yade-users team mailing list archive
-
yade-users team
-
Mailing list archive
-
Message #09384
Re: [Question #247061]: Slow start-up time for small particles
Question #247061 on Yade changed:
https://answers.launchpad.net/yade/+question/247061
Status: Answered => Open
Emon Mitra is still having a problem:
Sorry for the late reply, I think you're right about the number of
particles. I've attached the code below, is there any way to speed it up
while maintaining the number of particles?
# gravity deposition, continuing with oedometric test after stabilization
# shows also how to run parametric studies with yade-batch
# The components of the batch are:
# 1. table with parameters, one set of parameters per line (ccc.table)
# 2. utils.readParamsFromTable which reads respective line from the parameter file
# 3. the simulation muse be run using yade-batch, not yade
#
# $ yade-batch --job-threads=1 03-oedometric-test.table 03-oedometric-test.py
#
# load parameters from file if run in batch
# default values are used if not run from batch
utils.readParamsFromTable(rMean=.002,rRelFuzz=.3,maxLoad=1e7,minLoad=1e4)
# make rMean, rRelFuzz, maxLoad accessible directly as variables later
from yade.params.table import *
# create box with free top, and ceate loose packing inside the box
from yade import pack, plot, qt
O.bodies.append(utils.geom.facetBox((.5,.5,.5),(.5,.5,.5),wallMask=31))
sp=pack.SpherePack()
sp.makeCloud((0,0,0),(1,1,1),rMean=rMean,rRelFuzz=rRelFuzz)
sp.toSimulation()
O.engines=[
ForceResetter(),
# sphere, facet, wall
InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Facet_Aabb(),Bo1_Wall_Aabb()]),
InteractionLoop(
# the loading plate is a wall, we need to handle sphere+sphere, sphere+facet, sphere+wall
[Ig2_Sphere_Sphere_L3Geom(),Ig2_Facet_Sphere_L3Geom(),Ig2_Wall_Sphere_L3Geom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_L3Geom_FrictPhys_ElPerfPl()]
),
GravityEngine(gravity=(0,0,-9.81)),
NewtonIntegrator(damping=0.5),
# save data for Paraview
VTKRecorder(fileName='3d-vtk-',recorders=['all'],iterPeriod=1000),
# save data from Yade's own 3d view
qt.SnapshotEngine(fileBase='3d-',iterPeriod=200,label='snapshot'),
# the label creates an automatic variable referring to this engine
# we use it below to change its attributes from the functions called
PyRunner(command='checkUnbalanced()',realPeriod=2,label='checker'),
]
O.dt=.5*utils.PWaveTimeStep()
# the following checkUnbalanced, unloadPlate and stopUnloading functions are all called by the 'checker'
# (the last engine) one after another; this sequence defines progression of different stages of the
# simulation, as each of the functions, when the condition is satisfied, updates 'checker' to call
# the next function when it is run from within the simulation next time
# we must open the view explicitly (limitation of the qt.SnapshotEngine)
qt.View()
# check whether the gravity deposition has already finished
# if so, add wall on the top of the packing and start the oedometric test
def checkUnbalanced():
# at the very start, unbalanced force can be low as there is only few contacts, but it does not mean the packing is stable
if O.iter<5000: return
# the rest will be run only if unbalanced is < .1 (stabilized packing)
if utils.unbalancedForce()>.1: return
# add plate at the position on the top of the packing
# the maximum finds the z-coordinate of the top of the topmost particle
O.bodies.append(utils.wall(max([b.state.pos[2]+b.shape.radius for b in O.bodies if isinstance(b.shape,Sphere)]),axis=2,sense=-1))
global plate # without this line, the plate variable would only exist inside this function
plate=O.bodies[-1] # the last particles is the plate
# Wall objects are "fixed" by default, i.e. not subject to forces
# prescribing a velocity will therefore make it move at constant velocity (downwards)
plate.state.vel=(0,0,-.1)
# start plotting the data now, it was not interesting before
O.engines=O.engines+[PyRunner(command='addPlotData()',iterPeriod=200)]
# next time, do not call this function anymore, but the next one (unloadPlate) instead
checker.command='unloadPlate()'
utils.makeVideo(snapshot.snapshots,'3d.mpeg',fps=10,bps=10000)
def unloadPlate():
# if the force on plate exceeds maximum load, start unloading
if abs(O.forces.f(plate.id)[2])>maxLoad:
plate.state.vel*=-1
# next time, do not call this function anymore, but the next one (stopUnloading) instead
checker.command='stopUnloading()'
def stopUnloading():
if abs(O.forces.f(plate.id)[2])<minLoad:
# O.tags can be used to retrieve unique identifiers of the simulation
# if running in batch, subsequent simulation would overwrite each other's output files otherwise
# d (or description) is simulation description (composed of parameter values)
# while the id is composed of time and process number
plot.saveDataTxt(O.tags['d.id']+'.txt')
O.pause()
def addPlotData():
if not isinstance(O.bodies[-1].shape,Wall):
plot.addData(); return
Fz=O.forces.f(plate.id)[2]
plot.addData(Fz=Fz,w=plate.state.pos[2]-plate.state.refPos[2],unbalanced=utils.unbalancedForce(),i=O.iter)
# besides unbalanced force evolution, also plot the displacement-force diagram
plot.plots={'i':('unbalanced',),'w':('Fz',)}
plot.plot()
O.run()
# when running with yade-batch, the script must not finish until the simulation is done fully
# this command will wait for that (has no influence in the non-batch mode)
utils.waitIfBatch()
--
You received this question notification because you are a member of
yade-users, which is an answer contact for Yade.