← Back to team overview

yade-dev team mailing list archive

[Branch ~yade-pkg/yade/git-trunk] Rev 4021: capillaryLaplaceYoung scripts: update of reference labels

 

------------------------------------------------------------
revno: 4021
committer: jduriez <jerome.duriez@xxxxxxxxxxx>
timestamp: Wed 2017-03-08 11:58:48 -0700
message:
  capillaryLaplaceYoung scripts: update of reference labels
modified:
  examples/capillaryLaplaceYoung/README.txt
  examples/capillaryLaplaceYoung/solveLaplace_uc.m
  examples/capillaryLaplaceYoung/solveLiqBridge.m


--
lp:yade
https://code.launchpad.net/~yade-pkg/yade/git-trunk

Your team Yade developers is subscribed to branch lp:yade.
To unsubscribe from this branch go to https://code.launchpad.net/~yade-pkg/yade/git-trunk/+edit-subscription
=== modified file 'examples/capillaryLaplaceYoung/README.txt'
--- examples/capillaryLaplaceYoung/README.txt	2016-10-26 16:59:05 +0000
+++ examples/capillaryLaplaceYoung/README.txt	2017-03-08 18:58:48 +0000
@@ -21,7 +21,7 @@
 - solveLiqBridge.m solves the Laplace-Young equation for one given bridge, defined in terms of the input attributes of the solveLiqBridge function (see therein). The solveLiqBridge function is usually called by other files (see below) during capillary files generation, however it can also be executed on its own in order to study (e.g. plot) capillary bridge profile.
 
 Code comments include references to:
- * Duriez2016: J. Duriez and R. Wan, Contact angle mechanical influence for wet granular soils, Acta Geotechnica, 2016, doi:10.1007/s11440-016-0500-6
+ * Duriez2017: J. Duriez and R. Wan, Contact angle mechanical influence for wet granular soils, Acta Geotechnica, 12, 2017
  * Lian1993: G. Lian and C. Thornton and M. J. Adams, A Theoretical Study of the Liquid Bridge Forces between Two Rigid Spherical Bodies, Journal of Colloid and Interface Science, 161(1), 1993
  * Scholtes2008 (french): L. Scholtes, Modelisation Micro-Mecanique des Milieux Granulaires Partiellement Satures, PhD Thesis from Institut polytechnique de Grenoble, 2008
  * Soulie2005 (french): F. Soulie, Cohesion par capillarite et comportement mecanique de milieux granulaires, PhD Thesis from Universite Montpellier II, 2005

=== modified file 'examples/capillaryLaplaceYoung/solveLaplace_uc.m'
--- examples/capillaryLaplaceYoung/solveLaplace_uc.m	2016-09-21 16:48:23 +0000
+++ examples/capillaryLaplaceYoung/solveLaplace_uc.m	2017-03-08 18:58:48 +0000
@@ -59,7 +59,7 @@
 % disp(['We had to suppress ',num2str((1-nNonDvSol/nPhysSol)*100),' % of diverged "solutions"'])
 
 % Get rid of unstable physical solutions:(those with biggest volumes)
-% We use volume values for this purpose, see e.g. Duriez2016
+% We use volume values for this purpose, see e.g. Duriez2017
 distRupt = max(nonDvSol(:,1));
 % eRupt = nonDvSol(nonDvSol(:,1)==distRupt,7); % does not work since eRupt can be a global maximum
 % (when two branches are increasing with d*)

=== modified file 'examples/capillaryLaplaceYoung/solveLiqBridge.m'
--- examples/capillaryLaplaceYoung/solveLiqBridge.m	2016-09-21 16:48:23 +0000
+++ examples/capillaryLaplaceYoung/solveLiqBridge.m	2017-03-08 18:58:48 +0000
@@ -24,7 +24,7 @@
 % close all
 global cstC
 % cstC is the dimensionless capillary force: constant all along the profile
-% see [9] Lian1993, (6) Duriez2016, or (2.51) Soulie2005 ~ (10) Soulie2006..
+% see [9] Lian1993, (6) Duriez2017, or (2.51) Soulie2005 ~ (10) Soulie2006..
 cstC = 1/rRatio * sin(radians(delta1)) * sin(radians(delta1+theta)) + 1/2 * uStar * rRatio^-2 * sin(radians(delta1))^2;
 
 % Use of cstC to get the right filling angle delta2:
@@ -45,7 +45,7 @@
 
 %-------------------------------------------------------------------------
 % Finite diff. scheme to compute whole profile ie compute rho and rhoPrime
-% See Lian1993, Duriez2016, etc..
+% See Lian1993, Duriez2017, etc..
 
 % Some remarks about next loop:
 % - this loop may extend the size of rho without problem
@@ -70,7 +70,7 @@
 d1 = radians(delta1); d2 = radians(delta2);
 
 % Inter particle dimensionless distance:
-% see (7) Duriez2016, (33) Scholtes2008, etc. (not (5) Soulie2006..)
+% see (7) Duriez2017, (33) Scholtes2008, etc. (not (5) Soulie2006..)
 lastZ = deltaZ*(length(rho) -1);
 dist = lastZ - 1/rRatio * ( 1-cos(d1) ) - ( 1-cos(d2) );
 
@@ -78,13 +78,13 @@
 force = cstC;
 
 % Dimensionless volume:
-% Cf (4) Soulie2006, (34) Appendix Scholtes2008, (8) Duriez2016 etc. :
+% Cf (4) Soulie2006, (34) Appendix Scholtes2008, (8) Duriez2017 etc. :
 vol = pi*sum(rho(2:length(rho)).^2)*deltaZ;
 vol = vol - pi/3 * rRatio^(-3) * ( 1-cos(d1) )^2 * ( 2+cos(d1) );
 vol = vol - pi/3 * ( 1-cos(d2) )^2 * ( 2+cos(d2) );
 
 % Capillary bridge dimensionless free energy:
-% (12) Duriez2016 rather than [35] Lian1993 (was for cst volume stability)
+% (12) Duriez2017 rather than [35] Lian1993 (was for cst volume stability)
 dArea = rho .* ( 1+rhoPrime.^2).^(1/2); % ~ infinitesimal liquid gas area
 eStar = 2*pi * sum(dArea(2:length(dArea))) * deltaZ + uStar * vol; %+/- uStar changes the values but not the shape
 eStar = eStar - 2*pi*cos(radians(theta)) * ( (1-cos(d1))/rRatio^2 + 1 - cos(d2) );
@@ -148,14 +148,14 @@
 
 
 function drho = drho(rho,prevRho,deltaZ,rho2d)
-% returns rhoPrime at i+1, see (4) Duriez2016
+% returns rhoPrime at i+1, see (4) Duriez2017
 
 %drho = sqrt( ( rho/(cstK - 1/2*uStar*rho^2) )^2 - 1 );% [11] Lian1993 always positiv, which is not true
 drho = (rho - prevRho) / deltaZ + 1/2*deltaZ * rho2d; % NB: the rho2d term has a real influence
 end
 
 function rho2d = rhoSecond(rho,rhoP,uStar)
-% see e.g. (5) Duriez2016
+% see e.g. (5) Duriez2017
 rho2d = (1+rhoP^2) / rho + uStar*(1+rhoP^2)^1.5;
 end