← Back to team overview

yade-dev team mailing list archive

[Branch ~yade-dev/yade/trunk] Rev 2720: - Forgot the reference (sorry). Fix doc.

 

------------------------------------------------------------
revno: 2720
committer: Chiara Modenese <c.modenese@xxxxxxxxx>
branch nick: yade
timestamp: Wed 2011-02-09 11:58:56 +0000
message:
  - Forgot the reference (sorry). Fix doc.
modified:
  pkg/dem/Shop.cpp
  pkg/dem/Shop.hpp
  py/_utils.cpp


--
lp:yade
https://code.launchpad.net/~yade-dev/yade/trunk

Your team Yade developers is subscribed to branch lp:yade.
To unsubscribe from this branch go to https://code.launchpad.net/~yade-dev/yade/trunk/+edit-subscription
=== modified file 'pkg/dem/Shop.cpp'
--- pkg/dem/Shop.cpp	2011-02-09 11:01:01 +0000
+++ pkg/dem/Shop.cpp	2011-02-09 11:58:56 +0000
@@ -566,7 +566,7 @@
 
 /* Return the fabric tensor as according to [Satake1982]. */
 /* as side-effect, set Gl1_NormShear::strongWeakThresholdForce */
-void Shop::fabricTensor(Real& Fmean, Matrix3r fabric, Matrix3r fabricStrong, Matrix3r fabricWeak, bool splitTensor, bool revertSign, Real thresholdForce){
+void Shop::fabricTensor(Real& Fmean, Matrix3r& fabric, Matrix3r& fabricStrong, Matrix3r& fabricWeak, bool splitTensor, bool revertSign, Real thresholdForce){
 	Scene* scene=Omega::instance().getScene().get();
 	if (!scene->isPeriodic){ throw runtime_error("Can't compute fabric tensor of periodic cell in aperiodic simulation."); }
 	

=== modified file 'pkg/dem/Shop.hpp'
--- pkg/dem/Shop.hpp	2011-02-09 11:01:01 +0000
+++ pkg/dem/Shop.hpp	2011-02-09 11:58:56 +0000
@@ -115,6 +115,6 @@
 		static py::tuple normalShearStressTensors(bool compressionPositive=false, bool splitNormalTensor=false, Real thresholdForce=NaN);
 		
 		//! Function to compute fabric tensor of periodic cell
-		static void fabricTensor(Real& Fmean, Matrix3r fabric, Matrix3r fabricStrong, Matrix3r fabricWeak, bool splitTensor=false, bool revertSign=false, Real thresholdForce=NaN);
+		static void fabricTensor(Real& Fmean, Matrix3r& fabric, Matrix3r& fabricStrong, Matrix3r& fabricWeak, bool splitTensor=false, bool revertSign=false, Real thresholdForce=NaN);
 		static py::tuple fabricTensor(bool splitTensor=false, bool revertSign=false, Real thresholdForce=NaN);
 };

=== modified file 'py/_utils.cpp'
--- py/_utils.cpp	2011-02-09 11:01:01 +0000
+++ py/_utils.cpp	2011-02-09 11:58:56 +0000
@@ -476,7 +476,7 @@
 	py::def("flipCell",&Shop::flipCell,(py::arg("flip")=Matrix3r(Matrix3r::Zero())),"Flip periodic cell so that angles between $R^3$ axes and transformed axes are as small as possible. This function relies on the fact that periodic cell defines by repetition or its corners regular grid of points in $R^3$; however, all cells generating identical grid are equivalent and can be flipped one over another. This necessiatates adjustment of :yref:`Interaction.cellDist` for interactions that cross boundary and didn't before (or vice versa), and re-initialization of collider. The *flip* argument can be used to specify desired flip: integers, each column for one axis; if zero matrix, best fit (minimizing the angles) is computed automatically.\n\nIn c++, this function is accessible as ``Shop::flipCell``.\n\n.. warning::\n\t This function is currently broken and should not be used.");
 	py::def("getViscoelasticFromSpheresInteraction",getViscoelasticFromSpheresInteraction,(py::arg("tc"),py::arg("en"),py::arg("es")),"Compute viscoelastic interaction parameters from analytical solution of a pair spheres collision problem:\n\n\n.. math::\n\t:nowrap:\n\n\n\t\\begin{align*}k_n&=\\frac{m}{t_c^2}\\left(\\pi^2+(\\ln e_n)^2\\right)\\\\  c_n&=-\\frac{2m}{t_c}\\ln e_n \\\\k_t&=\\frac27\\frac{m}{t_c^2}\\left(\\pi^2+(\\ln e_t)^2\\right)  \\\\ c_t=-\\frac27\\frac{m}{t_c}\\ln e_t \\end{align*}\n\n\nwhere $k_n$, $c_n$ are normal elastic and viscous coefficients and $k_t$, $c_t$ shear elastic and viscous coefficients. For details see [Pournin2001]_.\n\n:param float m: sphere mass $m$\n:param float tc: collision time $t_c$\n:param float en: normal restitution coefficient $e_n$\n:param float es: tangential restitution coefficient $e_s$\n:return: dictionary with keys ``kn`` (the value of $k_n$), ``cn`` ($c_n$), ``kt`` ($k_t$), ``ct`` ($c_t$).");
 	py::def("stressTensorOfPeriodicCell",Shop__stressTensorOfPeriodicCell,(py::args("smallStrains")=false),"Compute overall (macroscopic) stress of periodic cell using equation published in [Kuhl2001]_:\n\n.. math:: \\vec{\\sigma}=\\frac{1}{V}\\sum_cl^c[\\vec{N}^cf_N^c+\\vec{T}^{cT}\\cdot\\vec{f}^c_T],\n\nwhere $V$ is volume of the cell, $l^c$ length of interaction $c$, $f^c_N$ normal force and $\\vec{f}^c_T$ shear force. Sumed are values over all interactions $c$. $\\vec{N}^c$ and $\\vec{T}^{cT}$ are projection tensors (see the original publication for more details):\n\n.. math:: \\vec{N}=\\vec{n}\\otimes\\vec{n}\\rightarrow N_{ij}=n_in_j\n\n.. math:: \\vec{T}^T=\\vec{I}_{sym}\\cdot\\vec{n}-\\vec{n}\\otimes\\vec{n}\\otimes\\vec{n}\\rightarrow T^T_{ijk}=\\frac{1}{2}(\\delta_{ik}\\delta_{jl}+\\delta_{il}\\delta_{jk})n_l-n_in_jn_k\n\n.. math:: \\vec{T}^T\\cdot\\vec{f}_T\\equiv T^T_{ijk}f_k=(\\delta_{ik}n_j/2+\\delta_{jk}n_i/2-n_in_jn_k)f_k=n_jf_i/2+n_if_j/2-n_in_jn_kf_k,\n\nwhere $n$ is unit vector oriented along the interaction (:yref:`normal<GenericSpheresContact::normal>`) and $\\delta$ is Kronecker's delta. As $\\vec{n}$ and $\\vec{f}_T$ are perpendicular (therfore $n_if_i=0$) we can write\n\n.. math:: \\sigma_{ij}=\\frac{1}{V}\\sum l[n_in_jf_N+n_jf^T_i/2+n_if^T_j/2]\n\n:param bool smallStrains: if false (large strains), real values of volume and interaction lengths are computed. If true, only :yref:`refLength<Dem3DofGeom::refLength>` of interactions and initial volume are computed (can save some time).\n\n:return: macroscopic stress tensor as Matrix3");
-	py::def("normalShearStressTensors",Shop__normalShearStressTensors,(py::args("compressionPositive")=false,py::args("splitNormalTensor")=false,py::args("thresholdForce")=NaN),"Compute overall stress tensor of the periodic cell decomposed in 2 parts, one contributed by normal forces, the other by shear forces. The formulation can be found in [Thornton2000]_, eq. (3):\n\n.. math:: \\tens{\\sigma}_{ij}=\\frac{2}{V}\\sum R N \\vec{n}_i \\vec{n}_j+\\frac{2}{V}\\sum R T \\vec{n}_i\\vec{t}_j\n\nwhere $V$ is the cell volume, $R$ is \"contact radius\" (in our implementation, current distance between particle centroids), $\\vec{n}$ is the normal vector, $\\vec{t}$ is a vector perpendicular to $\\vec{n}$, $N$ and $T$ are norms of normal and shear forces.\n\n:param bool splitNormalTensor: return normal stress tensor split into two parts according to the two subnetworks of strong an weak forces.\n\n:param Real thresholdForce: threshold value according to which the normal stress tensor can be split (e.g. a zero value would make distinction between tensile and compressive forces).");
+	py::def("normalShearStressTensors",Shop__normalShearStressTensors,(py::args("compressionPositive")=false,py::args("splitNormalTensor")=false,py::args("thresholdForce")=NaN),"Compute overall stress tensor of the periodic cell decomposed in 2 parts, one contributed by normal forces, the other by shear forces. The formulation can be found in [Thornton2000]_, eq. (3):\n\n.. math:: \\tens{\\sigma}_{ij}=\\frac{2}{V}\\sum R N \\vec{n}_i \\vec{n}_j+\\frac{2}{V}\\sum R T \\vec{n}_i\\vec{t}_j\n\nwhere $V$ is the cell volume, $R$ is \"contact radius\" (in our implementation, current distance between particle centroids), $\\vec{n}$ is the normal vector, $\\vec{t}$ is a vector perpendicular to $\\vec{n}$, $N$ and $T$ are norms of normal and shear forces.\n\n:param bool splitNormalTensor: if true the function returns normal stress tensor split into two parts according to the two subnetworks of strong an weak forces.\n\n:param Real thresholdForce: threshold value according to which the normal stress tensor can be split (e.g. a zero value would make distinction between tensile and compressive forces).");
 	py::def("fabricTensor",Shop__fabricTensor,(py::args("splitTensor")=false,py::args("revertSign")=false,py::args("thresholdForce")=NaN),"Compute the fabric tensor of the periodic cell. The original paper can be found in [Satake1982]_.\n\n:param bool splitTensor: split the fabric tensor into two parts related to the strong and weak contact forces respectively.\n\n:param bool revertSign: it must be set to true if the contact law's convention takes compressive forces as positive.\n\n:param Real thresholdForce: if the fabric tensor is split into two parts, a threshold value can be specified otherwise the mean contact force is considered by default. It is worth to note that this value has a sign and the user needs to set it according to the convention adopted for the contact law. To note that this value could be set to zero if one wanted to make distinction between compressive and tensile forces.");
 	py::def("bodyStressTensors",Shop__getStressLWForEachBody,(py::args("revertSign")=false),"Compute and return a table with per-particle stress tensors. Each tensor represents the average stress in one particle, obtained from the contour integral of applied load as detailed below. This definition is considering each sphere as a continuum. It can be considered exact in the context of spheres at static equilibrium, interacting at contact points with negligible volume changes of the solid phase (this last assumption is not restricting possible deformations and volume changes at the packing scale).\n\nProof:\n\nFirst, we remark the identity:  $\\sigma_{ij}=\\delta_{ij}\\sigma_{ij}=x_{i,j}\\sigma_{ij}=(x_{i}\\sigma_{ij})_{,j}-x_{i}\\sigma_{ij,j}$.\n\nAt equilibrium, the divergence of stress is null: $\\sigma_{ij,j}=\\vec{0}$. Consequently, after divergence theorem: $\\frac{1}{V}\\int_V \\sigma_{ij}dV = \\frac{1}{V}\\int_V (x_{i}\\sigma_{ij})_{,j}dV = \\frac{1}{V}\\int_{\\partial V}x_i.\\sigma_{ij}.\\vec{n_j}.dS = \\frac{1}{V}\\sum_kx_i^k.f_j^k$.\n\nThe last equality is implicitely based on the representation of external loads as Dirac distributions whose zeros are the so-called *contact points*: 0-sized surfaces on which the *contact forces* are applied, located at $x_i$ in the deformed configuration.\n\nA weighted average of per-body stresses will give the average stress inside the solid phase. There is a simple relation between the stress inside the solid phase and the stress in an equivalent continuum in the absence of fluid pressure. For porosity $n$, the relation reads: $\\sigma_{ij}^{equ.}=(1-n)\\sigma_{ij}^{solid}$.\n\n:param bool revertSign: invert the sign of returned tensors components.");
 	py::def("maxOverlapRatio",maxOverlapRatio,"Return maximum overlap ration in interactions (with :yref:`ScGeom`) of two :yref:`spheres<Sphere>`. The ratio is computed as $\\frac{u_N}{2(r_1 r_2)/r_1+r_2}$, where $u_N$ is the current overlap distance and $r_1$, $r_2$ are radii of the two spheres in contact.");