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ABSTRACT 

A discrete element method with spherical elements is used to 
study the behaviour of geomaterials. Previous simulations have 
shown the limitation of this elements’ geometry to reproduce 
accurately the shearing behaviour, because of its rolling 
overstate compare to real granular, imposed to add to the local 
constitutive law with a contact moment. Once this local 
enrichment formulation added, the model should be able to 
reproduce accurately the bending and torsion behaviour modes 
of simple beams. Finally, the aim of this new development is to 
improve the ability of spherical discrete elements to reproduce 
generalized behaviours of geomaterials. Therefore, different 
methods for controlling the rotational behaviour in rolling or 
torsion mode are presented and compared to this formulation. 
Another advantage of this local constitutive law, compared to 
the classical spherical DEM, is to keep a low calculation cost. 

INTRODUCTION 

Circular or spherical discrete elements ([1], [2] and [3a, 3b]) are widely used to simulate 
geomaterial behaviours. The behaviour law’s characterization study depends on the problem’s 
scale. The simulation range can be from full structures to small volumes of material. Because 
of the rotational invariance of spherical elements the numerical implementation of the contact 
detection algorithm is simpler to apply than for polyhedral and ellipsoidal elements and the 
time required for computation is lower. The main drawback of using spherical elements is that 
excessive rolling occurs during a shear displacement [4]. Such models underestimate the 
value of the friction angle as compared to real geomaterials. While keeping the simplicity of 
the spherical geometry of elements, it is possible to act upon this rolling by preventing the 
rotations of elements ([5], [6]). In biaxial simulations, only sliding will then occur, which in 
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turn, will result in a better value of the friction angle [2]. However, this extreme option gives 
good results for axial loading, however for shear loading, the rolling process can not be 
ignored [7]. A moment transfer can be added to the local constitutive law of DEM to keep the 
advantages of the spherical geometry. Let’s call this MTL “Moment Transfer Law” for further 
reference. By adding this MTL, the rolling which occurs during shear displacement is 
decreased, and a better value of the friction angle is reached. This modification of the 
constitutive law was first created for two dimensional assemblies of disks representing purely 
frictional material such as sand ([8], [9]), and named “Modified distinct element model” - 
MDEM -. It was created in order to have a rolling resistance in a DEM model of granular 
materials. As the scale of the problem can range from a rock sample to a structure, other types 
of materials should be involved and thus modelled. Here, this moment transfer has been 
developed for three dimensional problems. It seems that purely frictional and cohesive 
granular materials, as well as other classical materials used in civil engineering such as steel 
can be modelled by introducing this MTL within the DEM. For example, a single line of 
discrete elements is needed to represent the bending behaviour of an elastic beam by using 
MTL, when several parallel lines were necessary with classical DEM. The MTL can be 
completed by introducing a torsion component. By including elastic limits in bending and 
torsion for spherical discrete elements, a more realistic model of materials might be obtained. 

JUSTIFICATION AND DESCRIPTION OF THE MTL 

Numerical model 
In order to do the numerical study, the software SDEC [3a, 3b] has been used. The 
constitutive laws that govern the behaviour of the simulated geomaterials can be described by 
the following points:  
1. Discrete elements are non-deformable and homogeneous-like spheres. 
2. Interactions between elements follow a force – displacement method, as used by Cundall 
[1]). 
3. Discrete elements in interactions can slightly overlap at the contact point and the 
mathematical relation between normal or shear force and normal or tangential displacements 
are linear.  
4. The yield of an interaction during a local shear process follows the Mohr-Coulomb 
criterion. Tension strength with softening can also be used. 
  
A detailed description of the constitutive laws can be found in [3a]. The classical discrete 
element method does not prevent the rotation of elements that are assumed to have free 
rotations governed by tangential forces acting at the contact point on each element. 

Representativeness of a shear process with spherical discrete elements 
The advantage of using spherical elements is that the detection of contacts, as well as the 
inertial description, is fast and simple. However, this simple geometry limits the mechanical 
possibilities of the model. During a shear process, rolling takes place at the local scale and is 
controlled by the angularity and roughness in granular materials. The spherical elements 
enhance this rolling phenomenon thus leading to lower values of shear resistance. By 
increasing the local friction angle, the global friction angle is more significant, and reaches a 
limit value ([2], [4], [6]) around 25° for three-dimensional assemblies [10]. As the friction 
angle of geomaterials easily reaches a value of 35°, it seems difficult to simulate granular 
material correctly. It is also possible to restrain the rotation of elements partially [5] or totally 
[2], and thus limit rolling of elements. This aspect can be used to simulate biaxial or triaxial 
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tests on granular materials ([2], [5]), and also at the structure scale ([6], [11]). When rolling is 
completely removed, only sliding can take place during a shear displacement. The simulated 
friction angle can reach values corresponding to those of geomaterials. In this case the value 
of the global friction angle is higher than the local one [2] and the post-rupture softening that 
can be observed during real tests is low [9]. Simulation tests have shown that the rolling 
process is two times more significant than sliding process in the shear band for circular and 
elliptic elements [2]. Experimental results are equivalent [7]. Thus rolling phenomenon is not 
intrinsic to spherical geometry and is necessary to describe a shear process correctly. An 
intermediate method has been built up ([10], [12]). Rotation and rolling are allowed but can 
be controlled by an artificial moment which is opposite to the direction of rolling. This is what 
is done in MDEM and it gives a qualitatively correct dense granular material behaviour 
during biaxial tests on a collection of disks [12]. The relation between axial and volumetric 
deformations is more realistic than when the rotations are either free or blocked. Softening 
and shear bands can be identified as in real cases. However, with this method the rolling 
resistance that governs the quantitative aspects of the shear process must be calibrated to 
match the values of the simulated granular material. 

Description of the MTL 
 
The formulation of the two dimensional MDEM is now extended to three dimensional cases 
for spherical elements, and is input into the SDEC software. In order to be able to reproduce 
the torsion phenomenon also, the constitutive laws of the classical DEM were also modified 
along the axis of two elements in interaction. This formulation is presented in a second part. 
 
Rolling resistance using the MTL 
 
The rolling phenomenon depends on the relative rotation of two spheres. The following 
equations are expressed in a global reference G in order to integrate the modifications caused 
by the MTL, into the constitutive laws. Let two spheres A and B, be in contact (Figure 1). The 
radiuses of these spherical elements are Ar  and Br . In the global reference, their positions are 

defined by two vectors Ax and Bx , while their rotations are given by Aω and Bω . Their rotation 

velocities are Aω and Bω  and incremental rotation occurring during the timestep are given by 
  

Figure 1: Evolution of the contact between spheres A and B for two time steps t and t+dt 
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Adω  and Bdω . The normal vector to the contact occurring at the point C, is defined by n , and 
is directed from element A to element B. Considering two successive simulation times, the 
new positions of the centres 'A and 'B are defined by the vectors '

Ax and '
Bx . The new contact 

point is now 'C , when the new normal to the contact is 'n . A mean radius r can be defined 
where,  

2
BA rr

r
+

=            (1) 

The rolling part of an interaction between two spheres can be described when the incremental 
rotation and the sliding components are identified. Let AC and BC  be defined by the following 
equations: 

ACCA A =
'       (2) 

BCCB B ='       (3) 

The vectors ACC '  and BCC '  are both linked to the translation motion and to the sliding 
process of each sphere:  

)'(' nnrCC AA −=       (4) 

' ( ' )B BC C r n n= −       (5) 

The material point of element A  (or B ) which is located at point C  at time t is found at point 
AM  (or BM ) at time t+dt . The following vectors can be defined: 

ndtrMC AAAA ∧= ω.       (6) 

ndtrMC BBBB ∧−= ω.       (7) 

The relative positions of AM  and BM , compared to the new contact point C’ correspond to 
the sum of both the translation and pure rotation vectors: 

))'(('' ndtnnrMCCCMC AAAAAA ∧+−=+= ω        (8) 

))'(('' ndtnnrMCCCMC BBBBBB ∧+−=+= ω        (9) 

It is temporarily assumed that the two spheres have identical radiuses. By doing so, the 
expressions for sliding, rolling and pure rotation are easy to write. The incremental 
displacement vector rdU , caused by the rolling process is given by:  

2
'' BA

r
MCMCdU +

=       (10) 

By studying two particular cases the link between vector rdU and the rolling process can be 
better understood. First consider that the two spheres undergo a pure sliding process. The 
components of the incremental rotations defined in Eq.6 and Eq.7 are equal to zero and 
because of the opposite signs in Eq.4 and Eq.5, Eq. 10 vanishes.  
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In the second case, let the relative sliding be zero and let the spheres have an opposite rotation 
velocity. The normal to the contact is unchanged after a time step, thus Eq.4 and Eq.5 vanish. 
The incremental rotations given in Eq.6 and Eq.7 are equal, allowing Eq.10 to be different 
from zero. It is then a pure rolling process.  
To represent geomaterials, assemblies of elements are not built up with spheres of the same 
radius. Supposing that the scale ratio is not too important, then the Equation (10) can be also 
used in order to define the rolling part. An equivalent expression was used in the 2D case in 
the disk assembly [10].  The rolling process corresponds to a rotation and is defined by the 
angular rolling vector rdθ . The action – reaction principle suggests that an identical value of 
moment should be applied on both spheres in contact. Its value is defined by the mean value 
acting at the interaction point. The unitary vector rdn θ oriented along rdθ is defined by: 

r

r
rd

dUn

dUnn
∧

∧
=

'

'
θ       (11) 

The angular vector of incremental rolling is given by: 

rd

r

r n
r

dU
d θθ =       (12) 

Let the vector rθ  be defined by the addition of the angular vectors of incremental rolling 
since the contact creation between the two observed elements: 

∑= rr dθθ       (13) 

The constitutive law associated to the MTL is created in order to reproduce both elastic and 
plastic behaviours. A limit value of the moment modulus needs to be implemented in order to 
be able to reproduce these behaviours. If this value is reached, the moment creates irreversible 
deformations. To establish if the plastic limit has been reached, the rolling angle is defined in 
a local set of axes L. The centre of L is at point C, and its axes are the normal vector n , and 
two perpendicular vectors 1t , 2t which are in the contact plane. 

Let L
rθ , the angular vector of the rolling part in the set of axes L, be given by 

_  L
r G L rmθ θ⎡ ⎤= ⎣ ⎦       (14) 

Where [ ]LGm _  defines the transition matrix from the global set of axes G to the local one L. 
Only the components acting into the contact plane have to be considered to define the rolling 
resistance, because the first component is directed along the normal to the contact n . Its value 
must be set to zero. Let rk  be the rolling stiffness. If an isotropic rolling behaviour is 

assumed, this value is a scalar. The elastic moment L
elastM created by the rolling part in L is 

written as:   
L
rr

L
elast kM θ=       (15) 

Let η be a dimensionless parameter of the elastic limit of rolling, which controls the elastic 

limit of the rolling behaviour. If nF  represents the norm of the normal force at the contact 
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point, and r is the mean value of the two radiuses, the elastic limit is given by the plastic 
moment vector L

plastM such that: 

n
L
plast FrM η=       (16) 

The applied moment corresponds to the minimal norm of the two moments defined by Eq.15 
and Eq.16, directed along the vector defined by Eq.12. Let [ ]GLm _ be the transition matrix 

from the local reference L to the global reference G, then the rolling moment rM is given by: 

_  min ( , ) 
L

L L elast
r L G elast plast L

elast

MM m M M
M

=       (17) 

The value rM− is then applied on element A, while the opposite value is exerted on element 
B, according to the action – reaction principle. Finally, if the elastic limit is reached at the 
current timestep, then the angular rolling vector rθ has to be modified in order to take into 
account the effect of irreversibility. Its value has to be modified before being written into the 
global reference for later iterations. 

r

L
plastL

r k
M

=θ       (18) 

To summarize, the MTL is given by the following system of equations: 

_If :                             and        
L

L L L L elast
elast plast r L G elast r

r

MM M M m M
k

θ⎡ ⎤< = =⎣ ⎦    

 (19) 

_If :                and        
LL
plastL L L Lelast

elast plast r L G plast rL
relast

MMM M M m M
kM

θ⎡ ⎤≥ = =⎣ ⎦    (20) 

Model of a torque transfer with the MTL 
 
For a structure such as a cylindrical beam, the torsion phenomenon corresponds to a section 
rotation around the neutral axis. The torsion moment is given by the torsion stiffness modulus 
and the unit angular variation. When modelling this beam with a single line of discrete 
elements, a similar behaviour is obtained. Let’s start again with the configuration given in 
Figure 1. Aω and Bω are the rotational vector of the elements in the global set of axes G. the 
relative rotational vector between elements A and B is given by : 

BArel ωωω −=       (21) 

This relative rotational vector is written in the local set of axes L by using the transition 
matrix [ ]LGm _ : 

[ ]LG
L
rel m _=ω relω       (22) 
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The relative rotation L
relω is expressed in the set of axes ),,( 21 ttn . Unlike the rolling moment 

case, the component along n only has to be considered. The torsion moment has to be applied 
at the interaction point. If we consider that the two elements have the same size, a linear 
interpolation of the relative rotation at the interaction point Mω  is given by:  

L
relM ωω

2
1

=       (23) 

This value is correct for two spheres with identical radiuses, and is acceptable as long as the 
spheres are close in size. Let tk  define the torsion stiffness modulus. The elastic moment in 

torsion L
elastT can be written in the local set of axes as,  

Mt
L

elast kT ω=       (24) 

It is also possible to create an elastoplastic model for the torsion behaviour, by considering a 
limit value L

plastT for the elastic moment norm. In the global set of axes G, the moment tT  to 
apply on both elements is given by: 

[ ]GLt mT _= min ),( L
plast

L
elast TT

L
elast

L
elast

T

T       (25) 

The value tT− is applied on element A while the opposite value is applied on element B. If the 

interaction is in a plastic state, the angular rotation vector relω has to be modified, in order to 
take into account the effect of irreversibility. In this case, its local expression is modified 
according to the following equation, before being later expressed in the global reference 
system, 

t

L
plastL

rel k
T

=ω       (26) 

To summarize, the MTL used to account for torsion is given by the following system of 
equations: 

_If :                and        
L

L L L L elast
elast plast t L G elast rel

t

TT T T m T
k

ω⎡ ⎤< = =⎣ ⎦      (27) 

_If :                and        
L

plastL L L L
elast plast t L G plast rel

t

T
T T T m T

k
ω⎡ ⎤≥ = =⎣ ⎦      (28) 

Behaviours associated to rk  and tk  

Use of the rk  stiffness for a granular material 
 
The MTL can be used for granular materials in order to generate a resistant moment that is 
opposite to the rolling behaviour. This should compensate for the drawbacks associated to the 
use of spherical shaped elements. The rolling stiffness parameter rk defines the level of 
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influence that the resistant moment produces, depending on Eq.15. Let rdU and sdU  be the 
incremental vector of the rolling and sliding parts. The two-dimensional formula [9], is 
extended into 3D to obtain the following equation: 

sr dUdU ≅       (29) 

When the sliding and rolling process are considered, if sk represent the shear stiffness of the 
interaction and r is the mean radius of the two spheres, the following equation for the 3D case 
is obtained: 

n
r

dUknrUk r
rSS ×≅×       (30) 

The expression for rk in the 2D case is [9]: 

 ²r sk k r=       (31) 

This expression is acceptable for unequal sphere sizes if the ratio between the smallest and the 
biggest element is low [9]. Rather than using the mean value as in Eq.31, the relative size of 
both spheres could be used. Real granular materials are angular which limits the rolling 
process. If two grains are very different in size, the shape of the biggest is almost locally a 
plane as seen by the smallest element. Then the rolling process may be considered as 
controlled by the smallest element.  The radius parameter to be used in Eq.31 is then given by: 

r =min ),( BA rr       (32) 

For elements which have about the same size, this last expression is approximately equivalent 
to the one given by Eq.1. It thus has an influence mainly when the elements have different 
sizes.  

Use of rk  to represent the bending moment acting on a beam 
The MTL formulation can also be used to simulate the quasi-static behaviour of beams. In the 
system of axes R, defined by zyx nnn ,, , consider a cylindrical beam oriented along the  xn unit 
vector. The radius of this cylinder is R . Suppose this beam has an isotropic behaviour, its 
Young’s modulus is E  and its quadratic moment is I , which is constant along each direction 
of the cross section. When external forces act on the beam, the corresponding bending 
moment is given by the following differential equation: 

EI
M

dx
d ii =
ω            (33) 

iω corresponds to the angular variation of the neutral axis, relative to the initial state without 
forces acting on the beam. The MTL can be used to generate a moment at each interaction 
point, which corresponds to the bending moment that is observed in real materials and that 
classical DEM can not represent. Eq.33 can be discretized in order to be inserted in the 
constitutive law. According to Figure 1, the angular vector ω  corresponds to a relative 
rotation rθ between the two spheres, while dx can be associated to the sum of the two 
radiuses of the elements. The quadratic moment fI  is invariant in any direction perpendicular 
to the beam axis and can be expressed by: 

4

4πRI f =            (34) 
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Finally, the numerical expression of the bending moment, acting at the interaction point can 
be written: 

f
r

EI
M

r
θ=            (35) 

This model can simulate the behaviour of a beam in a bending mode by using a single line of 
identical discrete elements. However, this can also be used for elements of unequal size. In 
this case, the following formulation of the quadratic moment, using Eq.1 and Eq.34, has to be 
preferred: 

4

4πrI f =            (36) 

f
r

EI
M

r
θ=            (37) 

The stiffness rk is defined by Eq.15 and Eq.37: 

r
EI

k f
r =            (38) 

Use of tk  to represent the torsion moment acting on a beam 

The beam defined in 2.4.2, has a bulk modulus G  and a quadratic moment tI when in torsion 
mode. Mω  is supposed to define one half of the relative angular rotation between the two 
spheres, according to Eq.23. Depending on the mechanical properties, as was done in Eq.34 
and Eq.35, the quadratic moment around the neutral axis and the elastic moment produced by 
the torque can be written: 

2

4RIt
π

=            (39) 

2 t
M

GIM
R

ω=           (40) 

The stiffness given by Eq.24 and Eq.40 is: 

R
GIk t

t
2

=            (41) 

A limit value for the torsion elastic behaviour is also put into the model to generate 
irreversibility. Using the same idea as in the bending phenomenon (see 2.4.2), the torsion 
behaviour simulated by the last equations can be extended to assemblies of unequal sphere 
sizes. This can be done by approximating the radius R , used to define Eq.39 and Eq. 40 with 
the value of the radius r , defined in Eq.1. 

Use of tk  to represent a torsion resistance in granular materials 

The bending part of the MTL can be used to exert a resistant moment to the rolling 
phenomenon. As done previously to control bending, the relative rotation of the two spheres 
around a common axis may be controlled. This can be done by introducing a resistant 
moment, opposed to this rotation. This increases the shear capacity of the simulated media 
while the classical DEM is unable to. The elastic behaviour is equivalent to the one describe 
in 2.4.3 with Eq.40. In order to obtain a complete Coulomb like behaviour, this moment has 
an elastic limit value. Here again, the resulting elasto-plastic behaviour is able to reproduce 
irreversibility. If the local friction angleφ and the local tangential cohesion c , which both act 
on the contact are considered, let minr be the smaller radius of the two spheres and let nF be the 



B 10 

norm of the normal force of the contact. Let nF  act uniformly on the contact region of the two 
spheres. This region is defined as a circular area with a radius minr . The elastic limit of this 
torsion moment M , given by the Mohr-Coulomb criterion, is written: 
 

3
min min

2 ( tan )
3 nM r F r cφ π= +           (42)  

CONCLUSION 

In order to limit the rolling phenomenon, the constitutive laws of a spherical discrete element 
code have been modified. The resulting model is known as MTL. The theoretical basis of this 
model for bending and torsion have been given. Furthermore boundary values for the elastic 
couples generated during bending or torsion have been taken into account, in order to 
reproduce a plastic behaviour. When using the MTL, the real behaviour of materials should be 
approached quantitatively more so than with classical DEM, but with low cost than any model 
not using spherical elements. The torsion law can be used for simple beam problems, but can 
also be considered as a new parameter that can be introduced in simulations of granular 
materials. This model has been used for almost one year, and simulations results of loaded 
beams, but also of triaxial tests on granular materials will be further presented. 
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