yade-dev team mailing list archive
-
yade-dev team
-
Mailing list archive
-
Message #10053
[Branch ~yade-pkg/yade/git-trunk] Rev 3720: Fix typo in equations in getViscoelasticFromSpheresInteraction (documentation). Thanks to Medack ...
------------------------------------------------------------
revno: 3720
committer: Anton Gladky <gladky.anton@xxxxxxxxx>
timestamp: Wed 2013-10-02 09:15:57 +0200
message:
Fix typo in equations in getViscoelasticFromSpheresInteraction (documentation). Thanks to Medack (TU Freiberg).
modified:
py/_utils.cpp
--
lp:yade
https://code.launchpad.net/~yade-pkg/yade/git-trunk
Your team Yade developers is subscribed to branch lp:yade.
To unsubscribe from this branch go to https://code.launchpad.net/~yade-pkg/yade/git-trunk/+edit-subscription
=== modified file 'py/_utils.cpp'
--- py/_utils.cpp 2013-09-08 11:19:06 +0000
+++ py/_utils.cpp 2013-10-02 07:15:57 +0000
@@ -529,7 +529,7 @@
py::def("wireNone",wireNone,"Set :yref:`Shape::wire` on all bodies to False, rendering them as solids.");
py::def("wireNoSpheres",wireNoSpheres,"Set :yref:`Shape::wire` to True on non-spherical bodies (:yref:`Facets<Facet>`, :yref:`Walls<Wall>`).");
py::def("flipCell",&Shop::flipCell,(py::arg("flip")=Matrix3r(Matrix3r::Zero())),"Flip periodic cell so that angles between $R^3$ axes and transformed axes are as small as possible. This function relies on the fact that periodic cell defines by repetition or its corners regular grid of points in $R^3$; however, all cells generating identical grid are equivalent and can be flipped one over another. This necessiatates adjustment of :yref:`Interaction.cellDist` for interactions that cross boundary and didn't before (or vice versa), and re-initialization of collider. The *flip* argument can be used to specify desired flip: integers, each column for one axis; if zero matrix, best fit (minimizing the angles) is computed automatically.\n\nIn c++, this function is accessible as ``Shop::flipCell``.\n\n.. warning:: This function is currently broken and should not be used.");
- py::def("getViscoelasticFromSpheresInteraction",getViscoelasticFromSpheresInteraction,(py::arg("tc"),py::arg("en"),py::arg("es")),"Compute viscoelastic interaction parameters from analytical solution of a pair spheres collision problem:\n\n.. math:: k_n=\\frac{m}{t_c^2}\\left(\\pi^2+(\\ln e_n)^2\\right) \\\\ c_n=-\\frac{2m}{t_c} \\\\ k_t=\\frac{2}{7}\\frac{m}{t_c^2}\\left(\\pi^2+(\\ln e_t)^2\\right) \\\\ c_t=-\\frac{2}{7}\\frac{m}{t_c}\\ln e_t \n\n\nwhere $k_n$, $c_n$ are normal elastic and viscous coefficients and $k_t$, $c_t$ shear elastic and viscous coefficients. For details see [Pournin2001]_.\n\n:param float m: sphere mass $m$\n:param float tc: collision time $t_c$\n:param float en: normal restitution coefficient $e_n$\n:param float es: tangential restitution coefficient $e_s$\n:return: dictionary with keys ``kn`` (the value of $k_n$), ``cn`` ($c_n$), ``kt`` ($k_t$), ``ct`` ($c_t$).");
+ py::def("getViscoelasticFromSpheresInteraction",getViscoelasticFromSpheresInteraction,(py::arg("tc"),py::arg("en"),py::arg("es")),"Compute viscoelastic interaction parameters from analytical solution of a pair spheres collision problem:\n\n.. math:: k_n=\\frac{m}{t_c^2}\\left(\\pi^2+(\\ln e_n)^2\\right) \\\\ c_n=-\\frac{2m}{t_c}\\ln e_n \\\\ k_t=\\frac{2}{7}\\frac{m}{t_c^2}\\left(\\pi^2+(\\ln e_t)^2\\right) \\\\ c_t=-\\frac{2}{7}\\frac{m}{t_c}\\ln e_t \n\n\nwhere $k_n$, $c_n$ are normal elastic and viscous coefficients and $k_t$, $c_t$ shear elastic and viscous coefficients. For details see [Pournin2001]_.\n\n:param float m: sphere mass $m$\n:param float tc: collision time $t_c$\n:param float en: normal restitution coefficient $e_n$\n:param float es: tangential restitution coefficient $e_s$\n:return: dictionary with keys ``kn`` (the value of $k_n$), ``cn`` ($c_n$), ``kt`` ($k_t$), ``ct`` ($c_t$).");
py::def("stressTensorOfPeriodicCell",Shop::getStress,(py::args("volume")=0),"Deprecated, use utils.getStress instead |ydeprecated|");
//py::def("stressTensorOfPeriodicCell",Shop__stressTensorOfPeriodicCell,(py::args("smallStrains")=false),"Compute overall (macroscopic) stress of periodic cell using equation published in [Kuhl2001]_:\n\n.. math:: \\vec{\\sigma}=\\frac{1}{V}\\sum_cl^c[\\vec{N}^cf_N^c+\\vec{T}^{cT}\\cdot\\vec{f}^c_T],\n\nwhere $V$ is volume of the cell, $l^c$ length of interaction $c$, $f^c_N$ normal force and $\\vec{f}^c_T$ shear force. Sumed are values over all interactions $c$. $\\vec{N}^c$ and $\\vec{T}^{cT}$ are projection tensors (see the original publication for more details):\n\n.. math:: \\vec{N}=\\vec{n}\\otimes\\vec{n}\\rightarrow N_{ij}=n_in_j\n\n.. math:: \\vec{T}^T=\\vec{I}_{sym}\\cdot\\vec{n}-\\vec{n}\\otimes\\vec{n}\\otimes\\vec{n}\\rightarrow T^T_{ijk}=\\frac{1}{2}(\\delta_{ik}\\delta_{jl}+\\delta_{il}\\delta_{jk})n_l-n_in_jn_k\n\n.. math:: \\vec{T}^T\\cdot\\vec{f}_T\\equiv T^T_{ijk}f_k=(\\delta_{ik}n_j/2+\\delta_{jk}n_i/2-n_in_jn_k)f_k=n_jf_i/2+n_if_j/2-n_in_jn_kf_k,\n\nwhere $n$ is unit vector oriented along the interaction (:yref:`normal<GenericSpheresContact::normal>`) and $\\delta$ is Kronecker's delta. As $\\vec{n}$ and $\\vec{f}_T$ are perpendicular (therfore $n_if_i=0$) we can write\n\n.. math:: \\sigma_{ij}=\\frac{1}{V}\\sum l[n_in_jf_N+n_jf^T_i/2+n_if^T_j/2]\n\n:param bool smallStrains: if false (large strains), real values of volume and interaction lengths are computed. If true, only :yref:`refLength<Dem3DofGeom::refLength>` of interactions and initial volume are computed (can save some time).\n\n:return: macroscopic stress tensor as Matrix3");
py::def("normalShearStressTensors",Shop__normalShearStressTensors,(py::args("compressionPositive")=false,py::args("splitNormalTensor")=false,py::args("thresholdForce")=NaN),"Compute overall stress tensor of the periodic cell decomposed in 2 parts, one contributed by normal forces, the other by shear forces. The formulation can be found in [Thornton2000]_, eq. (3):\n\n.. math:: \\tens{\\sigma}_{ij}=\\frac{2}{V}\\sum R N \\vec{n}_i \\vec{n}_j+\\frac{2}{V}\\sum R T \\vec{n}_i\\vec{t}_j\n\nwhere $V$ is the cell volume, $R$ is \"contact radius\" (in our implementation, current distance between particle centroids), $\\vec{n}$ is the normal vector, $\\vec{t}$ is a vector perpendicular to $\\vec{n}$, $N$ and $T$ are norms of normal and shear forces.\n\n:param bool splitNormalTensor: if true the function returns normal stress tensor split into two parts according to the two subnetworks of strong an weak forces.\n\n:param Real thresholdForce: threshold value according to which the normal stress tensor can be split (e.g. a zero value would make distinction between tensile and compressive forces).");