← Back to team overview

yade-dev team mailing list archive

[Branch ~yade-pkg/yade/git-trunk] Rev 3874: Update Warning about last changes.

 

------------------------------------------------------------
revno: 3874
committer: Anton Gladky <gladky.anton@xxxxxxxxx>
timestamp: Wed 2014-04-02 17:33:41 +0200
message:
  Update Warning about last changes.
modified:
  pkg/dem/Shop_02.cpp
  py/_utils.cpp


--
lp:yade
https://code.launchpad.net/~yade-pkg/yade/git-trunk

Your team Yade developers is subscribed to branch lp:yade.
To unsubscribe from this branch go to https://code.launchpad.net/~yade-pkg/yade/git-trunk/+edit-subscription
=== modified file 'pkg/dem/Shop_02.cpp'
--- pkg/dem/Shop_02.cpp	2014-04-02 15:33:41 +0000
+++ pkg/dem/Shop_02.cpp	2014-04-02 15:33:41 +0000
@@ -147,7 +147,7 @@
 
 void Shop::getViscoelasticFromSpheresInteraction( Real tc, Real en, Real es, shared_ptr<ViscElMat> b)
 {
-    throw runtime_error("Setting parameters in ViscoElastic model is changed. You do not need to use getViscoelasticFromSpheresInteraction function any more, because this functino is deprecated. You need to set the parameters tc, en and es directly in material properties. Please, update your scripts.");
+    throw runtime_error("Setting parameters in ViscoElastic model is changed. You do not need to use getViscoelasticFromSpheresInteraction function any more, because this functino is deprecated. You need to set the parameters tc, en and es directly in material properties. Please, update your scripts. How to do it you can see in the following commit https://github.com/yade/trunk/commit/fdc2b8fa99939e0ed78b8cb9b3c83b1d98035df4";);
 }
 
 /* This function is copied almost verbatim from scientific python, module Visualization, class ColorScale

=== modified file 'py/_utils.cpp'
--- py/_utils.cpp	2014-02-27 08:27:24 +0000
+++ py/_utils.cpp	2014-04-02 15:33:41 +0000
@@ -531,7 +531,7 @@
 	py::def("wireNone",wireNone,"Set :yref:`Shape::wire` on all bodies to False, rendering them as solids.");
 	py::def("wireNoSpheres",wireNoSpheres,"Set :yref:`Shape::wire` to True on non-spherical bodies (:yref:`Facets<Facet>`, :yref:`Walls<Wall>`).");
 	py::def("flipCell",&Shop::flipCell,(py::arg("flip")=Matrix3r(Matrix3r::Zero())),"Flip periodic cell so that angles between $R^3$ axes and transformed axes are as small as possible. This function relies on the fact that periodic cell defines by repetition or its corners regular grid of points in $R^3$; however, all cells generating identical grid are equivalent and can be flipped one over another. This necessiatates adjustment of :yref:`Interaction.cellDist` for interactions that cross boundary and didn't before (or vice versa), and re-initialization of collider. The *flip* argument can be used to specify desired flip: integers, each column for one axis; if zero matrix, best fit (minimizing the angles) is computed automatically.\n\nIn c++, this function is accessible as ``Shop::flipCell``.\n\n.. warning:: This function is currently broken and should not be used.");
-	py::def("getViscoelasticFromSpheresInteraction",getViscoelasticFromSpheresInteraction,(py::arg("tc"),py::arg("en"),py::arg("es")),"Compute viscoelastic interaction parameters from analytical solution of a pair spheres collision problem:\n\n.. math:: k_n=\\frac{m}{t_c^2}\\left(\\pi^2+(\\ln e_n)^2\\right) \\\\ c_n=-\\frac{2m}{t_c}\\ln e_n \\\\  k_t=\\frac{2}{7}\\frac{m}{t_c^2}\\left(\\pi^2+(\\ln e_t)^2\\right) \\\\ c_t=-\\frac{2}{7}\\frac{m}{t_c}\\ln e_t \n\n\nwhere $k_n$, $c_n$ are normal elastic and viscous coefficients and $k_t$, $c_t$ shear elastic and viscous coefficients. For details see [Pournin2001]_.\n\n:param float m: sphere mass $m$\n:param float tc: collision time $t_c$\n:param float en: normal restitution coefficient $e_n$\n:param float es: tangential restitution coefficient $e_s$\n:return: dictionary with keys ``kn`` (the value of $k_n$), ``cn`` ($c_n$), ``kt`` ($k_t$), ``ct`` ($c_t$).");
+	py::def("getViscoelasticFromSpheresInteraction",getViscoelasticFromSpheresInteraction,(py::arg("tc"),py::arg("en"),py::arg("es")),"Attention! The function is deprecated! Compute viscoelastic interaction parameters from analytical solution of a pair spheres collision problem:\n\n.. math:: k_n=\\frac{m}{t_c^2}\\left(\\pi^2+(\\ln e_n)^2\\right) \\\\ c_n=-\\frac{2m}{t_c}\\ln e_n \\\\  k_t=\\frac{2}{7}\\frac{m}{t_c^2}\\left(\\pi^2+(\\ln e_t)^2\\right) \\\\ c_t=-\\frac{2}{7}\\frac{m}{t_c}\\ln e_t \n\n\nwhere $k_n$, $c_n$ are normal elastic and viscous coefficients and $k_t$, $c_t$ shear elastic and viscous coefficients. For details see [Pournin2001]_.\n\n:param float m: sphere mass $m$\n:param float tc: collision time $t_c$\n:param float en: normal restitution coefficient $e_n$\n:param float es: tangential restitution coefficient $e_s$\n:return: dictionary with keys ``kn`` (the value of $k_n$), ``cn`` ($c_n$), ``kt`` ($k_t$), ``ct`` ($c_t$).");
 	py::def("stressTensorOfPeriodicCell",Shop::getStress,(py::args("volume")=0),"Deprecated, use utils.getStress instead |ydeprecated|");
 	//py::def("stressTensorOfPeriodicCell",Shop__stressTensorOfPeriodicCell,(py::args("smallStrains")=false),"Compute overall (macroscopic) stress of periodic cell using equation published in [Kuhl2001]_:\n\n.. math:: \\vec{\\sigma}=\\frac{1}{V}\\sum_cl^c[\\vec{N}^cf_N^c+\\vec{T}^{cT}\\cdot\\vec{f}^c_T],\n\nwhere $V$ is volume of the cell, $l^c$ length of interaction $c$, $f^c_N$ normal force and $\\vec{f}^c_T$ shear force. Sumed are values over all interactions $c$. $\\vec{N}^c$ and $\\vec{T}^{cT}$ are projection tensors (see the original publication for more details):\n\n.. math:: \\vec{N}=\\vec{n}\\otimes\\vec{n}\\rightarrow N_{ij}=n_in_j\n\n.. math:: \\vec{T}^T=\\vec{I}_{sym}\\cdot\\vec{n}-\\vec{n}\\otimes\\vec{n}\\otimes\\vec{n}\\rightarrow T^T_{ijk}=\\frac{1}{2}(\\delta_{ik}\\delta_{jl}+\\delta_{il}\\delta_{jk})n_l-n_in_jn_k\n\n.. math:: \\vec{T}^T\\cdot\\vec{f}_T\\equiv T^T_{ijk}f_k=(\\delta_{ik}n_j/2+\\delta_{jk}n_i/2-n_in_jn_k)f_k=n_jf_i/2+n_if_j/2-n_in_jn_kf_k,\n\nwhere $n$ is unit vector oriented along the interaction (:yref:`normal<GenericSpheresContact::normal>`) and $\\delta$ is Kronecker's delta. As $\\vec{n}$ and $\\vec{f}_T$ are perpendicular (therfore $n_if_i=0$) we can write\n\n.. math:: \\sigma_{ij}=\\frac{1}{V}\\sum l[n_in_jf_N+n_jf^T_i/2+n_if^T_j/2]\n\n:param bool smallStrains: if false (large strains), real values of volume and interaction lengths are computed. If true, only :yref:`refLength<Dem3DofGeom::refLength>` of interactions and initial volume are computed (can save some time).\n\n:return: macroscopic stress tensor as Matrix3");
 	py::def("normalShearStressTensors",Shop__normalShearStressTensors,(py::args("compressionPositive")=false,py::args("splitNormalTensor")=false,py::args("thresholdForce")=NaN),"Compute overall stress tensor of the periodic cell decomposed in 2 parts, one contributed by normal forces, the other by shear forces. The formulation can be found in [Thornton2000]_, eq. (3):\n\n.. math:: \\tens{\\sigma}_{ij}=\\frac{2}{V}\\sum R N \\vec{n}_i \\vec{n}_j+\\frac{2}{V}\\sum R T \\vec{n}_i\\vec{t}_j\n\nwhere $V$ is the cell volume, $R$ is \"contact radius\" (in our implementation, current distance between particle centroids), $\\vec{n}$ is the normal vector, $\\vec{t}$ is a vector perpendicular to $\\vec{n}$, $N$ and $T$ are norms of normal and shear forces.\n\n:param bool splitNormalTensor: if true the function returns normal stress tensor split into two parts according to the two subnetworks of strong an weak forces.\n\n:param Real thresholdForce: threshold value according to which the normal stress tensor can be split (e.g. a zero value would make distinction between tensile and compressive forces).");