← Back to team overview

yade-users team mailing list archive

[Question #526635]: Segmentation fault (core dumped) when HydrodynamicsLawLBM Activated

 

New question #526635 on Yade:
https://answers.launchpad.net/yade/+question/526635

Segmentation fault (core dumped) when HydrodynamicsLawLBM Activated


Hi, can someone please tell me why this error happens? Thanks a lot!
The code works well with out activating the HydrodynamicsLawLBM engine.
But when I add the code"Elbm.EngineIsActivated=True", it prints:

---- Lattice setup -----
LXYZ0= -0.01 -0.01 1
LXYZ1= 0.01 0.01 1.02
Ny= -248  Nx*Ly0/Lx0=-248
Wallthickness= 0.01  dx=-4.01606e-05
Segmentation fault (core dumped)

Here is my code:

# -*- coding: utf-8 -*-
#*************************************************************************
#  Copyright (C) 2010 by Bruno Chareyre                                  *
#  bruno.chareyre_at_grenoble-inp.fr                                     *
#                                                                        *
#  This program is free software; it is licensed under the terms of the  *
#  GNU General Public License v2 or later. See file LICENSE for details. *
#*************************************************************************/

## This script details the simulation of a triaxial test on sphere packings using Yade
## See the associated pdf file for detailed exercises
## the algorithms presented here have been used in published papers, namely:
## * Chareyre et al. 2002 (http://www.geosyntheticssociety.org/Resources/Archive/GI/src/V9I2/GI-V9-N2-Paper1.pdf)
## * Chareyre and Villard 2005 (https://yade-dem.org/w/images/1/1b/Chareyre&Villard2005_licensed.pdf)
## * Scholtès et al. 2009 (http://dx.doi.org/10.1016/j.ijengsci.2008.07.002)
## * Tong et al.2012 (http://dx.doi.org/10.2516/ogst/2012032)
##
## Most of the ideas were actually developped during my PhD.
## If you want to know more on micro-macro relations evaluated by triaxial simulations
## AND if you can read some french, it is here: http://tel.archives-ouvertes.fr/docs/00/48/68/07/PDF/Thesis.pdf

from yade import pack

## control to open the file
Not_Open_flag = 1
if Not_Open_flag:
   stress_info = open("/home/caowei/Documents/myYade/trunk/examples/stress_info.txt",'a')  
   contact_info = open("/home/caowei/Documents/myYade/trunk/examples/contactOri.txt",'a') 
   particle_info = open("/home/caowei/Documents/myYade/trunk/examples/particle.txt",'a')
   Not_Open_flag = 0
############################################
###   DEFINING VARIABLES AND MATERIALS   ###
############################################

# The following 5 lines will be used later for batch execution
nRead=readParamsFromTable(
	num_spheres=7000,# number of spheres
	compFricDegree = 35, # contact friction during the confining phase
	key='_triax_base_', # put you simulation's name here
	unknownOk=True
)
from yade.params import table

num_spheres=table.num_spheres# number of spheres
key=table.key
targetPorosity = 0.425 #the porosity we want for the packing
compFricDegree = table.compFricDegree # initial contact friction during the confining phase (will be decreased during the REFD compaction process)
finalFricDegree = 35 # contact friction during the deviatoric loading
rate=-0.01 # loading rate (strain rate)
damp=0.2 # damping coefficient
stabilityThreshold=0.01 # we test unbalancedForce against this value in different loops (see below)
young=1e8 # contact stiffness
mn,mx=Vector3(0,0,0),Vector3(1,1,1) # corners of the initial packing


## create materials for spheres and plates
O.materials.append(FrictMat(young=young,poisson=0.3,frictionAngle=radians(compFricDegree),density=2600,label='spheres'))
O.materials.append(FrictMat(young=young,poisson=0.3,frictionAngle=0,density=0,label='walls'))

## create walls around the packing
walls=aabbWalls([mn,mx],thickness=0.01,material='walls')
wallIds=O.bodies.append(walls)

## use a SpherePack object to generate a random loose particles packing
sp=pack.SpherePack()


clumps=False #turn this true for the same example with clumps
if clumps:
 ## approximate mean rad of the futur dense packing for latter use
 volume = (mx[0]-mn[0])*(mx[1]-mn[1])*(mx[2]-mn[2])
 mean_rad = pow(0.09*volume/num_spheres,0.3333)
 ## define a unique clump type (we could have many, see clumpCloud documentation)
 c1=pack.SpherePack([((-0.2*mean_rad,0,0),0.5*mean_rad),((0.2*mean_rad,0,0),0.5*mean_rad)])
 ## generate positions and input them in the simulation
 sp.makeClumpCloud(mn,mx,[c1],periodic=False)
 sp.toSimulation(material='spheres')
 O.bodies.updateClumpProperties()#get more accurate clump masses/volumes/inertia
else:
 sp.makeCloud(mn,mx,-1,0.3333,num_spheres,False, 0.95,seed=1) #"seed" make the "random" generation always the same
 O.bodies.append([sphere(center,rad,material='spheres') for center,rad in sp])
 #or alternatively (higher level function doing exactly the same):
 #sp.toSimulation(material='spheres')

############################
###   DEFINING ENGINES   ###
############################

triax=TriaxialStressController(
	## TriaxialStressController will be used to control stress and strain. It controls particles size and plates positions.
	## this control of boundary conditions was used for instance in http://dx.doi.org/10.1016/j.ijengsci.2008.07.002
	maxMultiplier=1.+2e4/young, # spheres growing factor (fast growth)
	finalMaxMultiplier=1.+2e3/young, # spheres growing factor (slow growth)
	thickness = 0,
	## switch stress/strain control using a bitmask. What is a bitmask, huh?!
	## Say x=1 if stess is controlled on x, else x=0. Same for for y and z, which are 1 or 0.
	## Then an integer uniquely defining the combination of all these tests is: mask = x*1 + y*2 + z*4
	## to put it differently, the mask is the integer whose binary representation is xyz, i.e.
	## "100" (1) means "x", "110" (3) means "x and y", "111" (7) means "x and y and z", etc.
	stressMask = 7,
	internalCompaction=True, # If true the confining pressure is generated by growing particles
)

newton=NewtonIntegrator(damping=damp)

O.engines=[
	ForceResetter(),
	InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Box_Aabb()]),
	InteractionLoop(
		[Ig2_Sphere_Sphere_ScGeom(),Ig2_Box_Sphere_ScGeom()],
		[Ip2_FrictMat_FrictMat_FrictPhys()],
		[Law2_ScGeom_FrictPhys_CundallStrack()]
	),
	## We will use the global stiffness of each body to determine an optimal timestep (see https://yade-dem.org/w/images/1/1b/Chareyre&Villard2005_licensed.pdf)
	GlobalStiffnessTimeStepper(active=1,timeStepUpdateInterval=100,timestepSafetyCoefficient=0.8),
	triax,
	TriaxialStateRecorder(iterPeriod=100,file='WallStresses'+table.key),
	
	HydrodynamicsLawLBM(	EngineIsActivated=False,
				WallYm_id=0,
				WallYp_id=1,
				WallXm_id=2,
				WallXp_id=3, 
				WallZp_id=5, 
				WallZm_id=4,
				useWallYm=1,
				useWallYp=1,
				YmBCType=2,
				YpBCType=2,

				useWallXm=0,
				useWallXp=0,
				XmBCType=1,
				XpBCType=1,
				LBMSavedData='spheres,velXY,rho,nodeBD',
				tau=1.1,
				dP=(0,0,0),
				IterSave=200,
				IterPrint=100,
				RadFactor=0.6,  # The radius of particles seen by the LBM engine is reduced here by a factor RadFactor=0.6 to allow flow between particles in this 2D case.
				Nx=250,
				Rho=1000,
				Nu=1.0e-6,
				periodicity='',
				bc='',
				VbCutOff=0.0,
				applyForcesAndTorques=True,
				label="Elbm"
	),

	newton,
	#PyRunner(command='checkStress0()',iterPeriod=500,label='checker')
	

]
O.dt=.5*utils.PWaveTimeStep()
# for the samples of this size (diametre is around 1.8cm), the O.dt is 8.8e-5 s, which is about a hundred times of 
# the small sample, and this leads to much faster calculation speed.

#Display spheres with 2 colors for seeing rotations better
Gl1_Sphere.stripes=0
if nRead==0: yade.qt.Controller(), yade.qt.View()

## UNCOMMENT THE FOLLOWING SECTIONS ONE BY ONE
## DEPENDING ON YOUR EDITOR, IT COULD BE DONE
## BY SELECTING THE CODE BLOCKS BETWEEN THE SUBTITLES
## AND PRESSING CTRL+SHIFT+D

#######################################
###   APPLYING CONFINING PRESSURE   ###
#######################################

#the value of (isotropic) confining stress defines the target stress to be applied in all three directions
triax.goal1=triax.goal2=triax.goal3=-100000

while 1:
  O.run(1000, True)
  ##the global unbalanced force on dynamic bodies, thus excluding boundaries, which are not at equilibrium
  unb=unbalancedForce()
  print 'unbalanced force:',unb,' mean stress: ',triax.meanStress
  if unb<stabilityThreshold and abs(-100000-triax.meanStress)/100000<0.001:
    break

O.save('confinedState'+key+'.yade.gz')
print "###      Isotropic state saved      ###"
print triax.porosity
print triax.meanStress
print len(O.bodies)


###################################################
###   REACHING A SPECIFIED POROSITY PRECISELY   ###
###################################################

### We will reach a prescribed value of porosity with the REFD algorithm
### (see http://dx.doi.org/10.2516/ogst/2012032 and
### http://www.geosyntheticssociety.org/Resources/Archive/GI/src/V9I2/GI-V9-N2-Paper1.pdf)

import sys #this is only for the flush() below
while triax.porosity>targetPorosity:
	## we decrease friction value and apply it to all the bodies and contacts
	compFricDegree = 0.95*compFricDegree
	setContactFriction(radians(compFricDegree))
	print "\r Friction: ",compFricDegree," porosity:",triax.porosity,
	sys.stdout.flush()
	## while we run steps, triax will tend to grow particles as the packing
	## keeps shrinking as a consequence of decreasing friction. Consequently
	## porosity will decrease
	O.run(500,1)

O.save('compactedState'+key+'.yade.gz')
print "###    Compacted state saved      ###"

while 1:
  O.run(100, True)
  ##the global unbalanced force on dynamic bodies, thus excluding boundaries, which are not at equilibrium
  unb=unbalancedForce()
  print 'unbalanced force:',unb,' mean stress: ',triax.meanStress
  if unb<stabilityThreshold and abs(-100000-triax.meanStress)/100000<0.001:
    break

##############################
###   DEVIATORIC LOADING   ###
##############################

##We move to deviatoric loading, let us turn internal compaction off to keep particles sizes constant
triax.internalCompaction=False

## Activating the HydrodynamicsLawLBM engine
Elbm.EngineIsActivated=True

## Change contact friction (remember that decreasing it would generate instantaneous instabilities)
setContactFriction(radians(finalFricDegree))


##set stress control on x and z, we will impose strain rate on y
triax.stressMask = 0
##now goal2 is the target strain rate
triax.goal2=rate
## we define the lateral stresses during the test, here the same 10kPa as for the initial confinement.
triax.goal1=-rate / 2.0
triax.goal3=-rate / 2.0

##we can change damping here. What is the effect in your opinion?
newton.damping=0.2

##Save temporary state in live memory. This state will be reloaded from the interface with the "reload" button.
O.saveTmp()

#####################################################
###    Example of how to record and plot data     ###
#####################################################

from yade import plot

### a function saving variables
def history():
  	plot.addData(unbalanced=unbalancedForce(),e11=-triax.strain[0], e22=-triax.strain[1], e33=-triax.strain[2],
  		    ev=-triax.strain[0]-triax.strain[1]-triax.strain[2],
		    s11=-triax.stress(triax.wall_right_id)[0],
		    s22=-triax.stress(triax.wall_top_id)[1],
		    s33=-triax.stress(triax.wall_front_id)[2],
                    devi = -triax.stress(triax.wall_top_id)[1] - (-triax.stress(triax.wall_right_id)[0]-triax.stress(triax.wall_front_id)[2]) / 2.0,
                    p = triax.meanStress,
		    i=O.iter)
        stress_info.write(" %d " %(O.iter))
        stress_info.write(" %6.4f " %(triax.stress(triax.wall_right_id)[0]))
        stress_info.write(" %6.4f " %(triax.stress(triax.wall_top_id)[1]))
        stress_info.write(" %6.4f " %(triax.stress(triax.wall_front_id)[2]))
        #print("stress:")
        #print(triax.stress(triax.wall_right_id)[0])
        #print(triax.stress(triax.wall_top_id)[1])
        #print(triax.stress(triax.wall_front_id)[2])
        #print("strain:")
        #print(triax.strain[0])
        #print(triax.strain[1])
        #print(triax.strain[2])
        for i in range(3):
           stress_info.write("%6.6f " %(triax.strain[i]))
        stress_info.write("\n")
        
        
        if O.iter % 2000 == 0:
        
           for i in O.interactions: 
              contact_info.write("%d " %(i.id1))	
              contact_info.write("%d " %(i.id2))	
              contact_info.write("%.4f " %(i.phys.normalForce[0]))
              contact_info.write("%.4f " %(i.phys.normalForce[1]))
              contact_info.write("%.4f " %(i.phys.normalForce[2]))
              contact_info.write("%.4f " %(i.phys.shearForce[0]))
              contact_info.write("%.4f " %(i.phys.shearForce[1]))
              contact_info.write("%.4f " %(i.phys.shearForce[2]))
              contact_info.write("\n")
        
           for i in range(len(O.bodies)): 
              if i > 5:
                 particle_info.write("%d " %(i))
                 if O.bodies[i].isClump:
                    particle_info.write("\n")
                 else:
                    particle_info.write("%f " %(O.bodies[i].state.pos[0]))	
                    particle_info.write("%f " %(O.bodies[i].state.pos[1]))	
                    particle_info.write("%f " %(O.bodies[i].state.pos[2]))	
                    particle_info.write("%f " %(O.bodies[i].shape.radius))	
                    particle_info.write("%d " %(O.bodies[i].clumpId))	
                    particle_info.write("\n")

if 1:
  ## include a periodic engine calling that function in the simulation loop
  O.engines=O.engines[0:5]+[PyRunner(iterPeriod=200,command='history()',label='recorder')]+O.engines[5:7]
  ##O.engines.insert(4,PyRunner(iterPeriod=20,command='history()',label='recorder'))
else:
  ## With the line above, we are recording some variables twice. We could in fact replace the previous
  ## TriaxialRecorder
  ## by our periodic engine. Uncomment the following line:
  O.engines[4]=PyRunner(iterPeriod=20,command='history()',label='recorder')



### declare what is to plot. "None" is for separating y and y2 axis
plot.plots={'i':('unbalanced',),'i ':('s11','s22','s33'),' i':('e11','e22','e33'),'e22':('ev'),'p':('devi')}
### the traditional triaxial curves would be more like this:
##plot.plots={'e22':('s11','s22','s33',None,'ev')}

## display on the screen (doesn't work on VMware image it seems)
plot.plot()

devi_test = -triax.stress(triax.wall_top_id)[1] - (-triax.stress(triax.wall_right_id)[0]-triax.stress(triax.wall_front_id)[2]) / 2.0

def stress_control1():
  global devi_test  
  while devi_test < 50000:
     O.run(100)
     devi_test = -triax.stress(triax.wall_top_id)[1] - (-triax.stress(triax.wall_right_id)[0]\
     -triax.stress(triax.wall_front_id)[2]) / 2.0

def stress_control2():
  global devi_test
  while devi_test > -50000:
     O.run(100)     
     devi_test = -triax.stress(triax.wall_top_id)[1] - (-triax.stress(triax.wall_right_id)[0]\
     -triax.stress(triax.wall_front_id)[2]) / 2.0

tic_toc = 0
while 1:
  triax.goal2=rate
  triax.goal1=-rate / 2.0
  triax.goal3=-rate / 2.0
  stress_control1()
  triax.goal2 = - triax.goal2
  triax.goal1 = - triax.goal1
  triax.goal3 = - triax.goal3
  stress_control2()
  ## We need to track the simulation with:
  plot.saveDataTxt('results'+key)
  tic_toc = tic_toc + 1
  print tic_toc
  if tic_toc > 5:
     break

stress_info.close()
contact_info.close()
particle_info.close()
print 'Finished'

#####  PLAY THE SIMULATION HERE WITH "PLAY" BUTTON OR WITH THE COMMAND O.run(N)  #####

## In that case we can still save the data to a text file at the the end of the simulation, with:
#plot.saveDataTxt('results'+key)
##or even generate a script for gnuplot. Open another terminal and type  "gnuplot plotScriptKEY.gnuplot:
#plot.saveGnuplot('plotScript'+key)




-- 
You received this question notification because your team yade-users is
an answer contact for Yade.