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Abstract  
 
By using spherical discrete elements, computational costs can be kept low even for large 
numbers of elements. However, this oversimplification of the granular geometry has 
drawbacks when quantitatively assessing the model even for frictional geomaterials. To 
overcome this limitation, the local constitutive law must at least take into account the transfer 
of a moment between elements. This moment, which is added to normal and shear local 
interaction forces, increases the number of local parameters. Moreover, when local plastic 
thresholds are considered, the calibration of the model becomes tricky. With such a set of 
local parameters, a calibration procedure is proposed, which attempts to tackle the respective 
role of each parameter in the macroscopic behavior. For this purpose, a series of numerical 
simulations of triaxial compression tests has been done to check the capability of this model 
to get good quantitative results. 
 
Introduction 
 

When a DEM model is used, the issue of the modeling scale has to be addressed: the DEM 
is well adapted to the modeling of granular material, where an element represents a grain 
(Thornton 2000, Sibille et al. 2005).  Thus, numerous authors have used the DEM to simulate 
granular materials at the heterogeneity scale (Donzé & Bernasconi 2004, Shiu et al. 2006), i.e. 
the size of an element is on the order of the size of the biggest heterogeneity. This approach 
gives interesting insights in the local behavior, but makes the modeling of real structures 
difficult because of the computational cost. Another way to use the DEM consists in using a 
higher scale model (a mesoscopic scale), which considers that a discrete element represents a 
large amount of granules. By doing so, the local parameters must be chosen to predict the 
macroscopic behavior of the geomaterial. 
 
To keep the calculation cost as low as possible, spherical discrete elements are widely used. 
Because of the rotational invariance of spherical elements, the numerical implementation of 
the contact detection algorithm remains simple. The main drawback of using spherical 
geometry is that excessive rolling occurs during shear displacement (Mahboubi et al. 1996). 
Such models underestimate the value of the friction angle as compared to real geomaterials. 
While keeping the simplicity of the spherical geometry of elements, it is possible to act upon 
this rolling by blocking rotations. In triaxial compression simulations, only sliding will then 
occur, which in turn, will result in a better value of the friction angle (Calvetti et al. 2003). 
This extreme option gives good results for axial loading, however for shear loading, the 
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rolling process cannot be ignored (Oda et al. 1982). A moment transfer has been added to the 
local constitutive law of DEM for biaxial tests (Iwashita and Oda 1998) to keep the 
advantages of the spherical geometry. Starting from this two-dimensional approach, the 
formulation of the moment transfer law has been extended here for the three-dimensional  
case. 
This moment, which is added to normal and shear local interaction forces, increases the 
number of local parameters. With such a set of local parameters, a calibration procedure is 
proposed, which takes into account the respective role of each parameter in the macroscopic 
behavior. A series of numerical simulations of triaxial compression tests has been done to 
check the capability of this model to get good quantitative results. Note that in this work, only 
the moment transfer will be considered and the torque transfer will be neglected. 
 
 
Formulation of the model 
 
Let two spheres A and B, be in contact. The radii of these spherical elements are Ar  and Br . In 
the global set of axes, their positions are defined by two vectors Ax and Bx . The interaction 
force vector F which represents the action of element A on element B may be decomposed 
into a normal and a shear vector Fn and Fs respectively, which may be classically linked to 
relative displacements, through normal and tangential stiffnesses, kn and ks. 

nk = n n n
i iF k u n= , 

s s s
i iF k uΔ = − Δ , 

where un is the relative normal displacement between two elements, ΔUs is the incremental 
tangential displacement and n is the normal contact vector. The shear force sF is obtained by 
summing the sFΔ increments. The normal and tangential stiffnesses are given by: 
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where n
AK , s

AK , n
BK , s

BK  define the input values of normal and tangential stiffnesses for both 
elements A and B of a contact. r  corresponds to the mean value of the two radii. 
To reproduce the behavior of non cohesive geomaterials, a Mohr-Coulomb rupture criterion is 
used:  

μtan⋅≤ ns FF , 
where μ is the "internal" friction angle.  
Let rk  be the rolling stiffness. If an isotropic rolling behaviour is assumed, this value is a 
scalar. The elastic moment L

elastM created by the rolling part in a local set of axes L is written 
as:   

L r L
elast rk=M θ , 

where L
rθ , the angular vector of the rolling part in the set of axes L .  

The rolling stiffness parameter rk defines the level of influence that the resistant moment 
produces;  Let’s introduce a dimensionless number rβ  which expresses a relationship 
between rk and ks , such that, 
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Let’s also introduce rη  as a dimensionless parameter which controls the elastic limit of 
rolling. If nF  represents the norm of the normal force at the contact point, the elastic limit is 

given by the plastic moment vector L
plastM such that: 

L
plast r nrη=M F . 

Thus, rolling moment rM is given by: 

_r L Gm=M ( )min ;L L
elast plastM M

L
elast
L
elast

M
M

 

where _L Gm  defines the transition matrix from the local set of axes L  to the global set of axes 
G .  
 
Calibration of the local parameters  
 
The calibration of the local properties of the numerical model to the properties of a real geo-
material is conveniently done by comparing a simulated and a real triaxial test.  Once 
calibrated, the predictive capabilities of the numerical model will be checked by simulating 
other triaxial tests. For the calibration step, the selected local parameters are: nK , 

sK , rk (or rβ ) , µ and rη . Their values will be fixed to reproduce, not only the correct shapes 
of stress-strain and the volumetric curves, but also the correct macroscopic values of 
Young’s modulus E , Poisson’s ratioν , the dilation angle ψ , the peak peakσ and the post peak 
strength post peakσ − , see Figure 1.  
 

 
 

Figure1. Typical responses obtained with triaxial tests for dense (solid lines) and loose 
(dashed lines) sands. 
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To do so, one must identify the influence of each local parameter on the macroscopic 
response. First it was found that the elastic parameters and the rupture parameters can be 
calibrated separately, which is in agreement with previous results (Calvetti et al. 2003, Sibille 
et al. 2006).  
The local elastic parameters nK  and sK  play a major role in the elastic response. The other 
elastic parameter rβ  has a lower impact (less than 10%) on Young’s modulus E and Poisson’s 
ratioν . Thus, nK  and sK  will be set first to calibrate the macroscopic elastic behavior.  
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Figure 2. On the left, dependency of  Poisson’s ratio on the ratio s

n
K

Kα = , on the right, 

dependency of Young modulus on nK . 
 

For an arbitrary value of nK , sK  is set according to chosen value of Poisson’s ratio. Then, for 
a constant  s

n
K

Kα =  , nK  is set such that the desired value  of Young’s modulus is obtained 

(Figure 2). 
Once the local elastic parameters are set, the values of the other local parameters (μ , Sa , rβ  
and rη  ) must be determined. First, the local friction angle μ  has a major influence on both 
the peak stress and the dilatancy angle, but a low one on the residual stress (Figure 3). 
Because of the low influence of rβ  on the dilatancy angle, as it will be seen, μ  is chosen to 
control the dilatancy angle value.  
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Figure 3. Dependency on the value of local friction angle: on the left, deviator stress-strain 
curves, on the right, volumetric-strain curve.  
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Then, it is observed that rβ  has little influence on the dilatancy angle (Figure 4), which 
confirms that using  μ  to control this macroscopic parameter is an adequate choice. On the 
other hand, rβ highly affects the stress peak and the residual peak. Then, because of the low 
influence of rη  and μ  on the residual peak, as it will also be seen, rβ  is chosen to control the 
residual peak value.  
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Figure 4. Dependency on the value of  the dimensionless rolling stiffness parameter: on the 

left, deviator stress-strain curves, on the right, the volumetric-strain curve. 
 
Finally, rη  has little influence on both the residual stress value and the dilatancy angle (Figure 
5), so thatμ and rβ can be kept to set these macroscopic values. Fortunately, rη  affects the 
stress peak. Consequently, rη  can be chosen to set the peak stress value.  
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Figure 5. Dependency on the value of the elastic limit of rolling: on the left, of deviator stress-
strain curves, on the right, the volumetric-strain curve. 

 
Application case: predicting the behavior of a granular material 
 
As a calibration example, the numerical modeling has been used to simulate the response of 
the “Labenne” sand (Canepa and Depresles 1990).  The soil of Labenne is made of sand from 
a dune and its properties are given in Table A.  
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Young’s modulus E, Mpa                         96.0 
Poisson’s ratio,ν                                       0.28 
Friction angle, ϕ °                                      36.50 
Dilation angle, ψ °                                      11.4 
Cohesion, kPa                                            0.0 
Porosity, %                                                 40.0 
Density, KN/m3                                           16.6 

Table A. Properties of the “Labenne” sand 
 
The triaxial test was modeled using SDEC (Donzé and Magnier 1995, 1997) by confining a 
dense discrete element medium within six smooth walls. The consolidation took place under 
gravity-free conditions, so that the 10 000 discrete elements arrangement was considered to be 
almost isotropic (Figure 6). The top and bottom boundaries moved vertically as loading 
platens, either under force-controlled condition or under strain-controlled conditions. Lateral 
boundaries simulate the confining pressure experienced by the sample sides. In the numerical 
simulation, the sample is loaded in a strain-controlled mode by specifying the velocities of the 
top and the bottom walls. To this end, it can be noted that since the walls are frictionless, any 
friction between the sample and the loading platens is avoided, hence allowing the wall 
applied stresses to remain normal to each wall.  

 
Figure 6. Numerical specimen of 10 000 discrete elements representing the triaxial test for the 

“Labenne” sand 
 
During all test steps, displacements of the lateral walls are controlled automatically by a servo 
mechanism that maintains a constant confining stress within the sample. According to the 
given boundary conditions, the stress and strain states within the sample are assumed to be 
homogeneous. Strains are then calculated directly from wall displacements, while the 
corresponding stresses are obtained from boundary forces, as in conventional laboratory 
testing. 
Thus, for a confining pressure of 100 kPa, the local parameters, nK , sK , rK (or rβ ) , µ and rη  
were chosen to fit the stress-strain and the volumetric curves (Figure 7). Laboratory tests are 
available under different confining pressures (100, 200 and 300 kPa). The corresponding 
values of the local parameters can be found in Table B. 
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Figure 7. Curves obtained from the calibration procedure for a confining pressure of 100 kPa 

 
Parameters                                                  Average value 
Normal contact stiffness nK ,                          9.6 x 108   

Ratio  
s

n

K
K

α = ,                                                   0.04 

Inter-particle friction angle μ °,                            30.0 
Rolling stiffness parameter rβ ,                             0.12                           
Dimensionless parameter rη ,                                1.0 

Table B.  Local parameter values of the numerical model. 
 

Figure 8 shows the numerical results obtained with the parameters reported in Table C for 
confining pressures of 200 and 300 kPa. The results indicate that the non linear stress-strain 
behavior of sand including dilatancy is covered by the numerical model. This shows that the 
model can be used as a predictive tool.  
 

             
              Figure 8. Predictive curves obtained for confining pressures of 200 kPa and 300 kPa 
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Conclusion 
  
Simulations with the discrete element method have been presented. Spherical elements were 
used because the corresponding simulation algorithm is simple and fast. Because classical 
DEM have difficulties to deal with the shearing mode because of the high rolling ability of the 
spherical elements, a transfer moment law is used. Based on this, a calibration procedure was 
proposed, which attempted to consider the respective role of each local parameter in the 
macroscopic behavior. Numerical tests were carried out to simulate laboratory tests of 
“Labenne” sand. To do so, the calibration methodology was first used, before using the model 
as a predictive tool. In spite of its simplicity, the numerical model was able to reproduce the 
main features of the triaxial tests. In terms of the deformational characteristics, a good 
agreement between the numerical and real tests was obtained. The corresponding shear 
strength parameters agreed well. Finally, the predictive results were in good agreement with 
the experimental results, even if the numerical medium was made of a small amount of 
spherical elements (around 10 000). 
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