← Back to team overview

yade-dev team mailing list archive

[Branch ~yade-pkg/yade/git-trunk] Rev 3797: Typo correction in porosity() doc : porosity instead of poro sity (in 2 words)

 

------------------------------------------------------------
revno: 3797
committer: Jerome Duriez <jerome.duriez@xxxxxxxxxxxxxxx>
timestamp: Tue 2014-01-21 16:18:44 +0100
message:
  Typo correction in porosity() doc : porosity instead of poro sity (in 2 words)
modified:
  py/_utils.cpp


--
lp:yade
https://code.launchpad.net/~yade-pkg/yade/git-trunk

Your team Yade developers is subscribed to branch lp:yade.
To unsubscribe from this branch go to https://code.launchpad.net/~yade-pkg/yade/git-trunk/+edit-subscription
=== modified file 'py/_utils.cpp'
--- py/_utils.cpp	2013-11-28 11:05:20 +0000
+++ py/_utils.cpp	2014-01-21 15:18:44 +0000
@@ -502,7 +502,7 @@
 	py::def("RayleighWaveTimeStep",RayleighWaveTimeStep,"Determination of time step according to Rayleigh wave speed of force propagation.");
 	py::def("getSpheresVolume",Shop__getSpheresVolume,(py::arg("mask")=-1),"Compute the total volume of spheres in the simulation (might crash for now if dynamic bodies are not spheres), mask parameter is considered");
 	py::def("getSpheresMass",Shop__getSpheresMass,(py::arg("mask")=-1),"Compute the total mass of spheres in the simulation (might crash for now if dynamic bodies are not spheres), mask parameter is considered");
-	py::def("porosity",Shop__getPorosity,(py::arg("volume")=-1),"Compute packing poro sity $\\frac{V-V_s}{V}$ where $V$ is overall volume and $V_s$ is volume of spheres.\n\n:param float volume: overall volume which must be specified for aperiodic simulations. For periodic simulations, current volume of the :yref:`Cell` is used.\n");
+	py::def("porosity",Shop__getPorosity,(py::arg("volume")=-1),"Compute packing porosity $\\frac{V-V_s}{V}$ where $V$ is overall volume and $V_s$ is volume of spheres.\n\n:param float volume: overall volume which must be specified for aperiodic simulations. For periodic simulations, current volume of the :yref:`Cell` is used.\n");
 	py::def("voxelPorosity",Shop__getVoxelPorosity,(py::arg("resolution")=200,py::arg("start")=Vector3r(0,0,0),py::arg("end")=Vector3r(0,0,0)),"Compute packing porosity $\\frac{V-V_v}{V}$ where $V$ is a specified volume (from start to end) and $V_v$ is volume of voxels that fall inside any sphere. The calculation method is to divide whole volume into a dense grid of voxels (at given resolution), and count the voxels that fall inside any of the spheres. This method allows one to calculate porosity in any given sub-volume of a whole sample. It is properly excluding part of a sphere that does not fall inside a specified volume.\n\n:param int resolution: voxel grid resolution, values bigger than resolution=1600 require a 64 bit operating system, because more than 4GB of RAM is used, a resolution=800 will use 500MB of RAM.\n:param Vector3 start: start corner of the volume.\n:param Vector3 end: end corner of the volume.\n");
 	py::def("aabbExtrema",aabbExtrema,(py::arg("cutoff")=0.0,py::arg("centers")=false),"Return coordinates of box enclosing all bodies\n\n:param bool centers: do not take sphere radii in account, only their centroids\n:param float∈〈0…1〉 cutoff: relative dimension by which the box will be cut away at its boundaries.\n\n\n:return: (lower corner, upper corner) as (Vector3,Vector3)\n\n");
 	py::def("ptInAABB",isInBB,"Return True/False whether the point p is within box given by its min and max corners");