Discrete Element Method
Symbols used in this chapter:

X, As Xp — current position of sphere A and sphere B (a three dimensional vector referring
to global coordinate system),

V:l, Vi — current velocity of sphere A and sphere B,
w4, Wwp — current angular velocity of sphere A and sphere B,

/01, B — current orientation of sphere A and sphere B (a unit quaternion referring to global
coordinate system),

A s B’ — orientation of sphere A and sphere B when the contact was established (an initial
orientation of contacting spheres, a unit quaternion),

Ry, Rp — radius of sphere A and sphere B,

FE4, Ep — Young’s modulus for sphere A and B,

v4, vg — Poisson’s ratio for sphere A and B,

pa, pp — friction angle for sphere A and B,

K,, — normal stiffness of the contact between two spheres,

K, — tangential stiffness of the contact between two spheres,

K, — rotational stiffness of the contact between two spheres,

[ — dimensionless coefficient for rotational stiffness,

u — friction angle between two spheres,

n — elastic limit of rolling

AX — distance between centers of two spheres,

AV — relative velocity between two spheres,

AV, — tangential velocity between two spheres,

AX, — tangential displacement between two spheres,

AQ — orientation displacement between two spheres (a unit quaternion),
A& — angular rotation between two spheres (a three dimensional vector),
U — penetration depth between two spheres,

N — normal of the contact (a vector of unit length),

c — position of the contact point between two spheres (a three dimensional vector referring
to global coordinate system),



F,, — normal contact force,

—

Fs — tangential contact force,

—

M — contact moment,

F_A, F_jg — force acting on spheres A and B,
My, Mp — moment acting on spheres A and B,
o — numerical damping coefficient,

At — time increment between two iterations.
First the distance between spheres A and B is calculated:
AX =X, —Xp (1)
The penetration depth of the contact is calculated:

U= Ra+Rp— ||AX]] (2)

This paper does not treat about cohesive granular material therefore negative penetration
depth means that there is no contact. If the penetration depth is positive (U > 0) then the
contact between two spheres exists and the calculation can proceed further. The normal of
the contact is calculated: .

N- 28X 3)
|AX]]

The contact point C is calculated the center of the overlapping volume of two spheres:

L U. -
C:XA—F(RA—E)N (4)

If the contact was not present in previous calculation steps, the initial orientation of both
contacting spheres is stored in memory:

A=A (5)
B' =B (6)
The normal stiffness K, of the contact is calculated as a harmonic average between two

Young’s modulus, using sphere’s radius:

EARAEBR
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The tangential stiffness K of the contact is calculated as a harmonic average using Pois-

son’s ratio for each sphere:
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The rotational stiffness K, is calculated using both sphere’s radius and a dimensionless

coefficient 3:




KT = BRARBKS (9)

The friction angle for the contact between two spheres is taken as the smaller one from
both spheres:

= min(pa, 1p) (10)

The normal contact force F:l is calculated as:

F, = K,UN (11)
If the contact was not present in previous calculation steps, the initial value of tangential
force is set to zero:

F,=0 (12)

The increment of tangential force is calculated by accumulating the path of moving con-

tact point between two spheres. First the relative velocity is calculated. This approach was

proposed in (F. Alonso-Marroquin, R. Garcia-Rojo, H.J. Herrmann ” Micro-mechanical inves-

tigation of granular ratcheting, in Cyclic Behaviour of Soils and Liquefaction Phenomena”
ed. T. Triantafyllidis (Balklema, London, 2004), p. 3-10):

AV = (Vg +wi x (~RpN)) — (V4 + i x (RaN)) (13)

Next the tangential velocity between two spheres is calculated:
AV, =AV — (N -AV)N (14)
The tangential displacement between two spheres is calculated:

AX, = AtAV, (15)

Then the shear force Fy is updated using current tangential displacement and tangential
stiffness:

F, = F. + K,AX, (16)

If Coulomb criterion:
[Fs|| = [|Fn|[tan pu < 0, (17)

is not satisfied, then the shearing force F, needs to be corrected down, to satisfy it:

L L Et
L= SH nH_’an:u’ (18)
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The forces acting on spheres A and B are accumulated:
Fy=Fy— (F+ F) (19)
Fp = Fp+ (F, + Fy) (20)

The moments acting on spheres A and B, due to Fs and F,, are accumulated:



My =My—(C—Xa) x (Fy+ F,) (21)
Mp = Mg + (C — Xp) x (F, + Fy) (22)

The angular orientation displacement A(:? between two spheres is calculated from original
relative orientation of two spheres and current relative orientation:

AQ=A ()" B (B)" (23)

Next the quaternion AQO = a+ bi+ cj +dk is converted into a three dimensional rotation
vector Ad = {z,y, 2z} using the following formula:

b
"= i (o/2)

Ad =< Y= ¢m , where: ¢ = 2arccos (a) . (24)

d

= (672)

If the rotation angle ¢ = 0, then axis of the rotation can be anything since no rotation occurs.
In this case to avoid the division by zero, the zeros are assigned to x, y and z. Then the
contact moment M between two spheres is calculated as:

M = K, A& (25)

In this paper the rotational stiffness for twist and bending is the same value K, using
two different values can be obtained by decomposing A& into two vectors, one lying on the
plane of contact second being in the direction of the normal of the contact.

If following criterion:
Ra+ Rp

2

is not satisfied, then the moment M needs to be corrected down, to satisfy it:

[|M]| =n [1Fnl] <0, (26)
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The moments acting on spheres A and B, due to contact moment are accumulated:

My=My—M (28)
MB = MB + M (29)
After all contacts are processed using above equations, the gravity effect is applied on all

spheres: . .
F; = F; + mjg, (30)

where g = 9.81m/ S2, m mass of i-th sphere and Fj is residual force vector for sphere i-th.
In the model, a local non—viscous damping scheme is adopted to dissipate kinetic energy
(Cundall and Hart 1992):

F = £~ a sgn(TH)|F¥1, o



where Fik is the k-th component of the residual force vector for sphere i-th, the ‘_/;k is the
k-th component of velocity V; of i-th sphere, « is a positive numerical damping coefficient
less than 1 and sgn(e) returns the sign of argument e. The same is applied for moment:

MF = M} — o sgn(@¥)| M), (32)

where MF is the k-th component of the residual moment vector for sphere i-th and &¥ is the
k-th component of angular velocity of i-th sphere.
Then a Newton’s force law is applied to all spheres to calculate their acceleration:

where a; is acceleration of i-th sphere, F; is force acting on it, and m; is its mass. The
same is applied for moment to calculate angular acceleration:

ok = MF/TE, (34)

where wf is k-th component of angular acceleration of i-th sphere, Mik is k-th component

of moment acting on i-th sphere and [, f is k-th component of inertia of an i-th sphere. Inertial
matrix here is expressed as a vector containing only diagonal components of inertial matrix,
because the remaining cells in the matrix are zero, for a sphere.

Then the position of all spheres is integrated using a leap from integration scheme:

X=X+ At V. (36)

And the orientation of all spheres is integrated in similar way, using quaternions. First
an angular velocity is calculated:

Gy = @y + At & (37)

Then a quaternion ACO)Z- = a + bi + c¢j + dk representing rotation at time step At is
constructed, assuming that w; = {z,y, z}:

a = cos (¢/2)
b =sin (¢/2) TGl
AQ; = " where: ¢ = ||&||. 38
Q=1 an oy b - vhere: 0= |G| (39)
|l |
d = sin (¢/2) —
|||
Then the orientation of i-th sphere is updated:
Qi = Qi AQ;. (39)

Before the calculation of an iteration step starts the residual forces and moments acting
on spheres are set to zero:

F;=o. (40)

ot



Then the time is incremented:

and next calculation step starts.

t =1+ At,



