yade-users team mailing list archive
-
yade-users team
-
Mailing list archive
-
Message #26876
Re: [Question #700119]: 2PFV Drainage
Question #700119 on Yade changed:
https://answers.launchpad.net/yade/+question/700119
Luis Barbosa gave more information on the question:
Hi all. Just adding another option I found. But it raises other
questions.
Starting the simulation with imbibition till it reach the desired
saturation and then start drainage.
But, in this case I am facing issues.
1. From getCellInvVoidVolume it seems that the void volume increases over time, but I would expect it to decrease due to increment of water in the cells.
2. From getCellThresholdSaturation and getCellMergedID I getting zero value.
3. As a option to (2) I used getCellSaturation and calculated the saturation of the sample. It worked, but it increases linearly with pressure in the W-phase. I would expect something non-linear because in my simulations I have different pore sizes.
Here is a very simple script:
#!/usr/bin/python
# -*- encoding=utf-8 -*-
#*************************************************************************
from yade import pack
from yade import bodiesHandling
from yade import export
from yade import utils
from yade import ymport
############################################
### DEFINING VARIABLES AND MATERIALS ###
############################################
# The following 5 lines will be used later for batch execution
nRead=readParamsFromTable(
num_spheres=3000,# number of spheres
compFricDegree = 1, # contact friction during the confining phase
key='_triax_base_', # put you simulation's name here
unknownOk=True
)
from yade.params import table
num_spheres=table.num_spheres# number of spheres
key=table.key
targetPorosity = 0.39 #the porosity we want for the packing
compFricDegree = table.compFricDegree # initial contact friction during the confining phase (will be decreased during the REFD compaction process)
finalFricDegree = 1 # contact friction during the deviatoric loading
rate=0 # loading rate (strain rate)
damp=0.1 # damping coefficient
stabilityThreshold=0.01 # we test unbalancedForce against this value in different loops (see below)
#2e4+70e4medio 1e4+70e4bom 1e4+60e4bom 3e4+90e4+w3,1,-1-the best
young=10e5 # contact stiffness200e4
young2=10e5
youngcoat=90e4
bondstr=10e8#2e7
bondstr2=0.8e5
bondstrcoat=5e4
mn,mx=Vector3(0,0,0),Vector3(0.006,0.006,0.006) # corners of the matrix
mncoat,mxcoat=Vector3(0,0,0),Vector3(0.006,0.0005,0.006)# corners of the coating
mnbox,mxbox=Vector3(0,0,0),Vector3(0.006,0.006,0.006)
## create materials for spheres and plates
mat=O.materials.append(JCFpmMat(type=1,young=young,poisson=0.3,frictionAngle=radians(compFricDegree),density=2000,tensileStrength=bondstr,cohesion=bondstr,jointNormalStiffness=0,jointShearStiffness=0,jointCohesion=bondstr,jointFrictionAngle=radians(0),jointDilationAngle=0.0,label='spheres'))
O.materials.append(JCFpmMat(type=1,young=20e7,poisson=0.3,frictionAngle=radians(0),density=2600,tensileStrength=0,cohesion=0,jointNormalStiffness=0,jointShearStiffness=0,jointCohesion=0,jointFrictionAngle=radians(0),jointDilationAngle=0.0,label='walls'))
O.materials.append(JCFpmMat(type=1,young=youngcoat,poisson=0.3,frictionAngle=radians(compFricDegree),density=2000,tensileStrength=bondstrcoat,cohesion=bondstrcoat,jointNormalStiffness=0,jointShearStiffness=0,jointCohesion=bondstrcoat,jointFrictionAngle=radians(0),jointDilationAngle=0.0,label='spherescoat'))
## create walls around the packing
walls=aabbWalls([mnbox,mxbox],thickness=0,material='walls')
wallIds=O.bodies.append(walls)
## use a SpherePack object to generate a random loose particles packing
sp=pack.SpherePack()
sp1=pack.SpherePack()
#sp.makeCloud(minCorner=mn,maxCorner=mx,psdSizes=[0.0002,0.0012,0.001205], psdCumm=[0.4,0.6,1.],num=500,distributeMass=True,seed=1) #"seed" make the "random" generation always the same
sp.makeCloud(minCorner=mn,maxCorner=mx,rMean=0.0006,num=num_spheres,seed=1)
O.bodies.append([sphere(center,rad,material='spheres') for center,rad in
sp])
############################
### DEFINING ENGINES ###
############################
triax=TriaxialStressController(
maxMultiplier=1.+2e4/young, # spheres growing factor (fast growth)
finalMaxMultiplier=1.+2e3/young, # spheres growing factor (slow growth)
thickness = 0,
stressMask = 0,
internalCompaction=False, # If true the confining pressure is generated by growing particles
wall_front_activated=True,
wall_back_activated=True,
wall_top_activated=True,
wall_bottom_activated=True,
wall_left_activated=True,
wall_right_activated=True,
goal1=-20,
goal2=-20,
goal3=-20,
)
newton=NewtonIntegrator(damping=damp)
O.engines=[
ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Box_Aabb()]),
InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom(),Ig2_Box_Sphere_ScGeom()],
[Ip2_JCFpmMat_JCFpmMat_JCFpmPhys(cohesiveTresholdIteration=-1,xSectionWeibullShapeParameter=1.5, xSectionWeibullScaleParameter=2,label='Physicspheres')],
[Law2_ScGeom_JCFpmPhys_JointedCohesiveFrictionalPM(smoothJoint=False)]
),
GlobalStiffnessTimeStepper(active=1,timeStepUpdateInterval=100,timestepSafetyCoefficient=0.3),
triax,
newton
]
#Display spheres with 2 colors for seeing rotations better
Gl1_Sphere.stripes=0
if nRead==0: yade.qt.Controller(), yade.qt.View()
###################################################
### REACHING A SPECIFIED POROSITY PRECISELY ###
###################################################
import sys #this is only for the flush() below
while triax.porosity>targetPorosity:
# we decrease friction value and apply it to all the bodies and contacts
# compFricDegree = 0.95*compFricDegree
setContactFriction(radians(compFricDegree))
print ("\r Friction: ",compFricDegree," porosity:",triax.porosity,
sys.stdout.flush())
# while we run steps, triax will tend to grow particles as the packing
# keeps shrinking as a consequence of decreasing friction. Consequently
# porosity will decrease
O.run(500,1)
print ("### Compacted state saved ###")
print(triax.stress(3)[1])
##############################
### DEVIATORIC LOADING ###
##############################
setContactFriction(radians(finalFricDegree))
#==========Change Cohesion==============
for b in O.bodies:
b.mat.cohesion=bondstr2
b.mat.young=young2
for i in O.interactions:
i.phys.cohesion=bondstr2
i.phys.young=young2
#=======================================
#set stress control on x and z, we will impose strain rate on y
triax.stressMask = 2
triax.wall_bottom_activated=0
#now goal2 is the target strain rate
triax.goal1=rate#triax.stress(1)[0]
triax.goal3=rate#triax.stress(5)[2]
triax.goal2=triax.stress(3)[1]
#####################################################
### Example of how to record and plot data ###
#####################################################
#from yade import plot
from yade import plot
O.run(1000,True)
#strain is logarithmic strain or true strain which is ls=(ln1+e) where e=dl/L (strain)
ei0=-triax.strain[0];ei1=-triax.strain[1];ei2=-triax.strain[2]
si0=-triax.stress(0)[0];si1=-triax.stress(2)[1];si2=-triax.stress(4)[2]
## a function saving variables
def history():
plot.addData(e11=-triax.strain[0]-ei0, e22=-triax.strain[1]-ei1, e33=-triax.strain[2]-ei2,
ev=-triax.strain[0]-triax.strain[1]-triax.strain[2],
s11=-triax.stress(triax.wall_right_id)[0]-si0,
s22=-triax.stress(triax.wall_top_id)[1]-si1,
s33=-triax.stress(triax.wall_front_id)[2]-si2,
pc=unsat.bndCondValue[2],
sw=vvtsat,#unsat.getCellThresholdSaturation(),
z1=O.bodies[3].state.pos[1],
i=O.iter)
if 1:
## include a periodic engine calling that function in the simulation loop
O.engines=O.engines[0:5]+[PyRunner(iterPeriod=20,command='history()',label='recorder')]+O.engines[5:7]
plot.plots={'pc':('sw')}
plot.plot()
#######################################################
## Drainage Test under oedometer conditions ###
#######################################################
##Instantiate a two-phase engine
unsat=TwoPhaseFlowEngine()
unsat.bndCondIsWaterReservoir=[0,0,1,0,0,0]
unsat.bndCondIsPressure=[0,0,1,0,0,0]
unsat.iniVoidVolumes=True
unsat.surfaceTension = 0.0728
unsat.drainageFirst=False
unsat.isDrainageActivated=False
unsat.isImbibitionActivated=True
unsat.initialization()
voidvol=0.0
voidvoltot=0.0
vvt=0.0
nvoids=unsat.nCells()
initialvol=[0.0] * (nvoids)
vv=[0.0] * (nvoids)
#==================================
ts=O.dt
pgstep= 4500000000*ts #30Pa/s
print (pgstep)
pgmax= 600000#9316 #Pa
print ()
for pg in arange(1,pgmax,pgstep):
unsat.bndCondValue=[0,0,pg,0,0,0]
print(unsat.getCellMergedID(1))
for ii in range(nvoids):
initialvol[ii]=1./unsat.getCellInvVoidVolume(ii)#
voidvoltot+=initialvol[ii]
vv[ii]=unsat.getCellSaturation(ii)
vvt+=vv[ii]
vvtsat=vvt/nvoids
unsat.computeCapillaryForce()
--
You received this question notification because your team yade-users is
an answer contact for Yade.