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a b s t r a c t

A discrete element method code developed by the authors is used to model Lac du Bonnet granite in

triaxial compression. The paper first presents the features of the model and the algorithms used to

identify the micro deformability and strength parameters. With these identification algorithms, the

model was calibrated to match experimental triaxial test data on Lac du Bonnet granite. With the

calibrated model, investigation on failure evolution was then performed. The monitored evolution of

the number and type of contact failures (micro cracks) reveals that at micro level tensile failures

occur first, followed by mobilization of residual friction. Three distinct stages of stress–strain curve can

be well identified by the accumulated number of contact failures and the mode of contact

failures.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The behavior of geomaterials, like intact rock, is often time
complex, with a nonlinear failure envelope and a high ratio of
uniaxial compression strength to tensile strength [1]. Currently, it
is very difficult, if not impossible, to fully model this behavior,
which has a complicated failure evolution process. Discrete
element method (DEM) is a popular tool used in modeling rock
behavior, because it can deal with the material failure naturally by
modeling failure evolutionary process from micro crack to macro
failure without any complex constitutive models.

DEM can be generally viewed [2] as a method that allows finite
displacements and rotations of discrete bodies, and updates
contacts automatically as the calculation progresses. The original
application of DEM by Cundall and Strack [3] was to perform
research into the behavior of granular material and blocky rock
systems [4]. Then it has been extended to solid mechanics to
investigate the failure process of bonded geomaterials, like intact
rock [5,6] and concrete [7]. Nowadays, DEM is widely used in
geomechanics from soil (particulate type) to intact rock (relatively
continnum type), to rock masses (assemblies of blocks) with
applications in many areas, such as rock engineering, soil
mechanics, mining and petroleum engineering [3,8–13]. In
modeling particulate materials, the element used in the model
can be viewed as representing the true material particle.
When modeling the behavior of intact rock, the elements used
in the model do not represent the actual material particle size
ll rights reserved.
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and the elements are bonded to each other with a specific
strength.

While the method is versatile and attractive, it requires
extensive calibration work. The calibration process in DEM
includes parameter identification for both deformability and
strength. Before modeling a specific case, the specimen should
be prepared with specific micro parameters to be determined for a
given packing so as to closely reproduce the specific macro
material properties.

So far, there has been no satisfactory way to calibrate the DEM
model in order to reproduce the complicated behavior of material
like rock and deploy the versatility of DEM. Using sensitivity
analysis, most of the researchers investigate the effect of one
individual parameter (or a combined dimensionless parameter)
while keeping other variables fixed, and then a general formula to
determine micro-scale parameters based on specific macro
material properties is determined [14,15]. Based on the authors’
investigation, when identifying micro deformability parameters,
the problem is relatively simple and sensitivity analysis can be
applied. However, when identifying micro strength parameters,
the problem involves micro crack propagation, and hence is more
complicated, because the individual trend of one strength
parameter may not be directly obtained by just fixing the values
of all the other parameters since these parameters may not be
independent. In PFC [16], for example, uniaxial compressive tests
are used to reproduce the deformability behavior and the uniaxial
compressive strength: as the authors note, ‘‘It should be noted
that our current understanding of this calibration process is still
incomplete—i.e., we still do not know how to construct a PFC
material that reproduces a given strength envelope or one that
reproduces a given ratio of unconfined compressive strength to
Brazilian tensile strength y’’.

www.sciencedirect.com/science/journal/rmms
www.elsevier.com/locate/ijrmms
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The paper first presents an outline of the authors’ DEM code.
Then it proceeds by introducing the simulation setups and the
model calibration, in which an effective calibration technique to
identify micro parameters has been successfully achieved with an
optimization process, and a new membrane boundary to apply
confining pressures for modeling triaxial tests is developed to
overcome the drawbacks of conventional boundary conditions
[6,16–18]. Finally, some important investigations on failure
evolution during axial loading are performed to gain insight into
the complex fracturing behavior of Lac du Bonnet granite.
.

D
eq

Fig. 1. Concept of equilibrium distance.

Fig. 2. Constitutive model of contact.
2. Features and formulations of DEM code

A DEM algorithm has been implemented with the general
features similar to other particle based programs while introdu-
cing some new features, such as concept of equilibrium contact
distance. A very brief summary of the general features of DEM is
given here.

2.1. Specimen preparation

The rock specimen is prepared as a random dense packing of
sphere particles with different radii distributed according to a
Gaussian distribution, in which the ratio of smallest radius over
the largest radius is chosen as 1.6 in this paper. The dense packing
assembly is achieved by using a modified radii expansion method
described in Ref. [16]. Rigid walls are used to confine the space. In
the method, sphere radii are first computed for a given number of
particles and a desired porosity of packing. However, the porosity
used for packing is not the physical porosity of a rock specimen
because a coefficient of interaction range is used in the model to
‘‘cement’’ particles. In order to effectively place these sphere
particles in a given domain, each sphere is shrunk to a smaller size
by a certain percentage so that these shrunk sphere particles can
be placed at random coordinates easily without any overlaps,
because the available void space is relatively large. The spheres
are then expanded to their originally calculated radii to obtain the
desired porosity. Since this process may introduce large overlaps
at contact, the assembly is cycled by using a simple DEM code to
decrease the larger overlaps between particles and eventually
reach equilibrium. This simple DEM code is similar to the DEM
code presented in the paper except that particles are not bonded
together. A Mohr–Coulomb contact model with relatively low
friction is employed in the simple DEM code to make sure that
particles can move easily with respect to one another.

The initial model is set up by using the packing assembly and
by considering the initial state as ‘‘zero stress’’ state. This is
achieved by introducing an ‘‘equilibrium distance’’ DAB

eq between
each pair of contact spheres A and B, which is equal to the
distance between the centers of spheres A and B at the end of the
packing (release of the lock-in stress). A coefficient of interaction
range is introduced into the model to simulate materials other
than simple granular materials, in particular those which involve
a matrix [7]. A coefficient of interaction range of 1.3 is used in this
work, which means that two particles are in contact if their
center-to-center distance is less than 1.3 times of the summation
of their radii.

As shown in Fig. 1, there are two scenarios in which particles
are in contact and ‘‘equilibrium distance’’ is created. In one
scenario, two particles are overlapped and ‘‘equilibrium distance’’
is less than the summation of their radii. While in the other
scenario two particles are not physically in contact, but are still
considered as a contact because of introducing interaction range,
in which ‘‘equilibrium distance’’ is larger than the summation of
their radii. For the former case, an ‘‘equilibrium distance’’ is to
release the lock-in stress generated from packing, which is not
appropriate for modeling. The equilibrium distance between
particles, which are not in contact initially but may come into
contact at some later stage in the simulation, is determined as
the summation of the two radii multiplied by a coefficient of
interaction range.

Fig. 2 shows the basic idea about the constitutive model
implemented in the current model, in which the springs represent
the elastic responses to normal and shear forces, the dashpots
represent the damping effects of the material; and the slider
element stands for the contact slide after shear failure.
2.2. Force–displacement law

The force–displacement law relates the relative displacement
between two entities at a contact to the contact force acting on
the entities. Here ‘‘force–displacement’’ is a general term includ-
ing both force–displacement and moment–rotation. Only a brief
description on force–displacement law is given here. More details
can be referred to authors’ related papers [19,20].
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The relationship between contact forces and the relative
displacements is assumed to be linear with the following
interpretation. The contact forces consist of a normal
component, F

*

n, acting in the direction of the segment AB
joining the two sphere centers, and a shear component, F

*

s,
acting in the plane perpendicular to AB at the point of contact, C.
The force–displacement law relates these two force compo-
nents to the corresponding components of the relative displace-
ment via linear normal stiffness ðKnÞ and shear stiffness ðKsÞ

at contact.
The normal force, F

*

n, acting on sphere A is calculated as

F
*

n ¼ KnðD
A;B
eq � dA;B

Þ n
*

, (1)

where DA;B
eq is equilibrium distance between the two spheres A and

B which is set when the contact is initially created, dA;B is the
current distance between each pair of contact spheres A and B,
and n

*
is the unit vector pointing from the center of sphere A to the

center of sphere B. The contact is in tension when dA;B4DA;B
eq , and

in compression when dA;BoDA;B
eq . The calculated new normal

contact force is then added to the contribution of the resultant
force and moment for both spheres. When tensile failure occurs at
contact, the way to calculate the normal force will change, as
described later in Section 2.3.

The shear contact force, F
*

s, is determined from an updated
shear displacement on the contact plane which is computed in an
incremental fashion as

F
*

s ¼ �KsDU
*

s, (2)

where Ks is the shear stiffness of the contact, and DU
*

s is
incremental shear displacement. This new updated shear contact
force is added to the resultant force and moment for both spheres.
When a contact is formed, the shear displacement on the contact
plane is initialized to zero. Each subsequent relative shear-
displacement increment is added to the current value in a vector
form, which will hence result in an increment in shear contact
force. The motion of the contact must be taken into account
during this procedure because the current shear displacement
vector always lies on the contact plane, which moves with the
spheres in the global coordinate system.

The moment applied to spheres A and B by the shear contact
force, F

*

s can be calculated, respectively, as

M
*

A ¼ r
*

AC � F
*

s,

M
*

B ¼ � r
*

BC � F
*

s, (3)

where r
*

AC and r
*

BC are radius vectors from sphere centers to the
contact point, C, respectively.

2.3. Failure criteria

The strength criteria at contact used in the model comprise
two parts: tensile failure and shear failure. These two kinds of
failures jointly control the overall material strength. Tensile failure
occurs when the magnitude of the contact normal force
(in tension) is greater than the product of tensile strength, T,
times the contact area, AC , which is calculated as

AC ¼ p RA þ RB

2

� �2

, (4)

where RA and RB are the radii of spheres A and B, respectively.
After tensile failure, the contact force suddenly drops down to

zero and the contact is de-bonded in tension, which means that
the tensile strength is zero after the tensile failure, in the
meantime, the cohesion part of shear strength will also degrade
to zero. In order to model the softening behavior of the material,
as shown in Fig. 3, the contact force can gradually decrease rather
than suddenly dropping to zero after the contact force reaches the
peak value. In the work presented in this paper, softening behavior
is not included.

The shear failure follows the Coulomb criterion as shown in
Fig. 4. The maximum shear strength, tmax, is dependent on
cohesion c, friction angle j and also normal stress, sn, at contact.

tmax ¼ c þ sn tan j. (5)

After shear failure, the cohesion is set to zero and the frictional
angle can decrease to residual frictional angle jr.

The micro-level parameters used to describe the contact
strength, T, for tensile component and c, j and jr for shear
component are different from the values for material property at
the macro level, and need to be identified by a calibration process.
The effect of jr on the macroscopic behavior of simulated
materials is mainly related to post-peak behavior rather than
ultimate strength, which will be addressed in Section 5. Hence, jr

was fixed as 30% of j and it was not considered in the calibration
process to match a failure envelope.

In the authors’ model, contact bond is created by tensile
strength and pressure dependent shear strength; bending stiff-
ness is not included in the current model. Although bending
stiffness is not introduced, rotation resistance between bonded
particles still exists because shear force at contact contributed
from particle rotation can resist the rotation.
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Fig. 5. Results of identified boundary particles for post-peak stage: (a) top view

and (b) front view.
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3. Simulation setups

In order to calibrate the model, uniaxial compressive, triaxial
compressive and direct tension tests, with a cylindrical specimen
are simulated. Several techniques and algorithms developed for
modeling these tests are presented here.

3.1. Membrane boundary for applying confining pressure

A new approach to apply realistic confining pressure has been
developed for modeling triaxial tests on rock using the DEM.
Currently, the conventional rigid boundary is commonly used in
DEM simulations [6,16]. The drawback of this type of boundary
condition is that the boundary particles tend to be aligned with
the rigid boundary, and the material failure process and
deformation may be overly constrained by the boundary, hence
not fully representing the actual test conditions.

The new approach applies updated force boundary rather than
a ‘‘wall’’ boundary to simulate the confining pressure. The applied
forces only act on the boundary particles, which are identified and
updated periodically. The boundary particles are identified by
using a cell algorithm and updated frequently.

The force applied to an individual boundary particle is directly
determined based on the applied confining pressure and the
sphere size. After identifying the boundary particles, the effect of
the confining pressure is simulated by applying force onto these
boundary particles. The radial force applied on the ith individual
boundary particle under membrane boundary condition, Fm

i , is
determined based on the value of input confining pressure, p, and
the radius of the particle, Ri, as

Fm
i ¼ pR2

i

Am
bPi¼Nm
b

i¼1 pR2
i

p, (6)

where Am
b is the initial lateral surface area of the specimen, and Nm

b

is the number of boundary particles. The boundary force, Fm
i , is

applied at the center of its relevant sphere, and is directed radially.
The way to apply confining pressure is much realistic compared to
other traditional approaches used in DEM modeling. However, one
may argue that the full size of the sphere is used rather than the
area of the sphere which is actually exposed to the surface when
calculating boundary force, Fm

i . This is to compromise computa-
tional cost and accuracy because it is very computationally
expensive to calculate particles’ exact exposure to the surface.

Fig. 5 shows an example in which the boundary particles are
identified after loading the specimen to failure with a packing of
2500 spheres. Notice that the specimen bulges at several
locations, which cannot be modeled by using conventional rigid
boundary conditions.

3.2. Simulation procedures

In modeling a triaxial test, the confining pressure is first
applied to all boundary particles (all-around pressure) to reach an
equilibrium state. Under this all-around confining pressure, the
specimen develops a displacement at the top end of the specimen.
Then an axial displacement is applied incrementally while
keeping the confining pressure constant on circumferential
boundary particles.

The starting point of the shearing phase for a triaxial test is
simulated by applying an incremental displacement to the top end
while the bottom end is fixed in the vertical direction like what
behaves in actual triaxial experiments. Both the top and the
bottom ends are treated as rigid walls. At each incremental step,
the top-end displacement is increased by a certain amount, and
this displacement is then kept constant until the system reaches
equilibrium. When a displacement is applied to the top end,
relatively large overlaps between the top end and the particles in
contact with the top end are produced, and large stresses are
applied to those particles. These stresses then propagate out into
the specimen with relative movements among particle systems.
The equilibrium state can be indicated by monitoring either the
system energy history or the balances between the stresses
applied at the two ends of the specimen. In the simulations
carried out in this paper, the latter one was used to check the
equilibrium state during a simulation. Displacement increment is
increased if the relative difference of stresses calculated at the two
ends of specimen is smaller than 1%. By monitoring the normal
stress and strain in the axial direction, the stress–strain curve can
be easily obtained, which is then used to analyze the macro
material properties of the simulated specimen. The procedure for
simulation of uniaxial test are similar to that for triaxial test
except that the first step of applying confining pressure is not
needed, and hence no membrane boundary is necessary.
4. Model calibration

In order to simulate a specific problem, the micro parameters
of the model described above should be calibrated to reproduce
similar macro material properties as desired. There are two types
of micro parameters to be determined in DEM, i.e., deformability
and strength parameters. These micro parameters are calibrated
with uniaxial and triaxial tests (axisymmetric).

In the calibration process, the experiment data of Lac du
Bonnet granite published in [6,21] are used as presented in Table 1
to calibrate both deformability and strength parameters of the
model.

A cylindrical specimen with a height of 3.2 and 1.6 cm diameter
is prepared for calibration using a random packing of 2500
spheres as described in Section 3.1. The size of the specimen is the
same as the one used in Hentz et al.’s work [7] for the purpose of
comparison.
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4.1. Deformability parameter identification

Deformability parameters include particle’s Young’s modulus,
Ec , and the ratio of normal stiffness over shear stiffness at contact,
Ks=Kn, where the contact normal stiffness is determined by
Kn ¼ pEcDA;B

eq =4. These micro deformability parameters are cali-
brated to match the material’s macro deformability parameters:
Young’s modulus, E, and Poisson’s ratio, n, which are determined
from experiments.

The identification of deformability parameters is carried out
under non-failure condition by means of modeling uniaxial
compressive tests. The average axial component of the stresses
in the entire assembly can be determined either by the method of
Liao (to determine the full stress tensor) [22] or simply by
averaging the normal components of the contact forces on both
the bottom and top ends (to obtain the axial stress). The two
methods give comparable results (within a 15% difference), but
the latter one is used because it more closely resembles the way in
which stresses are calculated in a triaxial test.

As can be seen in Figs. 6 and 7, material’s Young’s modulus, E, is
related to both particle’s Young’s modulus and the ratio Ks=Kn,
while material’s Poisson ratio n is only related to the ratio Ks=Kn.
When determining material’s Young’s modulus, E, particle’s
Young’s modulus and the ratio Ks=Kn are independent of each
other. This allows us to investigate this individual effect on E and
then combine those effects together to determine material’s
Young’s modulus E as follows.

Different combinations of Ec and Ks=Kn are used to set up a
series of simulations for a given random packing. A sensitivity
analysis is then carried out by varying one of the factors and fixing
Table 1
Macro-properties of Lac du Bonnet granite.

Property E (Gpa) n qu (MPa) j (deg) c (MPa) st (MPa)

Experimental 69 0.26 216 59 30 9.3

DEM model 71 0.25 220 58 32.6 19.1

PFC3D model 69.2 0.256 198.8 32.1 55.1 27.8

Fig. 6. Macro elastic
the other factor. As seen in Fig. 6, it is found that the material’s
macro Young’s modulus, E, increases linearly with particle’s
Young’s modulus, Ec , and the material’s macro Poisson’s ratio
does not change with particle’s Young’s modulus, Ec . By fitting the
simulation results (as shown in Figs. 8 and 9), the following
relationships are obtained based on formulas presented by
Liao [22]:

E ¼ 2:43Ec

0:209þ 1:206
Ks

Kn

1þ 1:735
Ks

Kn

0
BB@

1
CCA, (7)

n ¼ 0:96
0:39� 0:10

Ks

Kn

1þ 4:84
Ks

Kn

0
BB@

1
CCA. (8)

Eqs. (7) and (8) can be solved for the micro deformability
parameters for the model of Lac du Bonnet granite, which are
found to be equal to Ec ¼ 104:7 GPa and Ks=Kn ¼ 0:085. With
these model parameters, the simulated macro properties in
deformability are as presented in Table 1 (third row, columns 2
and 3), which are very close to the experimental results.

The values of the coefficients in Eqs. (7) and (8) are valid only
for a given packing assembly and initial contact relationships with
a given coefficient of interaction range. For a different packing
assembly, the forms of Eqs. (7) and (8) remain the same but the
whole calibration procedure must be repeated because it is
impossible to give a general formula to identify the micro
parameters on the basis of the macro parameters.

4.2. Strength parameter identification

There are two kinds of failure mechanisms, i.e. shear and
tension, controlling the material failure. They can affect each other
because either type of failures may change local stress conditions.
This actually makes the failure process more complicated and
makes it difficult to calibrate strength parameters. Strength
parameters include the contact tensile strength, T, and c and j
properties vs. Ec.



ARTICLE IN PRESS

Fig. 7. Macro elastic properties vs. Ks/Kn.

Fig. 8. Fitting results: material’s Young’s modulus vs. Ks/Kn.

Fig. 9. Fitting results: material’s Poisson’s ratio vs. Ks/Kn.
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for shear components as already described in the failure criteria of
the model. These strength parameters are calibrated under
different confining pressures to match a failure envelope obtained
from experiments. This process is very time-consuming as each
trial parameter set needs to be simulated under different
confining pressures to reach the peak strength point of a
stress–strain curve.

In order to rationally identify the strength parameters, an
inverse method is used. The main objective of the inverse method
used here is to identify a selected set of unknown modeling
parameters in DEM to improve the agreement with experimental
data. The experimental failure envelope is usually obtained by
setting up a set of triaxial tests with different confining pressures
to get the ultimate strength. In order to match the experimental
failure envelope, some representative points, ðsi

1_ exp; p
iÞ, from the
experimental failure envelope are selected to delineate the
envelope, where si

1_ exp is the ultimate axial strength under
confining pressure pi (i ¼ 1;2;3; . . . ;n), and n is the number of
points chosen to describe the envelope. The corresponding
confining pressures, pi, are used for DEM simulation setup. For a
given set of micro strength parameters, ½c;j; T�, the simulated
ultimate strength under confining pressure pi, is denoted as si

1_sim.
The objective function

f ðc;j; TÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

si
1_ exp � si

1_sim

si
1_ exp

 !2
vuut (9)

is used to evaluate the difference between experimental and
simulated failure envelopes.

The global optimization package SNOBFIT [23] was utilized in
the calibration process, in which an optimization problem is
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solved with objective function f ðXÞ subject to X 2 ½U;V �, where X is
the parameters set, ½c;j; T�, to be identified, and ½U;V � is
the parameter space, which is bounded by using specified
ranges as

clow cup

jlow jup

Tlow Tup

2
64

3
75.

SNOBFIT performs global and local search by branching and
local fits to find the global optimal point. This technique is
especially suitable for optimizing problems with multiple local
optimal points. In the calibration of strength parameters, the
objective function in Eq. (9) is not available in an analytical form
because a DEM code accounting for an intricate physical process is
utilized to compute the failure envelope with specified micro
strength parameters. SNOBFIT is the only global optimization code
that handles non-analytical objective functions. The way in which
the micro strength parameters affect the material strength is very
complex, and the relationships of these strength parameters
involved in determining the objective function, f ðc;j; TÞ, may not
be monotonic. Our extensive numerical simulations have shown
that SNOBFIT is able to optimize this complicated objective
function to find the micro strength parameters.
Experimental Failure
Envelope (EFE)

DEM

Computed F
(CFE) with m

Xi =

Evaluate the least square
difference between EFE and

CFE (Eq. (9))

f(Xi)≤  tolerance?

Model parameters
(ci,ϕi,Ti)

Y
es

Fig. 10. Flowchart of the inverse method f
At each step of the optimization process, SNOBFIT generates a
specified number of evaluation points, and then proceeds by
successively partitioning the parameter space and building local
quadratic models of the objective function. The search process is
terminated when a given minimal objective function value is
reached or if no better solution can be found after a specified
number of steps [23]. Compared to typical stochastic algorithms,
SNOBFIT does not require as many function evaluations and is
therefore applicable to problems with expensive function evalua-
tions, such as DEM to obtain a failure envelope.

The overall calibration procedure proceeds iteratively. With
reference to Fig. 10, one starts from either an initial guess of model
parameters or parameter values randomly chosen from specified
ranges of values. Then, the unknown parameters X are iteratively
updated to find the optimized parameters X: at the ith iteration,
the DEM code is invoked to obtain a computed failure envelope
(CFE) corresponding to parameters Xi. The CEF is then compared
to the experimental failure envelope (EFE) to evaluate the
objective function f ðc;j; TÞ. If the value of objective function is
smaller than the given tolerance, optimized model parameters
will be outputted. Otherwise, the model parameters are updated
by calling SNOBFIT. In the calibration process, the DEM code and
SNOBFIT were repeatedly invoked until CFE matches EFE by
meeting the tolerance criterion, which was set as 5% in the
 Model

ailure Envelope
odel parameters

(c, ϕ,T)i

SNOBFITNo

Updated model
parameters

Xi+1 = (c,ϕ,T)i+1

Set the ranges of
values for each

parameter

Randomly pick or
estimate the values of

parameters for the

initial trial X0 =(c, ϕ,T)0

i =
 i+

1

or strength parameters identification.
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strength parameters calibration considering the intensive
computational effort involved in obtaining the value of objective
function. In the calibration work presented in this paper,

clow cup

jlow jup

Tlow Tup

2
64

3
75 ¼

20 MPa 1000 MPa

0� 80�

5 MPa 100 MPa

2
64

3
75

is used for the parameter ranges for Lac du Bonnet granite, which
are roughly estimated based on available experimental strength
data. The number of points, n, chosen to delineate the failure
envelope is 6.

All the simulations for strength parameter calibration use the
deformability parameters identified in Section 4.1 and Table 1.
The calibrated micro strength parameters are c ¼ 429 MPa,
j ¼ 68�and T ¼ 34:2 MPa. The calibrated failure envelopes are
shown in Fig. 11, which shows that the simulated envelope with
calibrated micro strength parameters matches well the
experimental one. The results demonstrate a prominent
pressure-dependent behavior compared to PFC model results [6]
(Table 1 and Fig. 12). A total number of 95 iterations are necessary
to find the calibrated micro strength parameters with a tolerance
criterion of 5%, i.e. 95 failure envelopes are generated, each
corresponding to different strength parameter combinations.

The corresponding stress–strain curves under different con-
fining pressures are plotted in Fig. 12; they show that all curves
have the same slope (Young’s modulus), and that specimens under
higher confining pressure fail at larger strain and under higher
deviator stress ððs1 � s3Þat failureÞ.

It should be noted that the calibrated values of micro strength
parameters in DEM model are different from the ones at
macroscopic level. In DEM modeling, failure either in tension or
shear is initiated from those highly stressed contact bonds and
propagates subsequently. Hence, calibrated micro strength para-
meters could be much higher than effective strengths, as can be
seen from the strength parameter calibration of Lac du Bonnet
granite, in which the calibrated model strength parameters c, j
Fig. 11. Strength parameter
and T are all much higher than macroscopic ones as shown in
Table 1.
4.3. Discussions on model calibration

Unlike other numerical methods such as finite element
method, in which model parameters can be directly derived from
experimental results, DEM deformability and strength parameters
used at the micro level are different from the material properties
at the macro level. That is why special calibration algorithms were
proposed. In DEM modeling, specimens are prepared by random
sphere packing. Different packings have different internal struc-
tures even for the same number particles. These internal packing
structures can affect the macroscopic behavior of packing
assemblies. As a result, in DEM modeling, every packing specimen
must be calibrated by using the algorithms discussed above to
s identification results.
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Fig. 13. Stress–strain curves for direct tension test.
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match the desired properties before using it in actual simulations.
Usually, different packings should have different micro model
parameters to match specific material properties.

PFC’s bonded particle model (BPM) [6] is often used to model
intact rock behavior. However, if clusters of spheres are not used,
BPM has difficulty in modeling the behavior of Lac du Bonnet
granite, which has a high slope strength envelope, and a high ratio
of compressive strength to tensile strength as shown in Fig. 11.
Potyondy and Cundall [6] concluded that: ‘‘this discrepancy may
arise from the use of circular and spherical grains in the present
model, and it could be reduced by using grain shapes that more
closely resemble the complex-shaped and highly interlocked
crystalline grains in granite.’’ When using clusters of spheres, a
good match with experimental envelope slope was obtained, but
other problems, like discrepancy in dilation and post-peak
behavior, were observed. After an effective calibration, the model
presented in this paper can reproduce the behavior of Lac du
Bonnet granite. Unlike the authors’ model, the micro shear
strength in BPM model is not pressure-dependent (it only
includes cohesion), which might cause the difficulty in modeling
a high strength envelope slope (macro internal frictional angle).

In order to understand the importance of pressure-dependent
shear strength in simulating a high strength envelope slope, a
DEM model with a non-pressure-dependent shear strength (j ¼ 0
in Eq. (5)) was calibrated against the experimental data of Lac du
Bonnet granite. The values of micro deformability parameters are
the same as those identified previously. Now only two parameters
are involved in strength parameter identification, i.e., c, and T.

The optimum result obtained after 100 iterations has strength
parameters equal to c ¼ 239 MPa, and T ¼ 47 MPa and its failure
envelope is shown in Fig. 11 (failure envelope for non-pressure-
dependent shear strength). It shows that the Lac du Bonnet
granite experimental failure envelope cannot be modeled by only
using model strength parameters c and T. This model is still
different from PFC’s BPM model because of the concepts of
equilibrium distance and interaction range used in the model,
therefore the identified model strength parameters cannot be
directly compared to those used in the BPM model. It is concluded
that pressure dependent micro shear strength is critical to
correctly simulate high slope failure envelopes.
4.4. Simulation of direct tension test

In practice, Brazilian test is usually carried out to determine
the material tensile strength. However the strength parameters
calibrated from triaxial tests to determine material tensile
strength cannot be directly used to model Brazilian test. Because
the packing assembly used for Brazilian test (disk) is different
from packing assembly used for triaxial test (cylinder), the
calibrated strength parameters for the triaxial test specimen
may not be suitable for a disk specimen any more.

From a numerical point of view, a direct tension test can be
easily set up to determine tensile strength. With the calibrated
strength parameters, a direct tension test is simulated by applying
incremental tensile displacement loading. The tensile strength
between specimen ends and loading platens (interface) are set
high enough to make sure that no failure can occur at the
interface. As shown in Fig. 13, the simulated tensile strength is
about 19.1 MPa (for mean particle radius of 0.70 mm), which is
higher than the experimental value of 9.3 MPa obtained from
Brazilian tests. The tensile strength simulated by PFC3D in
Potyondy’s work [6] was about 28 MPa. The difference in the
simulated tensile strength may be caused by different reasons.
First, the model used in this work is different from PFC’s BPM in
several ways, such as concepts of equilibrium distance and
interaction range, and pressure-dependent shear strength.
Further, Potyondy and Cundall used different specimens for
simulating triaxial and Brazilian tests, and hence the internal
packing structures were different. As highlighted in this paper, in
order to model a specified material, different packing structures
should have different micro model parameters. However,
Potyondy and Cundall adopted the model parameters identified
by using uniaxial tests even in modeling Brazilian tests. Lastly, the
tensile strength obtained from Brazilian tests is normally higher
than that obtained from direct tension tests because Brazilian
tests induce a biaxial state of stress, in which some micro cracks
may be due to compressive load under the loading platens.
Usually, it is difficult to fully model a material behavior with very
high ratio of uniaxial compressive strength over tensile strength.
However, the ratio of uniaxial compressive strength to tensile
strength of about 12 obtained here is a representative value for
intact rock material.

4.5. Effect of internal packing structure on macro properties

The effect of internal packing structures on macro material
properties is investigated in this section in terms of particle size
and random process in packing. The investigation demonstrates
that internal packing structure is an intrinsic part of material
characterization in discrete element modeling.

First, packing assemblies were performed with different mean
particle sizes while keeping all other micro parameters fixed. The
mean particle radii for the five different packing assemblies are
0.44, 0.56, 0.70, 0.95, and 1.13 mm, respectively. Simulated results
show that the particle size can affect macro properties in both
deformability and strength. Poisson’s ratio is independent of
particle size, while Young’s modulus exhibits a clear dependency
upon particle size because it decreases from 75.1 to 65.2 GPa as
particle size increases from 0.56 to 1.13 mm (Fig. 14a). The reason
for this dependence is unknown, but it should be related to the
internal structure of the random packing because such
dependence is not observed while using regular packings, in
which spheres are all the same size and face centered. Figs. 13 and
14b that the simulated uniaxial unconfined compressive strength
and tensile strength exhibit no clear increasing or decreasing
trends with particle size.

Different random processes in packing can also cause
changes in internal packing structures. A set of triaxial
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simulations ðs3 ¼ 10 MPaÞ were performed with packing assem-
blies generated by different random processes while using the
same type of particle sizes. Fig. 15 shows that the difference in
ultimate deviator stress (ðs1 � s3Þat failure) can be as large as 15%.
However, this random process has negligible effect on Young’s
modulus and Poisson’s ratio.

In conclusion, internal packing structures can affect macro
material properties even if all micro-properties are kept constant,
and have to be taken into account in model calibration.
5. Crack evolution

The macro failure of the material is caused by the evolution
and propagation of local cracks which can be identified by the
history of the number of contact failures (cracks). When a
specimen fails in the simulation, a failure zone forms, which is
either a shear plane for triaxial test or a tensile failure section.
Along these failure zones, contacts are broken apart by tensile
failure cracks and particles are rearranged. For triaxial compres-
sive tests, the stress–strain curve can be classified into three
distinct stages as can be seen in Fig. 16 based on the generated
cracks described as follows:

Stage I: Very few cracks are generated and the material behaves
elastically.
Stage II: Tensile cracks are gradually generated over a strain-
loading increment; cohesion component of the cracked contact
is also destroyed, and the material behaves plastically.
Stage III: The frictional strength (residual contact shear
strength) starts to mobilize gradually until reaching the
residual shear strength of the material along a shear band,
which is made up by those particle contacts firstly broken by
tensile failure followed by loss of cohesion in the shear
strength at contact. In this stage, the newly generated contact
failures in tension are very few because the additional strain
mainly takes place in the shear band, which is formed by
broken contacts. This stage characterizes the post-peak
behavior of compression test.

When the loading increases, the cohesion component of shear
strength is gradually destroyed by tensile cracking. The normal
stress-dependent frictional strength (residual shear strength at
contact) is only mobilized after the specimen reaches macro
failure (peak strength), when the cohesional component of shear
strength is significantly reduced, and the rock fragments can move
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relative to each other in shear. In other words, the residual
frictional strength at contact (micro level) only affects the post-
peak behavior for brittle materials.

The results of failure process for compression test shown in Fig.
14 can be compared with the investigations made in [5, 736, Fig.
10] (as shown in Fig. 17), in which Hajiabdolmajid et al. concluded
that, in relatively low confinement environments, the delay in
frictional strength mobilization is characteristic of brittle failure
in geomaterials. Based on the authors’ investigations, the micro
tensile strength at contact dominates the strength before brittle
failure. When the loading increases, the cohesion component of
shear strength is gradually destroyed by tensile cracking as shown
in Fig. 16. The normal stress-dependent frictional strength
(residual shear strength at contact) is only mobilized after the
specimen reaches macro failure (peak strength), when the
cohesion component of strength is significantly reduced, and the
rock fragments can move relative to each other in shear. In other
words, the residual frictional strength at contact (micro level) only
affects the post-peak behavior for brittle materials, like Lac du
Bonnet granite.
6. Conclusions

Other than using some traditional approaches to identify micro
model parameters in DEM modeling, a special calibration scheme
has been developed. Sensitivity analysis is used to identify micro
deformability parameters by obtaining relationships between
microscopic and macroscopic deformability properties. Micro
strength parameters are identified by a global optimization
process aimed at minimizing the difference between computed
and experimental failure envelopes. With these identification
algorithms, the model has been successfully calibrated to match
experimental triaxial test data of Lac du Bonnet granite. These
calibration algorithms can be applied to identification of micro
model parameters for any type of DEM code.

Investigation on failure evolution of simulated Lac du Bonnet
granite is then performed. The monitored evolution of the number
and type of contact failures (micro cracks) reveals that at micro
level tensile failures occur first followed by mobilization of
residual friction, and that three distinct stages of stress–strain
curve can be well represented by the accumulated number of
contact failures and the mode of contact failures.
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