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Dynamic Spar Elements and Discrete Element Methods
in Two Dimensions for the Modeling

of Soil-Inclusion Problems
Bruno Chareyre1 and Pascal Villard2

Abstract: Discrete element methods~DEMs! provide new numerical means to study the behavior of soil-inclusion systems. In
cases, however, the classic DEM fails to model specific aspects of the inclusions. That is why a model based on spar e
introduced, designed specifically for inclusions. In this model, the movement of the inclusion is considered as a dynamic proc
computed step by step in the same way as in the DEM. The model can be coupled with a DEM code, thus enabling one to s
interaction between an inclusion and a disk assembly. Contact laws at the contacts between disks and spar elements describe
constitutive behavior. Finally, the results obtained by simulating a geosynthetic anchorage in two different ways are reported.
case the inclusion is represented by disks, while in the last case it is represented by spar elements. The comparison sho
elements are much more versatile and can simplify the calibration of the discrete models used to simulate soil-inclusion syst
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Introduction

In the fields of civil and geotechnical engineering, the cons
tion techniques are getting more and more sophisticated and
include composite systems. Particularly, many techniques a
ate a granular matrix~soil, concrete! with linear or planar inclu
sions ~geosynthetics, fibers, piles, steel rods!. Modeling the me
chanical behavior of such systems is generally complex sinc
geometry and governing mechanisms are strongly discontin
Traditional finite-element methods, rooted in the concepts of
tinuum mechanics, may be unsuited in such cases~Villard et al.
2002!. At the same time, significant advances in discrete mo
ing methods offer some opportunities for the numerical sim
tion of different types of composite systems~Mohammadi et a
1998; Hentz et al. 2003!. Those methods can be used to simu
soil-inclusion systems with respect to their discontinuous na

In Chareyre et al.~2002!, soil-geosynthetic systems we
simulated using the two-dimensional codePFC2D ~PFC2D
1997!. This program models bidimensional assemblies of d
with the distinct element method~DEM!. In Chareyre et a
~2002!, the geosynthetic inclusion was simulated by a chai
disks, as shown in Fig. 1~a!, the strength and stiffness of t
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geosynthetic in tension being related to the tensile strength
tensile stiffness of the contacts between the disks. Althoug
results obtained with this approach were valuable, this mod
presents two important limitations. First, a roughness relate
the size of the disks is inherent in the model. It implies a
complex constitutive behavior of the interface and prevents
model from applying to even-faced inclusions. Second, the
strain must remain very small or significant voids would be
ated at each contact between the disks.

The objective of this paper is to propose a model based on
elements@Fig. 1~b!#, adapted to the specific aspects of inclusi
and then to couple it with a DEM code, which simulates gran
matters. The two models will interact with respect to a g
interface constitutive behavior. It is expected that this coup
will provide a valid numerical tool for much research on s
inclusion systems.

In the first part, the most important aspects of the DEM c
used will be set out. In the second part, the model propose
the inclusions will be presented; it is denoted as the DSEM fo
dynamic spar element model. Finally, the results obtaine
simulating geosynthetic anchorages in soil will be reported. T
were obtained by modeling the inclusion with each of the
cepts in Fig. 1 to provide a comparison.

Distinct Element Method

In the present study, the soil is modeled using the prog
PFC2D, which is an implementation of the model of Cundall
Strack~1979!. This section briefly summarizes the method use
PFC2D to calculate contact forces from displacements an
determine the motion of the disks, a more detailed descri

may be found inPFC2D ~1997!.
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Contact Model

The contact model relates the relative displacement to the
acting at the contact between two disks. In this study, the co
model consists of a linear stiffness model and a Coulomb-like
model~Fig. 2!. The stiffness model is defined by two paramet
normal stiffnesskn

* and tangential stiffnesskt
* . The normal and th

tangential components of the contact force are proportiona
spectively, to the overlap between two disks in contact and t
tangential displacement at contact. The tangential compone
the contact force is limited in magnitude with respect to
Coulomb-like slip model, with friction anglem* .

Motion

The disks interact with each other via contact forces. The me
to calculate the displacement from the resultant force and to
acting on a disk is summarized below. The angle of rotation o
disk is denoted asu3. yi represents the position vector of
center of the disk. Newton’s second law of motion relates
translational and rotational accelerations to the resultant forc
torque,f i andM3

ÿi = F i/mD s1d

ü3 = M3/ID s2d

Here, mD and ID denote, respectively, the mass and momen
inertia of the disk. During a simulation, the movement of e

disk is traced step-by-step, at time intervalsDt. ÿi and ü3 are
integrated overDt following an explicit centered finite-differen
scheme, as in the set of equations below@Eqs. ~3!–~6!#. In the
equations, a subscript after a bracket denotes the time step
respect to which the expression is considered.

bẏict+Dt/2 = bẏict−Dt/2 + bÿict 3 Dt s3d

bu̇3ct+Dt/2 = bu̇3ct−Dt/2 + bü3ct 3 Dt s4d

Fig. 1. Two different concepts to model soil-inclusion systems w
the distinct element method~DEM!: ~a! full-DEM modeling or
~b! DEM–dynamic spar element model modeling. The disks in w
represent the soil.

Fig. 2. Contact model
690 / JOURNAL OF ENGINEERING MECHANICS © ASCE / JULY 2005
fyigt+Dt = fyigt + fẏigt+Dt/2 3 Dt s5d

fu3gt+Dt = fu3gt + bu̇3ct+Dt/2 3 Dt s6d

When all positions are calculated for timet+Dt, contact force
may be calculated for the next calculation cycle.

Setting the value ofDt in Eqs.~3!–~6! and damping the equ
tions of motion are two essential issues of the DEM. For the
of a disk assembly, those aspects are detailed inPFC2D ~1997!
and will not be developed in this paper. However, modeling
dynamic spar elements raises similar questions. The method
posed below for settingDt and damping the equations of mot
in the DSEM can give an overview of what is done for disks

Dynamic Spar Element Model

This section is dedicated to the presentation of the dynamic
element model and the coupling with the DEM code. The DS
was initially designed specifically for the modeling of geos
thetic sheets, which have generally no bending strength.
ever, it is believed that the DSEM could equally apply to o
types of inclusions. In this perspective, the formulation prop
here can handle problems in which the bending strength has
considered.

In the DSEM, the motion of the spar elements is determine
the same manner as in the DEM, and the soft contact appro
adopted for the interaction between the disks and the inclu
Consequently, the DSEM may be viewed as an implementati
the DEM, and the formulation detailed in this section is pa
based on the concepts developed in the DEM-related publica
of P. A. Cundall. For the sake of simplicity, however, it will
considered in this paper that the DEM and DSEM are two di
ent numerical models. The DSEM’s specificities are mainly du
the shape and the deformability of the elements, the type of
nexion between them, and the inertial model.

Discretization

The inclusion is represented by a set of spar elements conn
by nodes, as in Fig. 3~a!. The length of the elements is conside
variable, the axial deformation being accounted for by a varia
of the distances between the nodes; the flexion of the inclus
represented by rotations at the nodes; and the flexion of an
vidual element is not considered. In the next part, the leng
the elements will be related to the axial forces, and the rotati
nodes to the bending moments. From the inertial viewpoint

Fig. 3. Notation of ~a! the nodes and spar elements and~b! the
rheological model for a five-noded inclusion
inclusion is treated as a set of lumped masses coinciding with the
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nodes. This rheological model is illustrated in Fig. 3~b!. The in-
teraction between the inclusion and the granular matter wi
treated with the soft contact approach. It implies that the d
and the spar elements will be allowed to overlap with one an
at contact points. Hence it is necessary to consider the thickne
of the spar elements, otherwise two disks could get in contac
overlap with one another across the inclusion. In the case o
flexion at a node, the evenness of the convex side is ensure
a circular arc centered on the node and of radiuse/2 ~see Fig. 4!.
Following the same principle, the shape of the ends of the in
sion is defined by semicircles.

Some notations used in the rest of the paper are defin
Figs. 3 and 4. An inclusion is represented byNb elements. Th

elements are denoted ashb1, . . . ,bNb
j, the nodes ashx1, . . . ,xNb+1j,

and their respective masseshm1, . . . ,mNb+1j. xi
q represents the c

ordinate vector of nodexq andlq the distance fromxq to xq+1 ~with
1øqøNb!. The orientation of an element is defined byti

q, the
unit vector pointing fromxq to xq+1. ui

q is introduced as obtaine
by an anticlockwise rotation ofti

q through 90°. The rotation
nodexq ~xq+1 in Fig. 4!, denoted asdq sdq+1d, is defined by th
angle betweenti

q and ti
q+1.

Motion

Finite-Difference Scheme
In the model, the features that have inertial effects are the lu
masses added to the nodes only. The dynamic laws are app
them to calculate their motion. Due to the punctual nature o
distribution of mass, the rotation of the nodes has no ine
effects, the translational motion alone can be determined. A
ally, it does not restrain any degrees of freedom. The rotation
spar element is allowed by different translational motions o
nodes.

The position of each node is determined step-by-step at
intervals Dt with a centered finite-difference scheme. Know
the resultant force vectorRi

q acting on nodexq, Newton’s secon
law gives its translational acceleration as

ẍi
q = Ri

q/mq s7d

If the acceleration and velocity are assumed to be constant o
time step, the velocity att+Dt /2 is given by Eq.~8!, and the
position att+Dt by Eq. ~9!.

bẋi
qct+Dt/2 = bẋi

qct−Dt/2 + bẍi
qct 3 Dt s8d

bxqct+Dt = bxqct + bẋqct+Dt/2 3 Dt s9d

Fig. 4. Geometry and notations
i i i

JO
Damping
If the behavior is assumed to be of the elastic type, the en
supplied to the inclusion may not dissipate. Therefore dam
the equations of motion may be necessary in some cases to
at a static or steady state solution. The local nonviscous dam
proposed for spar elements is similar to the one describ
Cundall~1987!. A damping force term is introduced in Eq.~7! via
the dimensionless coefficient of dampingx. The damped acce
eration in directioni is calculated in Eq.~10!, wherex lies be-
tween zero~no damping! and one~no acceleration!.

ẍsid
q = bRsid

q − x · uRsid
q u · sgnsẋsid

q dc/mq s10d

Calculating the Resultant Forces Applied on Nodes

As stated in Fig. 5, several types of loads contribute to the re
ant force vectorRi

q acting on nodexq. The contributions due
internal loads will be distinguished from those due to exte
loads. The internal loads are the axial forcesTq−1 and Tq in the
adjacent elements, the bending momentsB3

q−1 and B3
q+1 at nodes

xq−1 and xq+1, and the gravitational force. The contributions
those loadings to force vectorRi

q are denoted, respectivelyRi
qsTd,

Ri
qsMd, and Ri

qsGd. External loads are those generated at the
tacts between disks and spar elements. Considering th

hy1,y2, . . . ,yNc
j of disks in interaction with nodexq, Ri

p→qsCd will
denote the contribution toRi

q that is due to the forcef i
p→q applied

by disk yp ~with 1øpøNc!.
The method to calculate the contributions listed above is

tailed in this section. Finally,Ri
q will be calculated by summin

all terms in Eq.~11!.

Ri
q = Ri

qsTd + Ri
qsMd + Ri

qsGd + o
p=1

p=Nc

Ri
p→qsCd s11d

Internal Loads

Axial Load. The axial force in a spar element is calcula
from the distance between the nodes, with respect to the c
tutive behavior assumed. In the present work, spar elemen
considered as tension-only features and a linear relation
sumed between the tensionTq and axial strain«q in elementbq.
This relation is given in Eq.~12!, whereJ=stiffness of the inclu
sion.«q is obtained as lnslq/ l0

qd, wherelq and l0
q=respectively, th

current length and the length at repose ofbq. In Eq. ~12!, tensile
forces are represented by positive values. This relation bet
Tq and«q is not inherent in the method. Reaction to compres
nonlinear stiffness, or different stiffness values in charge and

Fig. 5. Types of load participating in the resultant force ac
on nodexq
charge could equally well be assumed.

URNAL OF ENGINEERING MECHANICS © ASCE / JULY 2005 / 691
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Tq = maxbJ · «q;0c s12d

The resultant force vectorRi
qsTd acting on nodexq is the sum o

the tensile force vectors in elementsbq−1 andbq, so that

Ri
qsTd = Tq · ti

q − Tq−1 · ti
q−1 s13d

Bending Moments. If it were assumed that a bending mom
B3

q is generated by the rotationdq at nodexq, then it would resul
in forces applied on nodesxq−1 andxq+1. The relation betweendq

and B3
q may be defined as in Eq.~14!, considering the joint

between elements as rotational springs of stiffnesskM
q . To simu-

late a beam with moment of inertiaI and Young’s modulusEy, the
equivalent rotational stiffness would be taken equal
2·Ey·I / sl0

q−1+ l0
qd for nodexq.

B3
q = − dq ·kM

q s14d

Finally, considering the bending moments at nodesxq−1 andxq+1

this time, the resultant force vector acting on nodexq is

Ri
qsMd = B3

q−1 ·ui
q−1/lq−1 + B3

q+1 ·ui
q/lq s15d

Body Forces Body forces, due gravitational acceleration, m
be considered. In this case, the gravitational force vectorRi

qsGd

acting on nodexq is defined in Eq.~16!, wheremq is the mass o
the node andgi is the gravitational acceleration vector.

Ri
qsGd = mq ·gi s16d

External Loads

Detection of the Contacts To calculate external loads, t
contacts existing between the disks and the inclusion mu
known. It is considered that a contact exists when a disk ove
a part of the inclusion. In the algorithm, the list of contact
updated at each calculation cycle. The procedure to test a c
and to calculate the contact force is summarized below, con
ing a general disk denoted as disky. r denotes the radius of th
disk andyi the position vector of its center.

Two different types of contacts may exist~see Fig. 6!. First, let
us consider the contact between disky and spar elementbq ~mode
I!. Introducing lineD which passes through nodesxq and xq+1,
and the coordinatesyi8 obtained after an orthogonal projection

q

Fig. 6. Definition of the disk-inclusion contacts
yi on D, the algebraic distance betweeny andb is defined as

692 / JOURNAL OF ENGINEERING MECHANICS © ASCE / JULY 2005
t

sdndI = uyi − yi8u − e/2 − r s17d

The disk is considered effectively in contact withbq if both con-
ditions are verified in the set of equations~18!. This being the
case, the unit normal of the contact is introduced as the
vectorni pointing fromyi8 to yi. Vectorvi, indicating the tangen
tial direction, is taken as equal toti

q.

0 , ti
qsyi − xi

qd , lq

sdndI , 0 s18d

As shown in Fig. 6, contacts of the second type~mode II! may
occur if the distance between the disk and a node is less thae/2.
This condition is checked for nodexq by calculating the algebra
distance between the disk and the circle of radiuse/2 centered o
xq as

sdndII = uyi − xi
qu − e/2 − r s19d

Then, a contact in mode II exists if

sdndII , 0 s20d

If so, the unit normalni points fromxi
q to yi and the tangenti

direction is defined by the unit vectorvi, perpendicular toni and
oriented as the numbering of the elements. Note that both m
and mode II@i.e., Eqs.~18! and ~20!# may be satisfied simult
neously. Mode I is considered by default in that case.

Contact Laws. An expression of the contact force vectof i

applied by the disk on the inclusion is proposed now. It is
sumed that before failure, the contact is equivalent to sprin
both directions defined in the previous paragraph.kn and kt de-
note, respectively, the normal and the tangential stiffness.
normal componentfn of the contact force is defined in Eq.~21!,
wheredn representssdndI or sdndII .

fn = dn ·kn s21d

The shear componentf t of the shear force is incremented at e
time step on the base of the tangential displacement incre
Ddt at the contact. Assuming that the displacement of the in
sion varies linearly between two nodes,Ddt is obtained in Eq
~22! and f t in Eq. ~23!.

Ddt = fs1 − jdẋi
q + j · ẋi

q+1 − ẏi − u̇3 · r · ti
qgti

q 3 Dt

j = Huyi8 − xi
qu/lq for contacts in mode I

0 for contacts in mode II
J s22d

Df t = kt · Ddt s23d

The shear strength of the contact is defined by a Coulomb
slip model with friction anglem. At each time step, the contact
checked for slip condition by calculatingf t

max, the maximum al
lowable magnitude off t, and by comparing it to the sumf t+Df t.
That is done in Eq.~24!.

sf tdN+1 = sgnfsf tdN + sDf tdNg 3 minfsf t
maxdN+1; usf tdN + sDf tdNug

f t
max= ufnu · tanm s24d

Finally the contact force vectorf i is obtained as

f i = fn ·ni + f t ·vi s25d

When a slip occurs, it is possible for the disk to change the

element it is in contact with~or the mode of the contact!. That is
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accounted for in the algorithm. The shear component of the
tact force is not affected~i.e., is not set to zero!, ni and vi are
simply updated with respect to the new configuration of the
tact. With this condition,f i is defined as a continuous function
the relative displacement. Note that the simple laws that des
the constitutive behavior of disk-inclusion contacts are not in
sic to the method. More complex laws of behavior could rep
Eqs.~21! and ~23!.

Distributing the Contact Forces on the NodesConsidering
the contact forcef i applied by the disk in contact with spar e
mentbq ~mode I!, it is assumed that the forces acting on nodexq

andxq+1 are as defined in the set of equations~26!. These equa
tions are based on the analogy with an elastic beam resting o
supports. They also apply to mode II,j is equal to 0 andf i acts
directly on nodexq in that case.

Ri
qsCd = f is1 − jd

Ri
q+1sCd = f i · j s26d

Critical Time Step
The time step has to be less than a critical value for a cen
finite-difference scheme to produce a stable solution. The cr
time step is related to the minimum eigenperiod of the total
tem. It is estimated following the same procedure as in Hart
~1988!.

A value of the critical time step is found for each nodexq by
applying Eq.~27! separately to each degrees of freedom and
suming that the degrees of freedom are uncoupled.

Dtcrit
q = Îmq/K̄sid

q s27d

In Eq. ~27!, K̄sid
q is the equivalent translational stiffness in dir

tion i. It is computed as follows. First, consider the relation in
~28! between the force increment vectorDRi

q acting on nodexq

and the displacement increment vectorDxi
q. In the equation

below, the superscriptp→q denotes variables related to the c
tact between diskyp and nodexq.

DRi
q = DRi

qsTd + DRi
qsMd + DRi

qsGd + o
p=1

p=Nc

DRi
p→qsCd s28d

with

DRi
qsTd = − J

Dx j
q · t j

q−1

lq−1 ti
q−1 − J

Dx j
q · t j

q

lq
ti
q

DRi
qsMd = −

Dx j
q ·u j

q−1

slq−1d2 kM
q−1 ·ui

q−1 −
Dx j

q ·u j
q

slqd2 kM
q+1 ·ui

q

DRi
qsGd = 0

DRi
p→qsCd = − s1 − jp→qd2skt · Dx j

q ·v j
p→q ·vi

p→q

+ kn · Dx j
q ·n j

p→q ·ni
p→qd

Next, considering the matrix form~29! of the relation betwee
DRi

q and Dxi
q, the diagonal termsKii

q of the stiffness matrix ar

taken as approximations ofK̄sid
q si =1,2d. ExpressingKii

q from Eq.
p q
~28!, Eq. ~30! is obtained forKsid.

JO
FDR1
q

DR2
qG = − FK11

q K12
q

K21
q K22

q GFDx1
q

Dx2
qG s29d

K̄sid
q = Kii

q = Kii
qsTd + Kii

qsMd + o
p=1

p=Nd

Kii
p→qsCd s30d

where

Kii
qsTd = Jbstsid

q−1d2/lq−1 + stsid
q d2/lqc

Kii
qsMd = kM

q−1susid
q−1/lq−1d2 + kM

q+1susid
q /lqd2

Kii
p→qsCd = s1 − jp→qd2bktsvsid

p→qd2 + knsnsid
p→qd2c

Finally, a value of the critical time step is computed from E
~27! and~30! for each degrees of freedom and for each node
global critical time step is taken to be the minimum of all valu
and the actual time step in the simulation is taken as a fracti
it.

Distinct Element Method–Distinct Spar Element
Method Coupling

Basic Concept
The DSEM algorithm has been coupled with the DEM code
the concept of Fig. 7. At the beginning of each time step,
external loads on the inclusion are determined with respect t
positions and velocities of all elements. Next, the motion
DSEM elements is computed from Eq.~10!. At this stage, th
half-cycle concerning the DSEM is finished. Then, the d
inclusion contact forces are introduced in the DEM program
set of forces and moments acting on the disks. This proced
equivalent to replacing, respectively, Eqs.~1! and~2! by Eqs.~31!
and ~32!. Finally, the positions of the disks are updated for
next calculation cycle.

ÿi
p = sFi

p − f i
p→qd/mD

p s31d

ü3
p = sM3

p − f t
p→q · rp ·ni

p→q ·ui
qd/ID

p s32d

Critical Time Step
A global value of the critical time step is required for the coup

Fig. 7. Coupling a distinct element method code and the distinct
element method: Calculation cycle
simulations. In the DEM code, the critical time step associated to

URNAL OF ENGINEERING MECHANICS © ASCE / JULY 2005 / 693
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a disk is estimated on the base of the stiffness of the con
acting upon it. The procedure, quite similar to that describe
the previous section, is detailed inPFC2D ~1997!. By including
the stiffness of the disk-inclusion contacts in this procedure
critical time step related to the disks can be obtained. It is c
pared to the one related to the DSEM elements, and the min
of the two is taken as the global critical time step.

Central Processing Unit Time
One of the main advantages of using circular particles in D
codes is a reduced CPU time. Thus it is not surprising tha
Central Processing Unit~CPU! time required for a DSEM ele
ment is much more than the one required for a circular partic
our computations, we found that a DSEM element is equivale
10 traditional DEM elements in terms of CPU time. This sign
cant difference has two main origins. The first one, intrinsi
the method, is the more complex shape and constitutive beh
of the DSEM elements. The second one is the spatial s
algorithm~based on a cell-space subdivision!, probably less opt
mized in the DSEM than in the commercial DEM code used.
disadvantage has not been considered a major issue, howe
most applications, the number of DSEM elements should be
compared with the number of DEM elements, so that the com
ing of DSEM elements represents a minor part of the global
time.

Simulating Pullout Tests with Two Models
for the Inclusion

The results obtained by simulating pullout tests on straigh
chorages are reported in this section. They are part of a
general study on geosynthetic anchorages in soil@see Chareyre
al. ~2002!#. An inclusion without bending strength was includ
in a breakable random packing whose geometry and bou
conditions are defined in Fig. 8. The tensile stiffnessJ of the
inclusion was set to 103 kN m−1. The inclusion was simulate
alternatively with disks or with spar elements to provide a c
parison.

Table 1. Definition of the Clusters Used for the Soil Model

Number of clusters

Radius of the disks in the cluster

Disk 1
~mm!

Disk 2
~mm!

400 11.60 10.44

1,600 5.80 5.22

Fig. 8. Geometry and boundary conditions of the pullout
simulated
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Procedure

In the modeling, the soil was simulated as a random packin
clusters, each cluster being made of two disks connected in a
manner~their radii are defined in Table 1!. The assembly wa
generated with an initial porosity equal to 0.2. The den
of the clusters was set to 20 kN m−2, the angle of friction betwee
the clusters was set to 38.7°, the normal stiffnesskn

* was se
to 53104 kN m−1, and the tangential stiffnessks

* was set to
2.53104 kN m−1. The macroscopic angle of frictionws of such
assembly has been estimated by simulating biaxial compres
and it was found equal to 41°s±0.5°d. The method to determin
ws is detailed in Chareyre and Villard~2002!.

The soil mass was set in place between three rigid walls,
Fig. 8, and submitted to gravitational acceleration. The prope
of the cluster-wall contacts were the same as those defined
previous paragraph. Pullout tests were simulated with a con
velocity, which must be low enough in order to avoid dyna
effects. It was set to 0.002 m/s after several trials.

During the pullout process, the soil above the inclusion ap
a vertical load only, and the resistance to pullout is provide
the interaction at the lower soil-inclusion interface. This inte
tion is represented by two forcesQn andQt, calculated by sum
ming, respectively, the normal components and the tang
components of the contact forces along the lower side o
inclusion. Here “normal” and “tangential” refer to the local o
entation of the inclusion. The mobilized angle of macrosc
friction wm is defined as arctansQt /Qnd. In the following, the re
sults will be presented in terms of the evolution ofwm during the
pullout simulations for different values of the anglem of contac
friction at the interface.

Fig. 9. Initial state of the anchorage in the full-distinct elem
method simulation

Fig. 10. Evolution of the angle of mobilized friction as a funct
of the displacement and the angle of contact friction at the inte
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Results

Full-Distinct Element Method Simulations

Fig. 9 represents the initial state of the model when the inclu
was simulated using a set of 68 disks of radius 8.15 mm.
proximately 2,000 clusters were used to simulate the soil, a
fined in Table 1.

The evolution ofwm is reported in Fig. 10 with respect to t
pullout displacementU and the angle of contact frictionm. The
initial value of wm is close to zero. It rises gradually until
reaches a peak, followed by a strain softening transition.
angle of peak friction depends onm, the higher it is set, and th
higherwm is obtained at peak.

After the peak, some important fluctuations ofwm are notice
able. With the lower values ofm, in particular with m=11.3°,
those fluctuations seem to have a period equivalent to the
eter of the disks simulating the inclusion. For a better unders
ing of this feature, the orientation of the soil-inclusion cont
along the lower interface was analyzed. The results obtaine
the casem=11.3° are presented in Fig. 11. Let us consider al
contacts between the lower side of the inclusion and the solm

is introduced as the mean inclination of the contact normals
respect to the vertical~lm.0 for a clockwise inclination!. In Fig.
11, the evolution oflm highlights a collective behavior of th
contacts, with the same periodicity aswm. Moreover,wm appear
to be very close tolm+m, thus demonstrating the role of t
collective evolution in the fluctuations ofwm.

It is suggested that when the model is generated, the c
assembly representing the soil tends to fit into the periodic ro
ness of the inclusion. A mechanism similar to that of Fig. 12~but
with a random packing! is enabled then. Note that the tens
stiffness of inclusion was high compared to the load applied
that its tensile strain was always less than 0.2%. A more def

Fig. 11. Comparison between the mean angle of inclination of
contacts’ normal and the mobilized friction angle

Fig. 12. Principle of the periodic evolution of the contacts at
soil-inclusion interface
JO
able inclusion would probably prevent any global periodi
since the disks of the inclusion could not move simultaneou

No periodic variation inwm is noticeable withm=30° andm
=38.7°. As seen in Fig. 13, a high value ofm produces displac
ments of soil elements below the inclusion. It denotes a s
failure within the granular assembly. That is why the period
vanishes in that case. Indeed, shearing the random packing
elements cannot generate any periodic mechanism.

Coupled Distinct Element Method-Distinct Spar
Element Method Simulations

The results obtained by modeling the inclusion with spar elem
are presented in this section~the soil being modeled exactly in t
same way!. Note that, in this problem, it was not necessar
damp the equations of motion for the DSEM elements. A s
cient damping is provided by the friction between the inclu
and the surrounding elements. Fig. 14 demonstrates that th
efficient of damping has no influence on the results in that c

Fig. 15 shows the evolution ofwm in the coupled simulatio
for different values ofm. There is no strain softening. Whenm
ø30°, the curves show a gradual increase inwm until a constan
residual value~however, wm drops sporadically during the r
sidual phase!. With mù38.7°, wm fluctuates during the residu
phase. Nevertheless, the fluctuations are smaller than thos
tained with the previous modeling, andwm can be considere
almost constant.

As seen in Fig. 16, the occurrence of fluctuations with
highest values ofm is correlated with a shear deformation of

Fig. 13. Displacement of the disks forU from 0 to 0.05 m

Fig. 14. Evolution of the mobilized angle of friction in th
distinct element method-distinct spar element method coupling
m=21.8° for different values of the damping coefficient
URNAL OF ENGINEERING MECHANICS © ASCE / JULY 2005 / 695
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soil below the inclusion. Note that there are some failures in
soil when m=38.7°, although the angle of internal friction
higher thanm sws=41°d. In fact, ws is a mean macroscopic val
and does not represent the effective strength at the granular
The interaction with the inclusion can then cause the instabili
soft spots in the microstructure, particularly ifm is inferior but
close tows.

In order to understand the origin of the temporary diminu
of wm whenm=11.3–30°, the mean unbalanced ratio~m.u.r.! was
compared towm. The m.u.r. is computed on the disks as the m
magnitude of the resultant force@Fi in Eq. ~1!# divided by the
mean magnitude of the contact forces. It tends to zero whe
evolution of the system is quas-istatic. As seen in Fig. 17 fo
casem=21.8°, the decreases inwm are correlated with some pea
of the m.u.r. These peaks denote small dynamic events rela
contact failures in the soil. It shows that the drops inwm are due
to local reorganizations of the disks near the interface.wm quickly
increases back tom as soon as the disks stabilize.

Macroscopic Versus Microscopic Peak Friction
The maximum valuewmax of wm ~considered as the macrosco
friction angle! is plotted as function of the angle of local fricti
m in Fig. 18. The micro–macro relation betweenm and wmax is
highly dependent on the model used. With the DSEM, there
very good equivalence between the microscopic and the m
scopic scale, except form=45°. With the full-DEM model, th

Fig. 15. Evolution of the mobilized angle of friction in the distin
element method-distinct spar element method coupling as fun
of the displacement and the interface contact friction

Fig. 16. Displacement of the disks forU from 0 to 0.02 m
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.

micro-macro relation is more complex. The roughness of th
terface causes an increase in the global friction, and this inc
depends onm.

Fig. 17 shows with both the DEM and the DSEM thatwmax

cannot exceed a maximum value, which is slightly higher thaws

~angle of internal friction of the soil!. A maximum value equal t
ws could have been expected. But actually, when a shear ba
finite thickness develops in the soil below the inclusion, the
tical stress at the depth of the sheared zone is higher tha
normal stress at the soil-inclusion interface. The shear stren
the soil at the interface is increased then, and the angle of m
lized friction can slightly exceedws.

Conclusions

A numerical model named DSEM has been proposed to sim
the deformation of a stressed inclusion in two dimensions an
interaction with a granular matter. With the concepts of
DSEM and DEM algorithms being very similar, it was possibl
couple the DSEM with the distinct element codePFC2D, thus
enabling us to simulate the soil-inclusion interaction in comp
systems.

Pullout tests on straight anchorages were simulated. Som
sults obtained with the coupled DEM-DSEM model have b
reported and compared with the results of a previous mode
based on the DEM only, where the inclusion was simulated
chain of disks. The main difference between those two type
modeling was the shape of the interface between the soi

Fig. 17. Comparison between the evolution ofwm and the evolutio
of the mean unbalanced force

Fig. 18. Global versus local friction angle at the soil-inclus
interface
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inclusion, which was locally even in the first case and periodic
rough in the second. Whatever the method of modeling is, the
and the inclusion can interact with two different mechanis
depending on the local friction anglem at the interface. Whenm
is low, the inclusion is pulled-out without notable deformation
the soil. Whenm is high enough, a shear band parallel to
geosynthetic develops in the soil. Considering those two me
nisms, only the calculations with the DSEM can provide in b
cases some realistic results in terms of global friction. Ind
whenm is low and the inclusion simulated by disks, the interf
roughness generates undesirable periodic oscillations of
magnitude in the global friction.

In case the inclusion is rough~which is generally the case!, the
DSEM is probably not well suited to study micromechanically
soil-inclusion interaction. However, coupled DEM-DSEM mod
could be appropriate when the global behavior of comp
structures is to be studied. In this case, the effect of the a
roughness may be taken into account globally in the valuem.
In the coupled model, the angles of local and global inter
friction are almost equal. This is an important advantag
DSEM compared to DEM. If the global behavior of a s
inclusion structure is to be simulated, the value ofm in the mode
can be set directly from macroscopic measurements alone~e.g.,m
can be taken equal to the angle of macroscopic friction obta
from shear tests on soil-geosynthetic interfaces!. This approac
has been used to simulate geosynthetic anchorages with co
shapes. The results are consistent with experimental data
practical conclusions for design can be drawn from them. T
results will be reported in a future paper.

The concept of the DSEM can be extended to th
dimensional problems by considering a three-dimensional loa
on each element. Coupling the DEM and the DSEM in 3D wo
enable a micromechanical approach for studying different
reinforcement techniques~fibers, mesh elements, geogrids!.

Notation

The following symbols are used in this paper:
B3 5 bending moment at a node;
b 5 label of a bar;
D 5 axis of spar element;

d̄ 5 displacement at contact;
e 5 thickness of the inclusion;

Ey 5 Young modulus;
F i 5 resultant force vector acting on a disk;
f i 5 disk-inclusion contact force;

f t
max 5 threshold value of the shear force at contact;
gi 5 gravitational acceleration vector;
ID 5 moment of inertia of diskyn;
I 5 moment of inertia of a beam;
J 5 axial stiffness of the inclusion;

K̄ 5 translational stiffness;
Kij 5 terms of the stiffness matrix;
kn 5 normal stiffness at disk–inclusion contacts;
kn

* 5 normal stiffness at disk–disk contacts;
kt 5 tangential stiffness at disk–inclusion contacts;
kt

* 5 tangential stiffness at disk-disk contacts;
kM 5 rotational stiffness of a node;

l 5 length of a spar element;
l0 5 length at repose of a spar element;
M3 5 resultant moment acting on a disk;

JO
m 5 mass of a node;
mD 5 mass of a disk;
Nb 5 number of spar elements;
Nc 5 number of disks interacting with a node;
ni 5 unit normal of the current contact;
Q 5 force of lower interface interaction;
Ri 5 resultant force vector acting on a node;
r 5 radius of a disk;
t 5 time;

T 5 axial load;
ti 5 unit vector parallel toD;
U 5 pullout displacement;
ui 5 unit vector perpendicular toD;
vi 5 unit tangent of a contact;
xi 5 position vector of a node;
x 5 label of a node;
yi 5 position vector of the center of a disk;
y 5 label of a disk;

yi8 5 orthogonal projection ofyi on D;
Dtcrit 5 critical time step;

dn 5 angle of deflection at nodexn;
«n 5 axial strain in elementbn;
u3 5 angle of rotation of a disk;
lm 5 mean angle of inclination of the interface contact

normals;
m 5 friction angle at disk–inclusion contacts;

m* 5 friction angle at disk-disk contacts;
j 5 factor of influence of a contact;

ws 5 internal friction angle of the disk assembly;
wm 5 angle of mobilized interface friction;

wmax 5 angle of peak interface friction; and
x 5 coefficient of damping.

Subscripts

i , j 5 integer indices equal to 1 or 2;
n 5 normal component; and
t 5 tangential component.

Superscripts

C 5 related to contact forces;
G 5 related to gravitational forces;
M 5 related to bending moments;

p,q 5 positive integer exponents; and
T 5 related to tensile loads.
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