← Back to team overview

yade-dev team mailing list archive

[Branch ~yade-pkg/yade/git-trunk] Rev 3705: remove Dem3Dof from a docstring

 

------------------------------------------------------------
revno: 3705
committer: Bruno Chareyre <bruno.chareyre@xxxxxxxxxxx>
timestamp: Thu 2013-08-29 12:30:31 +0200
message:
  remove Dem3Dof from a docstring
modified:
  pkg/common/Cylinder.hpp


--
lp:yade
https://code.launchpad.net/~yade-pkg/yade/git-trunk

Your team Yade developers is subscribed to branch lp:yade.
To unsubscribe from this branch go to https://code.launchpad.net/~yade-pkg/yade/git-trunk/+edit-subscription
=== modified file 'pkg/common/Cylinder.hpp'
--- pkg/common/Cylinder.hpp	2013-05-29 09:48:51 +0000
+++ pkg/common/Cylinder.hpp	2013-08-29 10:30:31 +0000
@@ -265,7 +265,7 @@
 public:
     //OpenMPAccumulator<Real> plasticDissipation;
     virtual void go(shared_ptr<IGeom>& _geom, shared_ptr<IPhys>& _phys, Interaction* I);
-    YADE_CLASS_BASE_DOC_ATTRS_CTOR_PY(Law2_ChCylGeom6D_CohFrictPhys_CohesionMoment,LawFunctor,"Law for linear compression, and Mohr-Coulomb plasticity surface without cohesion.\nThis law implements the classical linear elastic-plastic law from [CundallStrack1979]_ (see also [Pfc3dManual30]_). The normal force is (with the convention of positive tensile forces) $F_n=\\min(k_n u_n, 0)$. The shear force is $F_s=k_s u_s$, the plasticity condition defines the maximum value of the shear force : $F_s^{\\max}=F_n\\tan(\\phi)$, with $\\phi$ the friction angle.\n\n.. note::\n This law uses :yref:`ScGeom`; there is also functionally equivalent :yref:`Law2_Dem3DofGeom_FrictPhys_CundallStrack`, which uses :yref:`Dem3DofGeom` (sphere-box interactions are not implemented for the latest).\n\n.. note::\n This law is well tested in the context of triaxial simulation, and has been used for a number of published results (see e.g. [Scholtes2009b]_ and other papers from the same authors). It is generalised by :yref:`Law2_ScGeom6D_CohFrictPhys_CohesionMoment`, which adds cohesion and moments at contact.",
+    YADE_CLASS_BASE_DOC_ATTRS_CTOR_PY(Law2_ChCylGeom6D_CohFrictPhys_CohesionMoment,LawFunctor,"Law for linear compression, and Mohr-Coulomb plasticity surface without cohesion.\nThis law implements the classical linear elastic-plastic law from [CundallStrack1979]_ (see also [Pfc3dManual30]_). The normal force is (with the convention of positive tensile forces) $F_n=\\min(k_n u_n, 0)$. The shear force is $F_s=k_s u_s$, the plasticity condition defines the maximum value of the shear force : $F_s^{\\max}=F_n\\tan(\\phi)$, with $\\phi$ the friction angle.\n\n.. note::\n This law is well tested in the context of triaxial simulation, and has been used for a number of published results (see e.g. [Scholtes2009b]_ and other papers from the same authors). It is generalised by :yref:`Law2_ScGeom6D_CohFrictPhys_CohesionMoment`, which adds cohesion and moments at contact.",
                                       ((bool,neverErase,false,,"Keep interactions even if particles go away from each other (only in case another constitutive law is in the scene, e.g. :yref:`Law2_ScGeom_CapillaryPhys_Capillarity`)"))
                                       ((bool,traceEnergy,false,Attr::hidden,"Define the total energy dissipated in plastic slips at all contacts."))
                                       ((int,plastDissipIx,-1,(Attr::hidden|Attr::noSave),"Index for plastic dissipation (with O.trackEnergy)"))