(\\delta_{ik}\\delta_{jl}+\\delta_{il}\\delta_{jk})n_l-n_in_jn_k\n\n.. math:: \\vec{T}^T\\cdot\\vec{f}_T\\equiv T^T_{ijk}f_k=(\\delta_{ik}n_j/2+\\delta_{jk}n_i/2-n_in_jn_k)f_k=n_jf_i/2+n_if_j/2-n_in_jn_kf_k,\n\nwhere $n$ is unit vector oriented along the interaction (:yref:`normal<GenericSpheresContact::normal>`) and $\\delta$ is Kronecker's delta. As $\\vec{n}$ and $\\vec{f}_T$ are perpendicular (therfore $n_if_i=0$) we can write\n\n.. math:: \\sigma_{ij}=\\frac{1}{V}\\sum l[n_in_jf_N+n_jf^T_i/2+n_if^T_j/2]\n\n:param bool smallStrains: if false (large strains), real values of volume and interaction lengths are computed. If true, only :yref:`refLength<Dem3DofGeom::refLength>` of interactions and initial volume are computed (can save some time).\n\n:return: macroscopic stress tensor as Matrix3");
 	py::def("normalShearStressTensors",Shop__normalShearStressTensors,(py::args("compressionPositive")=false),"Compute overall stress tensor of the periodic cell decomposed in 2 parts, one contributed by normal forces, the other by shear forces. The formulation can be found in [Thornton2000]_, eq. (3):\n\n.. math:: \\tens{\\sigma}_{ij}=\\frac{2}{V}\\sum R N \\vec{n}_i \\vec{n}_j+\\frac{2}{V}\\sum R T \\vec{n}_i\\vec{t}_j\n\nwhere $V$ is the cell volume, $R$ is \"contact radius\" (in our implementation, current distance between particle centroids), $\\vec{n}$ is the normal vector, $\\vec{t}$ is a vector perpendicular to $\\vec{n}$, $N$ and $T$ are norms of normal and shear forces.");
-	py::def("bodyStressTensors",Shop__getStressLWForEachBody,(py::args("revertSign")=false),"Compute the exact mean stress tensor in each sphere from the contour integral of applied load.\n\nAfter divergence theorem, at equilibrium: $\\int_V s_{ij}dV = \\int_{S_V} x_i.s_{ij}.n_j.dS = \\sum_kx_i^k.f_j^k$. This relation applies for arbitrary shapes but the result has to be divided by the solid's volume, computed here using the radii, hence assuming spheres. The (weighted) average of per-body stresses is exactly equal to the average stress in the solid phase, i.e. $\\sigma_{ij}^{macro}/compacity$.");
+	py::def("bodyStressTensors",Shop__getStressLWForEachBody,(py::args("revertSign")=false),"Compute and return a table with per-particle stress tensors. Each tensor represents the average stress in one particle, obtained from the contour integral of applied load as detailed below. This definition is considering each sphere as a continuum. It can be considered exact in the context of spheres at static equilibrium, interacting at contact points with negligible volume changes of the solid phase (this last assumption is not restricting possible deformations and volume changes at the packing scale).\n\nProof:\n\nFirst, we remark the identity:  $\\sigma_{ij}=\\delta_{ij}\\sigma_{ij}=x_{i,j}\\sigma_{ij}=(x_{i}\\sigma_{ij})_{,j}-x_{i}\\sigma_{ij,j}$.\n\nAt equilibrium, the divergence of stress is null: $\\sigma_{ij,j}=\\vec{0}$. Consequently, after divergence theorem: $\\frac{1}{V}\\int_V \\sigma_{ij}dV = \\frac{1}{V}\\int_V (x_{i}\\sigma_{ij})_{,j}dV = \\frac{1}{V}\\int_{\\partial V}x_i.\\sigma_{ij}.\\vec{n_j}.dS = \\frac{1}{V}\\sum_kx_i^k.f_j^k$.\n\nThe last equality is implicitely based on the representation of external loads as Dirac distributions whose zeros are the so-called *contact points*: 0-sized surfaces on which the *contact forces* are applied, located at $x_i$ in the deformed configuration.\n\nA weighted average of per-body stresses will give the average stress inside the solid phase. There is a simple relation between the stress inside the solid phase and the stress in an equivalent continuum in the absence of fluid pressure. For porosity $n$, the relation reads: $\\sigma_{ij}^{equ.}=(1-n)\\sigma_{ij}^{solid}$.\n\n:param bool revertSign: invert the sign of returned tensors components.");
 	py::def("maxOverlapRatio",maxOverlapRatio,"Return maximum overlap ration in interactions (with :yref:`ScGeom`) of two :yref:`spheres<Sphere>`. The ratio is computed as $\\frac{u_N}{2(r_1 r_2)/r_1+r_2}$, where $u_N$ is the current overlap distance and $r_1$, $r_2$ are radii of the two spheres in contact.");
 }