zeitgeist team mailing list archive
-
zeitgeist team
-
Mailing list archive
-
Message #04469
[Branch ~zeitgeist/zeitgeist/bluebird] Rev 353: Merge Seif's lp:~zeitgeist/zeitgeist/benchmark-tools branch, which adds an
Merge authors:
Seif Lotfy (seif)
Related merge proposals:
https://code.launchpad.net/~zeitgeist/zeitgeist/benchmark-tools/+merge/86867
proposed by: Seif Lotfy (seif)
review: Approve - Siegfried Gevatter (rainct)
review: Approve - Michal Hruby (mhr3)
------------------------------------------------------------
revno: 353 [merge]
committer: Siegfried-Angel Gevatter Pujals <siegfried@xxxxxxxxxxxx>
branch nick: bluebird
timestamp: Sat 2011-12-31 01:22:58 +0100
message:
Merge Seif's lp:~zeitgeist/zeitgeist/benchmark-tools branch, which adds an
extension to get timing information from FindEventsId and some plotting
tools.
added:
extensions/benchmark.vala
src/ext-benchmark.vala@
tools/
tools/development/
tools/development/README
tools/development/benchmark.py
tools/development/cairoplot.py
tools/development/query_sets/
tools/development/query_sets/timerange_always.txt
tools/development/query_sets/timerange_interval.txt
tools/development/query_timings.py
tools/development/series.py
modified:
TODO
extensions/Makefile.am
src/Makefile.am
src/extension-collection.vala
--
lp:zeitgeist
https://code.launchpad.net/~zeitgeist/zeitgeist/bluebird
Your team Zeitgeist Framework Team is subscribed to branch lp:zeitgeist.
To unsubscribe from this branch go to https://code.launchpad.net/~zeitgeist/zeitgeist/bluebird/+edit-subscription
=== modified file 'TODO'
--- TODO 2011-12-09 19:50:57 +0000
+++ TODO 2011-12-31 00:22:58 +0000
@@ -3,3 +3,6 @@
- Remove useless copies from fts-python/.
- Figure out why D-Bus test cases time out most of the time.
- Make histogram extension more generic.
+ - Write log output to a file.
+ - Disable the benchmark extension by default.
+ - Port the benchmarking tool from the bundled plot stuff to a standard module.
=== modified file 'extensions/Makefile.am'
--- extensions/Makefile.am 2011-10-31 15:28:09 +0000
+++ extensions/Makefile.am 2011-12-25 16:24:04 +0000
@@ -3,7 +3,7 @@
NULL =
#extensionsdir = $(libdir)/zeitgeist/extensions
-noinst_LTLIBRARIES = ds-registry.la blacklist.la storage-monitor.la fts.la
+noinst_LTLIBRARIES = ds-registry.la blacklist.la storage-monitor.la fts.la benchmark.la
AM_CPPFLAGS = \
$(ZEITGEIST_CFLAGS) \
@@ -60,3 +60,13 @@
fts_la_LIBADD = \
$(ZEITGEIST_LIBS) \
$(NULL)
+
+benchmark_la_SOURCES = \
+ benchmark.vala \
+ $(NULL)
+
+benchmark_la_LDFLAGS = -module -avoid-version
+
+benchmark_la_LIBADD = \
+ $(ZEITGEIST_LIBS) \
+ $(NULL)
=== added file 'extensions/benchmark.vala'
--- extensions/benchmark.vala 1970-01-01 00:00:00 +0000
+++ extensions/benchmark.vala 2011-12-28 19:44:31 +0000
@@ -0,0 +1,127 @@
+/* fts.vala
+ *
+ * Copyright © 2011 Collabora Ltd.
+ * By Seif Lotfy <seif@xxxxxxxxx>
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as published by
+ * the Free Software Foundation, either version 2.1 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ *
+ */
+
+namespace Zeitgeist
+{
+ [DBus (name = "org.gnome.zeitgeist.Benchmark")]
+ public interface RemoteBenchmarker: Object
+ {
+ public abstract async HashTable<string, Variant> find_events (
+ [DBus (signature = "(xx)")] Variant time_range,
+ [DBus (signature = "a(asaasay)")] Variant event_templates,
+ uint storage_state, uint num_events, uint result_type)
+ throws Error;
+ }
+
+ class Benchmarker: Extension, RemoteBenchmarker
+ {
+
+ private uint registration_id;
+
+ Benchmarker ()
+ {
+ Object ();
+ }
+
+ construct
+ {
+ try
+ {
+ var connection = Bus.get_sync (BusType.SESSION, null);
+ registration_id = connection.register_object<RemoteBenchmarker> (
+ "/org/gnome/zeitgeist/benchmark", this);
+ }
+ catch (Error err)
+ {
+ warning ("%s", err.message);
+ }
+ }
+
+ public async HashTable<string, Variant> find_events (Variant time_range,
+ Variant filter_templates, uint storage_state, uint num_events,
+ uint result_type)
+ throws Error
+ {
+ var data = new HashTable<string, Variant> (str_hash, str_equal);
+
+ var find_event_ids_timer = new Timer ();
+ var ids = engine.find_event_ids (
+ new TimeRange.from_variant (time_range),
+ Events.from_variant (filter_templates),
+ storage_state, num_events, result_type);
+ var find_event_ids_elapsed = find_event_ids_timer.elapsed();
+
+ var get_events_timer = new Timer ();
+ var events = engine.get_events (ids);
+ var get_events_elapsed = get_events_timer.elapsed();
+
+ var marsh_events_timer = new Timer ();
+ var marsh_events = Events.to_variant(events);
+ var marsh_events_elapsed = marsh_events_timer.elapsed();
+
+ var find_events_elapsed = get_events_elapsed + find_event_ids_elapsed + marsh_events_elapsed;
+
+ data.insert("find_event_ids",
+ new Variant.double(find_event_ids_elapsed));
+ data.insert("get_events",
+ new Variant.double(get_events_elapsed));
+ data.insert("find_events",
+ new Variant.double(find_events_elapsed));
+ data.insert("marsh_events",
+ new Variant.double(marsh_events_elapsed));
+ data.insert("events", marsh_events);
+
+ return data;
+ }
+
+ public override void unload ()
+ {
+ try
+ {
+ var connection = Bus.get_sync (BusType.SESSION, null);
+ if (registration_id != 0)
+ {
+ connection.unregister_object (registration_id);
+ registration_id = 0;
+ }
+ }
+ catch (Error err)
+ {
+ warning ("%s", err.message);
+ }
+
+ debug ("%s, this.ref_count = %u", Log.METHOD, this.ref_count);
+ }
+
+ }
+
+ [ModuleInit]
+#if BUILTIN_EXTENSIONS
+ public static Type benchmark_init (TypeModule module)
+ {
+#else
+ public static Type extension_register (TypeModule module)
+ {
+#endif
+ return typeof (Benchmarker);
+ }
+}
+
+// vim:expandtab:ts=4:sw=4
=== modified file 'src/Makefile.am'
--- src/Makefile.am 2011-12-29 12:02:38 +0000
+++ src/Makefile.am 2011-12-31 00:22:58 +0000
@@ -25,6 +25,7 @@
ext-histogram.vala \
ext-storage-monitor.vala \
ext-fts.vala \
+ ext-benchmark.vala \
$(NULL)
zeitgeist_daemon_VALASOURCES = \
=== added symlink 'src/ext-benchmark.vala'
=== target is u'/home/seif/Projects/zeitgeist/extensions/benchmark.vala'
=== modified file 'src/extension-collection.vala'
--- src/extension-collection.vala 2011-10-20 11:20:36 +0000
+++ src/extension-collection.vala 2011-12-25 16:24:04 +0000
@@ -48,7 +48,8 @@
blacklist_init,
histogram_init,
storage_monitor_init,
- fts_init
+ fts_init,
+ benchmark_init
};
foreach (var func in builtins)
@@ -163,6 +164,7 @@
private extern static Type histogram_init (TypeModule mod);
private extern static Type storage_monitor_init (TypeModule mod);
private extern static Type fts_init (TypeModule mod);
+ private extern static Type benchmark_init (TypeModule mod);
#endif
}
=== added directory 'tools'
=== added directory 'tools/development'
=== added file 'tools/development/README'
--- tools/development/README 1970-01-01 00:00:00 +0000
+++ tools/development/README 2011-12-31 00:22:58 +0000
@@ -0,0 +1,27 @@
+# USAGE
+#
+# To run the benchmarks on a certain branch of Zeitgeist make sure you are
+# running an instance of the branch and that it includes the benchmark
+# extension.
+#
+# To benchmark and output timing to 'output.json' run:
+# ./query_timings.py -o output.json
+#
+# If you already have data in the output file and want to merge both
+# data sets (build avg.) run:
+# ./query_timings.py -m -o output.json
+#
+# To plot the data use the '--plot' argument. Multiple '--plot' arguments
+# will define multiple series.
+#
+# When plotting one needs to choose between several types of plots using
+# --type with the following arguments: marsh_time, get_events_time,
+# find_ids_time, find_events or overall.
+#
+# In short, a run always looks like:
+# tools/development/query_timings.py --name "lp:zeitgeist" -o trunk.json \
+# --queries tools/development/query_sets/timerange_always.txt
+# tools/development/query_timings.py --name "lp:some-branch" -o somebranch.json \
+# --queries tools/development/query_sets/timerange_always.txt
+# tools/development/query_timings.py --plot --type marsh_time somebranch.json \
+# --plot trunk.json -o benchmark.svg
=== added file 'tools/development/benchmark.py'
--- tools/development/benchmark.py 1970-01-01 00:00:00 +0000
+++ tools/development/benchmark.py 2011-12-28 19:44:31 +0000
@@ -0,0 +1,14 @@
+import dbus
+
+BUS_NAME = "org.gnome.zeitgeist.Engine"
+INTERFACE_NAME = "org.gnome.zeitgeist.Benchmark"
+OBJECT_PATH = "/org/gnome/zeitgeist/benchmark"
+
+bus = dbus.SessionBus()
+benchmark_obj = bus.get_object(BUS_NAME, OBJECT_PATH)
+benchmark_interface = dbus.Interface(benchmark_obj,
+ dbus_interface = INTERFACE_NAME)
+
+def find_events(time_frame, templates, storage_type, num_events, result_type):
+ return benchmark_interface.FindEvents(time_frame, templates, storage_type,
+ num_events, result_type)
=== added file 'tools/development/cairoplot.py'
--- tools/development/cairoplot.py 1970-01-01 00:00:00 +0000
+++ tools/development/cairoplot.py 2011-12-25 16:24:04 +0000
@@ -0,0 +1,2371 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+
+# CairoPlot.py
+#
+# Copyright (c) 2008 Rodrigo Moreira Araújo
+#
+# Author: Rodrigo Moreiro Araujo <alf.rodrigo@xxxxxxxxx>
+# Markus Korn <thekorn@xxxxxx>
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public License
+# as published by the Free Software Foundation; either version 2 of
+# the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
+# USA
+
+#Contributor: João S. O. Bueno
+
+#TODO: review BarPlot Code
+#TODO: x_label colision problem on Horizontal Bar Plot
+#TODO: y_label's eat too much space on HBP
+
+# thekorn: added optional borders around vertical bars in VerticalBarPlot
+# thekorn: break long x-axis labels into two lines
+
+__version__ = 1.1
+
+import cairo
+import math
+import random
+from series import Series, Group, Data
+
+HORZ = 0
+VERT = 1
+NORM = 2
+
+COLORS = {"red" : (1.0,0.0,0.0,1.0), "lime" : (0.0,1.0,0.0,1.0), "blue" : (0.0,0.0,1.0,1.0),
+ "maroon" : (0.5,0.0,0.0,1.0), "green" : (0.0,0.5,0.0,1.0), "navy" : (0.0,0.0,0.5,1.0),
+ "yellow" : (1.0,1.0,0.0,1.0), "magenta" : (1.0,0.0,1.0,1.0), "cyan" : (0.0,1.0,1.0,1.0),
+ "orange" : (1.0,0.5,0.0,1.0), "white" : (1.0,1.0,1.0,1.0), "black" : (0.0,0.0,0.0,1.0),
+ "gray" : (0.5,0.5,0.5,1.0), "light_gray" : (0.9,0.9,0.9,1.0),
+ "transparent" : (0.0,0.0,0.0,0.0)}
+
+THEMES = {"black_red" : [(0.0,0.0,0.0,1.0), (1.0,0.0,0.0,1.0)],
+ "red_green_blue" : [(1.0,0.0,0.0,1.0), (0.0,1.0,0.0,1.0), (0.0,0.0,1.0,1.0)],
+ "red_orange_yellow" : [(1.0,0.2,0.0,1.0), (1.0,0.7,0.0,1.0), (1.0,1.0,0.0,1.0)],
+ "yellow_orange_red" : [(1.0,1.0,0.0,1.0), (1.0,0.7,0.0,1.0), (1.0,0.2,0.0,1.0)],
+ "rainbow" : [(1.0,0.0,0.0,1.0), (1.0,0.5,0.0,1.0), (1.0,1.0,0.0,1.0), (0.0,1.0,0.0,1.0), (0.0,0.0,1.0,1.0), (0.3, 0.0, 0.5,1.0), (0.5, 0.0, 1.0, 1.0)]}
+
+def colors_from_theme( theme, series_length, mode = 'solid' ):
+ colors = []
+ if theme not in THEMES.keys() :
+ raise Exception, "Theme not defined"
+ color_steps = THEMES[theme]
+ n_colors = len(color_steps)
+ if series_length <= n_colors:
+ colors = [color + tuple([mode]) for color in color_steps[0:n_colors]]
+ else:
+ iterations = [(series_length - n_colors)/(n_colors - 1) for i in color_steps[:-1]]
+ over_iterations = (series_length - n_colors) % (n_colors - 1)
+ for i in range(n_colors - 1):
+ if over_iterations <= 0:
+ break
+ iterations[i] += 1
+ over_iterations -= 1
+ for index,color in enumerate(color_steps[:-1]):
+ colors.append(color + tuple([mode]))
+ if iterations[index] == 0:
+ continue
+ next_color = color_steps[index+1]
+ color_step = ((next_color[0] - color[0])/(iterations[index] + 1),
+ (next_color[1] - color[1])/(iterations[index] + 1),
+ (next_color[2] - color[2])/(iterations[index] + 1),
+ (next_color[3] - color[3])/(iterations[index] + 1))
+ for i in range( iterations[index] ):
+ colors.append((color[0] + color_step[0]*(i+1),
+ color[1] + color_step[1]*(i+1),
+ color[2] + color_step[2]*(i+1),
+ color[3] + color_step[3]*(i+1),
+ mode))
+ colors.append(color_steps[-1] + tuple([mode]))
+ return colors
+
+
+def other_direction(direction):
+ "explicit is better than implicit"
+ if direction == HORZ:
+ return VERT
+ else:
+ return HORZ
+
+#Class definition
+
+class Plot(object):
+ def __init__(self,
+ surface=None,
+ data=None,
+ width=640,
+ height=480,
+ background=None,
+ border = 0,
+ x_labels = None,
+ y_labels = None,
+ series_colors = None):
+ random.seed(2)
+ self.create_surface(surface, width, height)
+ self.dimensions = {}
+ self.dimensions[HORZ] = width
+ self.dimensions[VERT] = height
+ self.context = cairo.Context(self.surface)
+ self.labels={}
+ self.labels[HORZ] = x_labels
+ self.labels[VERT] = y_labels
+ self.load_series(data, x_labels, y_labels, series_colors)
+ self.font_size = 10
+ self.set_background (background)
+ self.border = border
+ self.borders = {}
+ self.line_color = (0.5, 0.5, 0.5)
+ self.line_width = 0.5
+ self.label_color = (0.0, 0.0, 0.0)
+ self.grid_color = (0.8, 0.8, 0.8)
+
+ def create_surface(self, surface, width=None, height=None):
+ self.filename = None
+ if isinstance(surface, cairo.Surface):
+ self.surface = surface
+ return
+ if not type(surface) in (str, unicode):
+ raise TypeError("Surface should be either a Cairo surface or a filename, not %s" % surface)
+ sufix = surface.rsplit(".")[-1].lower()
+ self.filename = surface
+ if sufix == "png":
+ self.surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, width, height)
+ elif sufix == "ps":
+ self.surface = cairo.PSSurface(surface, width, height)
+ elif sufix == "pdf":
+ self.surface = cairo.PSSurface(surface, width, height)
+ else:
+ if sufix != "svg":
+ self.filename += ".svg"
+ self.surface = cairo.SVGSurface(self.filename, width, height)
+
+ def commit(self):
+ try:
+ self.context.show_page()
+ if self.filename and self.filename.endswith(".png"):
+ self.surface.write_to_png(self.filename)
+ else:
+ self.surface.finish()
+ except cairo.Error:
+ pass
+
+ def load_series (self, data, x_labels=None, y_labels=None, series_colors=None):
+ self.series_labels = []
+ self.series = None
+
+ #The pretty way
+ #if not isinstance(data, Series):
+ # # Not an instance of Series
+ # self.series = Series(data)
+ #else:
+ # self.series = data
+ #
+ #self.series_labels = self.series.get_names()
+
+ #TODO: Remove on next version
+ # The ugly way, keeping retrocompatibility...
+ if callable(data) or type(data) is list and callable(data[0]): # Lambda or List of lambdas
+ self.series = data
+ self.series_labels = None
+ elif isinstance(data, Series): # Instance of Series
+ self.series = data
+ self.series_labels = data.get_names()
+ else: # Anything else
+ self.series = Series(data)
+ self.series_labels = self.series.get_names()
+
+ #TODO: allow user passed series_widths
+ self.series_widths = [1.0 for group in self.series]
+
+ #TODO: Remove on next version
+ self.process_colors( series_colors )
+
+ def process_colors( self, series_colors, length = None, mode = 'solid' ):
+ #series_colors might be None, a theme, a string of colors names or a list of color tuples
+ if length is None :
+ length = len( self.series.to_list() )
+
+ #no colors passed
+ if not series_colors:
+ #Randomize colors
+ self.series_colors = [ [random.random() for i in range(3)] + [1.0, mode] for series in range( length ) ]
+ else:
+ #Just theme pattern
+ if not hasattr( series_colors, "__iter__" ):
+ theme = series_colors
+ self.series_colors = colors_from_theme( theme.lower(), length )
+
+ #Theme pattern and mode
+ elif not hasattr(series_colors, '__delitem__') and not hasattr( series_colors[0], "__iter__" ):
+ theme = series_colors[0]
+ mode = series_colors[1]
+ self.series_colors = colors_from_theme( theme.lower(), length, mode )
+
+ #List
+ else:
+ self.series_colors = series_colors
+ for index, color in enumerate( self.series_colors ):
+ #element is a color name
+ if not hasattr(color, "__iter__"):
+ self.series_colors[index] = COLORS[color.lower()] + tuple([mode])
+ #element is rgb tuple instead of rgba
+ elif len( color ) == 3 :
+ self.series_colors[index] += (1.0,mode)
+ #element has 4 elements, might be rgba tuple or rgb tuple with mode
+ elif len( color ) == 4 :
+ #last element is mode
+ if not hasattr(color[3], "__iter__"):
+ self.series_colors[index] += tuple([color[3]])
+ self.series_colors[index][3] = 1.0
+ #last element is alpha
+ else:
+ self.series_colors[index] += tuple([mode])
+
+ def get_width(self):
+ return self.surface.get_width()
+
+ def get_height(self):
+ return self.surface.get_height()
+
+ def set_background(self, background):
+ if background is None:
+ self.background = (0.0,0.0,0.0,0.0)
+ elif type(background) in (cairo.LinearGradient, tuple):
+ self.background = background
+ elif not hasattr(background,"__iter__"):
+ colors = background.split(" ")
+ if len(colors) == 1 and colors[0] in COLORS:
+ self.background = COLORS[background]
+ elif len(colors) > 1:
+ self.background = cairo.LinearGradient(self.dimensions[HORZ] / 2, 0, self.dimensions[HORZ] / 2, self.dimensions[VERT])
+ for index,color in enumerate(colors):
+ self.background.add_color_stop_rgba(float(index)/(len(colors)-1),*COLORS[color])
+ else:
+ raise TypeError ("Background should be either cairo.LinearGradient or a 3/4-tuple, not %s" % type(background))
+
+ def render_background(self):
+ if isinstance(self.background, cairo.LinearGradient):
+ self.context.set_source(self.background)
+ else:
+ self.context.set_source_rgba(*self.background)
+ self.context.rectangle(0,0, self.dimensions[HORZ], self.dimensions[VERT])
+ self.context.fill()
+
+ def render_bounding_box(self):
+ self.context.set_source_rgba(*self.line_color)
+ self.context.set_line_width(self.line_width)
+ self.context.rectangle(self.border, self.border,
+ self.dimensions[HORZ] - 2 * self.border,
+ self.dimensions[VERT] - 2 * self.border)
+ self.context.stroke()
+
+ def render(self):
+ pass
+
+class ScatterPlot( Plot ):
+ def __init__(self,
+ surface=None,
+ data=None,
+ errorx=None,
+ errory=None,
+ width=640,
+ height=480,
+ background=None,
+ border=0,
+ axis = False,
+ dash = False,
+ discrete = False,
+ dots = 0,
+ grid = False,
+ series_legend = False,
+ x_labels = None,
+ y_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ z_bounds = None,
+ x_title = None,
+ y_title = None,
+ series_colors = None,
+ circle_colors = None ):
+
+ self.bounds = {}
+ self.bounds[HORZ] = x_bounds
+ self.bounds[VERT] = y_bounds
+ self.bounds[NORM] = z_bounds
+ self.titles = {}
+ self.titles[HORZ] = x_title
+ self.titles[VERT] = y_title
+ self.max_value = {}
+ self.axis = axis
+ self.discrete = discrete
+ self.dots = dots
+ self.grid = grid
+ self.series_legend = series_legend
+ self.variable_radius = False
+ self.x_label_angle = math.pi / 2.5
+ self.circle_colors = circle_colors
+
+ Plot.__init__(self, surface, data, width, height, background, border, x_labels, y_labels, series_colors)
+
+ self.dash = None
+ if dash:
+ if hasattr(dash, "keys"):
+ self.dash = [dash[key] for key in self.series_labels]
+ elif max([hasattr(item,'__delitem__') for item in data]) :
+ self.dash = dash
+ else:
+ self.dash = [dash]
+
+ self.load_errors(errorx, errory)
+
+ def convert_list_to_tuple(self, data):
+ #Data must be converted from lists of coordinates to a single
+ # list of tuples
+ out_data = zip(*data)
+ if len(data) == 3:
+ self.variable_radius = True
+ return out_data
+
+ def load_series(self, data, x_labels = None, y_labels = None, series_colors=None):
+ #TODO: In cairoplot 2.0 keep only the Series instances
+
+ # Convert Data and Group to Series
+ if isinstance(data, Data) or isinstance(data, Group):
+ data = Series(data)
+
+ # Series
+ if isinstance(data, Series):
+ for group in data:
+ for item in group:
+ if len(item) is 3:
+ self.variable_radius = True
+
+ #Dictionary with lists
+ if hasattr(data, "keys") :
+ if hasattr( data.values()[0][0], "__delitem__" ) :
+ for key in data.keys() :
+ data[key] = self.convert_list_to_tuple(data[key])
+ elif len(data.values()[0][0]) == 3:
+ self.variable_radius = True
+ #List
+ elif hasattr(data[0], "__delitem__") :
+ #List of lists
+ if hasattr(data[0][0], "__delitem__") :
+ for index,value in enumerate(data) :
+ data[index] = self.convert_list_to_tuple(value)
+ #List
+ elif type(data[0][0]) != type((0,0)):
+ data = self.convert_list_to_tuple(data)
+ #Three dimensional data
+ elif len(data[0][0]) == 3:
+ self.variable_radius = True
+
+ #List with three dimensional tuples
+ elif len(data[0]) == 3:
+ self.variable_radius = True
+ Plot.load_series(self, data, x_labels, y_labels, series_colors)
+ self.calc_boundaries()
+ self.calc_labels()
+
+ def load_errors(self, errorx, errory):
+ self.errors = None
+ if errorx == None and errory == None:
+ return
+ self.errors = {}
+ self.errors[HORZ] = None
+ self.errors[VERT] = None
+ #asimetric errors
+ if errorx and hasattr(errorx[0], "__delitem__"):
+ self.errors[HORZ] = errorx
+ #simetric errors
+ elif errorx:
+ self.errors[HORZ] = [errorx]
+ #asimetric errors
+ if errory and hasattr(errory[0], "__delitem__"):
+ self.errors[VERT] = errory
+ #simetric errors
+ elif errory:
+ self.errors[VERT] = [errory]
+
+ def calc_labels(self):
+ if not self.labels[HORZ]:
+ amplitude = self.bounds[HORZ][1] - self.bounds[HORZ][0]
+ if amplitude % 10: #if horizontal labels need floating points
+ self.labels[HORZ] = ["%.2lf" % (float(self.bounds[HORZ][0] + (amplitude * i / 10.0))) for i in range(11) ]
+ else:
+ self.labels[HORZ] = ["%d" % (int(self.bounds[HORZ][0] + (amplitude * i / 10.0))) for i in range(11) ]
+ if not self.labels[VERT]:
+ amplitude = self.bounds[VERT][1] - self.bounds[VERT][0]
+ if amplitude % 10: #if vertical labels need floating points
+ self.labels[VERT] = ["%.2lf" % (float(self.bounds[VERT][0] + (amplitude * i / 10.0))) for i in range(11) ]
+ else:
+ self.labels[VERT] = ["%d" % (int(self.bounds[VERT][0] + (amplitude * i / 10.0))) for i in range(11) ]
+
+ def calc_extents(self, direction):
+ self.context.set_font_size(self.font_size * 0.8)
+ self.max_value[direction] = max(self.context.text_extents(item)[2] for item in self.labels[direction])
+ self.borders[other_direction(direction)] = self.max_value[direction] + self.border + 20
+
+ def calc_boundaries(self):
+ #HORZ = 0, VERT = 1, NORM = 2
+ min_data_value = [0,0,0]
+ max_data_value = [0,0,0]
+
+ for group in self.series:
+ if type(group[0].content) in (int, float, long):
+ group = [Data((index, item.content)) for index,item in enumerate(group)]
+
+ for point in group:
+ for index, item in enumerate(point.content):
+ if item > max_data_value[index]:
+ max_data_value[index] = item
+ elif item < min_data_value[index]:
+ min_data_value[index] = item
+
+ if not self.bounds[HORZ]:
+ self.bounds[HORZ] = (min_data_value[HORZ], max_data_value[HORZ])
+ if not self.bounds[VERT]:
+ self.bounds[VERT] = (min_data_value[VERT], max_data_value[VERT])
+ if not self.bounds[NORM]:
+ self.bounds[NORM] = (min_data_value[NORM], max_data_value[NORM])
+
+ def calc_all_extents(self):
+ self.calc_extents(HORZ)
+ self.calc_extents(VERT)
+
+ self.plot_height = self.dimensions[VERT] - 2 * self.borders[VERT]
+ self.plot_width = self.dimensions[HORZ] - 2* self.borders[HORZ]
+
+ self.plot_top = self.dimensions[VERT] - self.borders[VERT]
+
+ def calc_steps(self):
+ #Calculates all the x, y, z and color steps
+ series_amplitude = [self.bounds[index][1] - self.bounds[index][0] for index in range(3)]
+
+ if series_amplitude[HORZ]:
+ self.horizontal_step = float (self.plot_width) / series_amplitude[HORZ]
+ else:
+ self.horizontal_step = 0.00
+
+ if series_amplitude[VERT]:
+ self.vertical_step = float (self.plot_height) / series_amplitude[VERT]
+ else:
+ self.vertical_step = 0.00
+
+ if series_amplitude[NORM]:
+ if self.variable_radius:
+ self.z_step = float (self.bounds[NORM][1]) / series_amplitude[NORM]
+ if self.circle_colors:
+ self.circle_color_step = tuple([float(self.circle_colors[1][i]-self.circle_colors[0][i])/series_amplitude[NORM] for i in range(4)])
+ else:
+ self.z_step = 0.00
+ self.circle_color_step = ( 0.0, 0.0, 0.0, 0.0 )
+
+ def get_circle_color(self, value):
+ return tuple( [self.circle_colors[0][i] + value*self.circle_color_step[i] for i in range(4)] )
+
+ def render(self):
+ self.calc_all_extents()
+ self.calc_steps()
+ self.render_background()
+ self.render_bounding_box()
+ if self.axis:
+ self.render_axis()
+ if self.grid:
+ self.render_grid()
+ self.render_labels()
+ self.render_plot()
+ if self.errors:
+ self.render_errors()
+ if self.series_legend and self.series_labels:
+ self.render_legend()
+
+ def render_axis(self):
+ #Draws both the axis lines and their titles
+ cr = self.context
+ cr.set_source_rgba(*self.line_color)
+ cr.move_to(self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT])
+ cr.line_to(self.borders[HORZ], self.borders[VERT])
+ cr.stroke()
+
+ cr.move_to(self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT])
+ cr.line_to(self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT])
+ cr.stroke()
+
+ cr.set_source_rgba(*self.label_color)
+ self.context.set_font_size( 1.2 * self.font_size )
+ if self.titles[HORZ]:
+ title_width,title_height = cr.text_extents(self.titles[HORZ])[2:4]
+ cr.move_to( self.dimensions[HORZ]/2 - title_width/2, self.borders[VERT] - title_height/2 )
+ cr.show_text( self.titles[HORZ] )
+
+ if self.titles[VERT]:
+ title_width,title_height = cr.text_extents(self.titles[VERT])[2:4]
+ cr.move_to( self.dimensions[HORZ] - self.borders[HORZ] + title_height/2, self.dimensions[VERT]/2 - title_width/2)
+ cr.save()
+ cr.rotate( math.pi/2 )
+ cr.show_text( self.titles[VERT] )
+ cr.restore()
+
+ def render_grid(self):
+ cr = self.context
+ horizontal_step = float( self.plot_height ) / ( len( self.labels[VERT] ) - 1 )
+ vertical_step = float( self.plot_width ) / ( len( self.labels[HORZ] ) - 1 )
+
+ x = self.borders[HORZ] + vertical_step
+ y = self.plot_top - horizontal_step
+
+ for label in self.labels[HORZ][:-1]:
+ cr.set_source_rgba(*self.grid_color)
+ cr.move_to(x, self.dimensions[VERT] - self.borders[VERT])
+ cr.line_to(x, self.borders[VERT])
+ cr.stroke()
+ x += vertical_step
+ for label in self.labels[VERT][:-1]:
+ cr.set_source_rgba(*self.grid_color)
+ cr.move_to(self.borders[HORZ], y)
+ cr.line_to(self.dimensions[HORZ] - self.borders[HORZ], y)
+ cr.stroke()
+ y -= horizontal_step
+
+ def render_labels(self):
+ self.context.set_font_size(self.font_size * 0.8)
+ self.render_horz_labels()
+ self.render_vert_labels()
+
+ def render_horz_labels(self):
+ cr = self.context
+ step = float( self.plot_width ) / ( len( self.labels[HORZ] ) - 1 )
+ x = self.borders[HORZ]
+ y = self.dimensions[VERT] - self.borders[VERT] + 5
+
+ # store rotation matrix from the initial state
+ rotation_matrix = cr.get_matrix()
+ rotation_matrix.rotate(self.x_label_angle)
+
+ cr.set_source_rgba(*self.label_color)
+
+ for item in self.labels[HORZ]:
+ width = cr.text_extents(item)[2]
+ cr.move_to(x, y)
+ cr.save()
+ cr.set_matrix(rotation_matrix)
+ cr.show_text(item)
+ cr.restore()
+ x += step
+
+ def render_vert_labels(self):
+ cr = self.context
+ step = ( self.plot_height ) / ( len( self.labels[VERT] ) - 1 )
+ y = self.plot_top
+ cr.set_source_rgba(*self.label_color)
+ for item in self.labels[VERT]:
+ width = cr.text_extents(item)[2]
+ cr.move_to(self.borders[HORZ] - width - 5,y)
+ cr.show_text(item)
+ y -= step
+
+ def render_legend(self):
+ cr = self.context
+ cr.set_font_size(self.font_size)
+ cr.set_line_width(self.line_width)
+
+ widest_word = max(self.series_labels, key = lambda item: self.context.text_extents(item)[2])
+ tallest_word = max(self.series_labels, key = lambda item: self.context.text_extents(item)[3])
+ max_width = self.context.text_extents(widest_word)[2]
+ max_height = self.context.text_extents(tallest_word)[3] * 1.1
+
+ color_box_height = max_height / 2
+ color_box_width = color_box_height * 2
+
+ #Draw a bounding box
+ bounding_box_width = max_width + color_box_width + 15
+ bounding_box_height = (len(self.series_labels)+0.5) * max_height
+ cr.set_source_rgba(1,1,1)
+ cr.rectangle(self.dimensions[HORZ] - self.borders[HORZ] - bounding_box_width, self.borders[VERT],
+ bounding_box_width, bounding_box_height)
+ cr.fill()
+
+ cr.set_source_rgba(*self.line_color)
+ cr.set_line_width(self.line_width)
+ cr.rectangle(self.dimensions[HORZ] - self.borders[HORZ] - bounding_box_width, self.borders[VERT],
+ bounding_box_width, bounding_box_height)
+ cr.stroke()
+
+ for idx,key in enumerate(self.series_labels):
+ #Draw color box
+ cr.set_source_rgba(*self.series_colors[idx][:4])
+ cr.rectangle(self.dimensions[HORZ] - self.borders[HORZ] - max_width - color_box_width - 10,
+ self.borders[VERT] + color_box_height + (idx*max_height) ,
+ color_box_width, color_box_height)
+ cr.fill()
+
+ cr.set_source_rgba(0, 0, 0)
+ cr.rectangle(self.dimensions[HORZ] - self.borders[HORZ] - max_width - color_box_width - 10,
+ self.borders[VERT] + color_box_height + (idx*max_height),
+ color_box_width, color_box_height)
+ cr.stroke()
+
+ #Draw series labels
+ cr.set_source_rgba(0, 0, 0)
+ cr.move_to(self.dimensions[HORZ] - self.borders[HORZ] - max_width - 5, self.borders[VERT] + ((idx+1)*max_height))
+ cr.show_text(key)
+
+ def render_errors(self):
+ cr = self.context
+ cr.rectangle(self.borders[HORZ], self.borders[VERT], self.plot_width, self.plot_height)
+ cr.clip()
+ radius = self.dots
+ x0 = self.borders[HORZ] - self.bounds[HORZ][0]*self.horizontal_step
+ y0 = self.borders[VERT] - self.bounds[VERT][0]*self.vertical_step
+ for index, group in enumerate(self.series):
+ cr.set_source_rgba(*self.series_colors[index][:4])
+ for number, data in enumerate(group):
+ x = x0 + self.horizontal_step * data.content[0]
+ y = self.dimensions[VERT] - y0 - self.vertical_step * data.content[1]
+ if self.errors[HORZ]:
+ cr.move_to(x, y)
+ x1 = x - self.horizontal_step * self.errors[HORZ][0][number]
+ cr.line_to(x1, y)
+ cr.line_to(x1, y - radius)
+ cr.line_to(x1, y + radius)
+ cr.stroke()
+ if self.errors[HORZ] and len(self.errors[HORZ]) == 2:
+ cr.move_to(x, y)
+ x1 = x + self.horizontal_step * self.errors[HORZ][1][number]
+ cr.line_to(x1, y)
+ cr.line_to(x1, y - radius)
+ cr.line_to(x1, y + radius)
+ cr.stroke()
+ if self.errors[VERT]:
+ cr.move_to(x, y)
+ y1 = y + self.vertical_step * self.errors[VERT][0][number]
+ cr.line_to(x, y1)
+ cr.line_to(x - radius, y1)
+ cr.line_to(x + radius, y1)
+ cr.stroke()
+ if self.errors[VERT] and len(self.errors[VERT]) == 2:
+ cr.move_to(x, y)
+ y1 = y - self.vertical_step * self.errors[VERT][1][number]
+ cr.line_to(x, y1)
+ cr.line_to(x - radius, y1)
+ cr.line_to(x + radius, y1)
+ cr.stroke()
+
+
+ def render_plot(self):
+ cr = self.context
+ if self.discrete:
+ cr.rectangle(self.borders[HORZ], self.borders[VERT], self.plot_width, self.plot_height)
+ cr.clip()
+ x0 = self.borders[HORZ] - self.bounds[HORZ][0]*self.horizontal_step
+ y0 = self.borders[VERT] - self.bounds[VERT][0]*self.vertical_step
+ radius = self.dots
+ for number, group in enumerate (self.series):
+ cr.set_source_rgba(*self.series_colors[number][:4])
+ for data in group :
+ if self.variable_radius:
+ radius = data.content[2]*self.z_step
+ if self.circle_colors:
+ cr.set_source_rgba( *self.get_circle_color( data.content[2]) )
+ x = x0 + self.horizontal_step*data.content[0]
+ y = y0 + self.vertical_step*data.content[1]
+ cr.arc(x, self.dimensions[VERT] - y, radius, 0, 2*math.pi)
+ cr.fill()
+ else:
+ cr.rectangle(self.borders[HORZ], self.borders[VERT], self.plot_width, self.plot_height)
+ cr.clip()
+ x0 = self.borders[HORZ] - self.bounds[HORZ][0]*self.horizontal_step
+ y0 = self.borders[VERT] - self.bounds[VERT][0]*self.vertical_step
+ radius = self.dots
+ for number, group in enumerate (self.series):
+ last_data = None
+ cr.set_source_rgba(*self.series_colors[number][:4])
+ for data in group :
+ x = x0 + self.horizontal_step*data.content[0]
+ y = y0 + self.vertical_step*data.content[1]
+ if self.dots:
+ if self.variable_radius:
+ radius = data.content[2]*self.z_step
+ cr.arc(x, self.dimensions[VERT] - y, radius, 0, 2*math.pi)
+ cr.fill()
+ if last_data :
+ old_x = x0 + self.horizontal_step*last_data.content[0]
+ old_y = y0 + self.vertical_step*last_data.content[1]
+ cr.move_to( old_x, self.dimensions[VERT] - old_y )
+ cr.line_to( x, self.dimensions[VERT] - y)
+ cr.set_line_width(self.series_widths[number])
+
+ # Display line as dash line
+ if self.dash and self.dash[number]:
+ s = self.series_widths[number]
+ cr.set_dash([s*3, s*3], 0)
+
+ cr.stroke()
+ cr.set_dash([])
+ last_data = data
+
+class DotLinePlot(ScatterPlot):
+ def __init__(self,
+ surface=None,
+ data=None,
+ width=640,
+ height=480,
+ background=None,
+ border=0,
+ axis = False,
+ dash = False,
+ dots = 0,
+ grid = False,
+ series_legend = False,
+ x_labels = None,
+ y_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ x_title = None,
+ y_title = None,
+ series_colors = None):
+
+ ScatterPlot.__init__(self, surface, data, None, None, width, height, background, border,
+ axis, dash, False, dots, grid, series_legend, x_labels, y_labels,
+ x_bounds, y_bounds, None, x_title, y_title, series_colors, None )
+
+
+ def load_series(self, data, x_labels = None, y_labels = None, series_colors=None):
+ Plot.load_series(self, data, x_labels, y_labels, series_colors)
+ for group in self.series :
+ for index,data in enumerate(group):
+ group[index].content = (index, data.content)
+
+ self.calc_boundaries()
+ self.calc_labels()
+
+class FunctionPlot(ScatterPlot):
+ def __init__(self,
+ surface=None,
+ data=None,
+ width=640,
+ height=480,
+ background=None,
+ border=0,
+ axis = False,
+ discrete = False,
+ dots = 0,
+ grid = False,
+ series_legend = False,
+ x_labels = None,
+ y_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ x_title = None,
+ y_title = None,
+ series_colors = None,
+ step = 1):
+
+ self.function = data
+ self.step = step
+ self.discrete = discrete
+
+ data, x_bounds = self.load_series_from_function( self.function, x_bounds )
+
+ ScatterPlot.__init__(self, surface, data, None, None, width, height, background, border,
+ axis, False, discrete, dots, grid, series_legend, x_labels, y_labels,
+ x_bounds, y_bounds, None, x_title, y_title, series_colors, None )
+
+ def load_series(self, data, x_labels = None, y_labels = None, series_colors=None):
+ Plot.load_series(self, data, x_labels, y_labels, series_colors)
+
+ if len(self.series[0][0]) is 1:
+ for group_id, group in enumerate(self.series) :
+ for index,data in enumerate(group):
+ group[index].content = (self.bounds[HORZ][0] + self.step*index, data.content)
+
+ self.calc_boundaries()
+ self.calc_labels()
+
+ def load_series_from_function( self, function, x_bounds ):
+ #TODO: Add the possibility for the user to define multiple functions with different discretization parameters
+
+ #This function converts a function, a list of functions or a dictionary
+ #of functions into its corresponding array of data
+ series = Series()
+
+ if isinstance(function, Group) or isinstance(function, Data):
+ function = Series(function)
+
+ # If is instance of Series
+ if isinstance(function, Series):
+ # Overwrite any bounds passed by the function
+ x_bounds = (function.range[0],function.range[-1])
+
+ #if no bounds are provided
+ if x_bounds == None:
+ x_bounds = (0,10)
+
+
+ #TODO: Finish the dict translation
+ if hasattr(function, "keys"): #dictionary:
+ for key in function.keys():
+ group = Group(name=key)
+ #data[ key ] = []
+ i = x_bounds[0]
+ while i <= x_bounds[1] :
+ group.add_data(function[ key ](i))
+ #data[ key ].append( function[ key ](i) )
+ i += self.step
+ series.add_group(group)
+
+ elif hasattr(function, "__delitem__"): #list of functions
+ for index,f in enumerate( function ) :
+ group = Group()
+ #data.append( [] )
+ i = x_bounds[0]
+ while i <= x_bounds[1] :
+ group.add_data(f(i))
+ #data[ index ].append( f(i) )
+ i += self.step
+ series.add_group(group)
+
+ elif isinstance(function, Series): # instance of Series
+ series = function
+
+ else: #function
+ group = Group()
+ i = x_bounds[0]
+ while i <= x_bounds[1] :
+ group.add_data(function(i))
+ i += self.step
+ series.add_group(group)
+
+
+ return series, x_bounds
+
+ def calc_labels(self):
+ if not self.labels[HORZ]:
+ self.labels[HORZ] = []
+ i = self.bounds[HORZ][0]
+ while i<=self.bounds[HORZ][1]:
+ self.labels[HORZ].append(str(i))
+ i += float(self.bounds[HORZ][1] - self.bounds[HORZ][0])/10
+ ScatterPlot.calc_labels(self)
+
+ def render_plot(self):
+ if not self.discrete:
+ ScatterPlot.render_plot(self)
+ else:
+ last = None
+ cr = self.context
+ for number, group in enumerate (self.series):
+ cr.set_source_rgba(*self.series_colors[number][:4])
+ x0 = self.borders[HORZ] - self.bounds[HORZ][0]*self.horizontal_step
+ y0 = self.borders[VERT] - self.bounds[VERT][0]*self.vertical_step
+ for data in group:
+ x = x0 + self.horizontal_step * data.content[0]
+ y = y0 + self.vertical_step * data.content[1]
+ cr.move_to(x, self.dimensions[VERT] - y)
+ cr.line_to(x, self.plot_top)
+ cr.set_line_width(self.series_widths[number])
+ cr.stroke()
+ if self.dots:
+ cr.new_path()
+ cr.arc(x, self.dimensions[VERT] - y, 3, 0, 2.1 * math.pi)
+ cr.close_path()
+ cr.fill()
+
+class BarPlot(Plot):
+ def __init__(self,
+ surface = None,
+ data = None,
+ width = 640,
+ height = 480,
+ background = "white light_gray",
+ border = 0,
+ display_values = False,
+ grid = False,
+ rounded_corners = False,
+ stack = False,
+ three_dimension = False,
+ x_labels = None,
+ y_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ series_colors = None,
+ main_dir = None):
+
+ self.bounds = {}
+ self.bounds[HORZ] = x_bounds
+ self.bounds[VERT] = y_bounds
+ self.display_values = display_values
+ self.grid = grid
+ self.rounded_corners = rounded_corners
+ self.stack = stack
+ self.three_dimension = three_dimension
+ self.x_label_angle = math.pi / 2.5
+ self.main_dir = main_dir
+ self.max_value = {}
+ self.plot_dimensions = {}
+ self.steps = {}
+ self.value_label_color = (0.5,0.5,0.5,1.0)
+
+ Plot.__init__(self, surface, data, width, height, background, border, x_labels, y_labels, series_colors)
+
+ def load_series(self, data, x_labels = None, y_labels = None, series_colors = None):
+ Plot.load_series(self, data, x_labels, y_labels, series_colors)
+ self.calc_boundaries()
+
+ def process_colors(self, series_colors):
+ #Data for a BarPlot might be a List or a List of Lists.
+ #On the first case, colors must be generated for all bars,
+ #On the second, colors must be generated for each of the inner lists.
+
+ #TODO: Didn't get it...
+ #if hasattr(self.data[0], '__getitem__'):
+ # length = max(len(series) for series in self.data)
+ #else:
+ # length = len( self.data )
+
+ length = max(len(group) for group in self.series)
+
+ Plot.process_colors( self, series_colors, length, 'linear')
+
+ def calc_boundaries(self):
+ if not self.bounds[self.main_dir]:
+ if self.stack:
+ max_data_value = max(sum(group.to_list()) for group in self.series)
+ else:
+ max_data_value = max(max(group.to_list()) for group in self.series)
+ self.bounds[self.main_dir] = (0, max_data_value)
+ if not self.bounds[other_direction(self.main_dir)]:
+ self.bounds[other_direction(self.main_dir)] = (0, len(self.series))
+
+ def calc_extents(self, direction):
+ self.max_value[direction] = 0
+ if self.labels[direction]:
+ widest_word = max(self.labels[direction], key = lambda item: self.context.text_extents(item)[2])
+ self.max_value[direction] = self.context.text_extents(widest_word)[3 - direction]
+ self.borders[other_direction(direction)] = (2-direction)*self.max_value[direction] + self.border + direction*(5)
+ else:
+ self.borders[other_direction(direction)] = self.border
+
+ def calc_horz_extents(self):
+ self.calc_extents(HORZ)
+
+ def calc_vert_extents(self):
+ self.calc_extents(VERT)
+
+ def calc_all_extents(self):
+ self.calc_horz_extents()
+ self.calc_vert_extents()
+ other_dir = other_direction(self.main_dir)
+ self.value_label = 0
+ if self.display_values:
+ if self.stack:
+ self.value_label = self.context.text_extents(str(max(sum(group.to_list()) for group in self.series)))[2 + self.main_dir]
+ else:
+ self.value_label = self.context.text_extents(str(max(max(group.to_list()) for group in self.series)))[2 + self.main_dir]
+ if self.labels[self.main_dir]:
+ self.plot_dimensions[self.main_dir] = self.dimensions[self.main_dir] - 2*self.borders[self.main_dir] - self.value_label
+ else:
+ self.plot_dimensions[self.main_dir] = self.dimensions[self.main_dir] - self.borders[self.main_dir] - 1.2*self.border - self.value_label
+ self.plot_dimensions[other_dir] = self.dimensions[other_dir] - self.borders[other_dir] - self.border
+ self.plot_top = self.dimensions[VERT] - self.borders[VERT]
+
+ def calc_steps(self):
+ other_dir = other_direction(self.main_dir)
+ self.series_amplitude = self.bounds[self.main_dir][1] - self.bounds[self.main_dir][0]
+ if self.series_amplitude:
+ self.steps[self.main_dir] = float(self.plot_dimensions[self.main_dir])/self.series_amplitude
+ else:
+ self.steps[self.main_dir] = 0.00
+ series_length = len(self.series)
+ self.steps[other_dir] = float(self.plot_dimensions[other_dir])/(series_length + 0.1*(series_length + 1))
+ self.space = 0.1*self.steps[other_dir]
+
+ def render(self):
+ self.calc_all_extents()
+ self.calc_steps()
+ self.render_background()
+ self.render_bounding_box()
+ if self.grid:
+ self.render_grid()
+ if self.three_dimension:
+ self.render_ground()
+ if self.display_values:
+ self.render_values()
+ self.render_labels()
+ self.render_plot()
+ if self.series_labels:
+ self.render_legend()
+
+ def draw_3d_rectangle_front(self, x0, y0, x1, y1, shift):
+ self.context.rectangle(x0-shift, y0+shift, x1-x0, y1-y0)
+
+ def draw_3d_rectangle_side(self, x0, y0, x1, y1, shift):
+ self.context.move_to(x1-shift,y0+shift)
+ self.context.line_to(x1, y0)
+ self.context.line_to(x1, y1)
+ self.context.line_to(x1-shift, y1+shift)
+ self.context.line_to(x1-shift, y0+shift)
+ self.context.close_path()
+
+ def draw_3d_rectangle_top(self, x0, y0, x1, y1, shift):
+ self.context.move_to(x0-shift,y0+shift)
+ self.context.line_to(x0, y0)
+ self.context.line_to(x1, y0)
+ self.context.line_to(x1-shift, y0+shift)
+ self.context.line_to(x0-shift, y0+shift)
+ self.context.close_path()
+
+ def draw_round_rectangle(self, x0, y0, x1, y1):
+ self.context.arc(x0+5, y0+5, 5, -math.pi, -math.pi/2)
+ self.context.line_to(x1-5, y0)
+ self.context.arc(x1-5, y0+5, 5, -math.pi/2, 0)
+ self.context.line_to(x1, y1-5)
+ self.context.arc(x1-5, y1-5, 5, 0, math.pi/2)
+ self.context.line_to(x0+5, y1)
+ self.context.arc(x0+5, y1-5, 5, math.pi/2, math.pi)
+ self.context.line_to(x0, y0+5)
+ self.context.close_path()
+
+ def render_ground(self):
+ self.draw_3d_rectangle_front(self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT],
+ self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10)
+ self.context.fill()
+
+ self.draw_3d_rectangle_side (self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT],
+ self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10)
+ self.context.fill()
+
+ self.draw_3d_rectangle_top (self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT],
+ self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10)
+ self.context.fill()
+
+ def render_labels(self):
+ self.context.set_font_size(self.font_size * 0.8)
+ if self.labels[HORZ]:
+ self.render_horz_labels()
+ if self.labels[VERT]:
+ self.render_vert_labels()
+
+ def render_legend(self):
+ has_border = bool(getattr(self, "bar_borders", False))
+ cr = self.context
+ cr.set_font_size(self.font_size)
+ cr.set_line_width(self.line_width)
+
+ widest_word = max(self.series_labels, key = lambda item: self.context.text_extents(item)[2])
+ tallest_word = max(self.series_labels, key = lambda item: self.context.text_extents(item)[3])
+ max_width = self.context.text_extents(widest_word)[2]
+ max_height = self.context.text_extents(tallest_word)[3] * 1.1 + 5
+
+ color_box_height = max_height / 2
+ color_box_width = color_box_height * 2
+
+ #Draw a bounding box
+ bounding_box_width = max_width + color_box_width + 15
+ bounding_box_height = (len(self.series_labels) + int(has_border) +0.5) * max_height
+ cr.set_source_rgba(1,1,1)
+ cr.rectangle(self.dimensions[HORZ] - self.border - bounding_box_width, self.border,
+ bounding_box_width, bounding_box_height)
+ cr.fill()
+
+ cr.set_source_rgba(*self.line_color)
+ cr.set_line_width(self.line_width)
+ cr.rectangle(self.dimensions[HORZ] - self.border - bounding_box_width, self.border,
+ bounding_box_width, bounding_box_height)
+ cr.stroke()
+
+ for idx,key in enumerate(self.series_labels):
+ #Draw color box
+ cr.set_source_rgba(*self.series_colors[idx][:4])
+ cr.rectangle(self.dimensions[HORZ] - self.border - max_width - color_box_width - 10,
+ self.border + color_box_height + (idx*max_height) ,
+ color_box_width, color_box_height)
+ cr.fill()
+
+ cr.set_source_rgba(0, 0, 0)
+ cr.rectangle(self.dimensions[HORZ] - self.border - max_width - color_box_width - 10,
+ self.border + color_box_height + (idx*max_height),
+ color_box_width, color_box_height)
+ cr.stroke()
+
+ #Draw series labels
+ cr.set_source_rgba(0, 0, 0)
+ cr.move_to(self.dimensions[HORZ] - self.border - max_width - 5, self.border + ((idx+1)*max_height))
+ cr.show_text(key)
+
+ if has_border:
+ idx += 1
+
+ cr.set_source_rgba(1, 0, 0)
+ cr.rectangle(self.dimensions[HORZ] - self.border - max_width - color_box_width - 10,
+ self.border + color_box_height + (idx*max_height),
+ color_box_width, color_box_height)
+ cr.stroke()
+
+ #Draw series labels
+ cr.set_source_rgba(0, 0, 0)
+ cr.move_to(self.dimensions[HORZ] - self.border - max_width - 5, self.border + ((idx+1)*max_height))
+ cr.show_text("is not using index")
+
+
+
+class HorizontalBarPlot(BarPlot):
+ def __init__(self,
+ surface = None,
+ data = None,
+ width = 640,
+ height = 480,
+ background = "white light_gray",
+ border = 0,
+ display_values = False,
+ grid = False,
+ rounded_corners = False,
+ stack = False,
+ three_dimension = False,
+ series_labels = None,
+ x_labels = None,
+ y_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ series_colors = None):
+
+ BarPlot.__init__(self, surface, data, width, height, background, border,
+ display_values, grid, rounded_corners, stack, three_dimension,
+ x_labels, y_labels, x_bounds, y_bounds, series_colors, HORZ)
+ self.series_labels = series_labels
+
+ def calc_vert_extents(self):
+ self.calc_extents(VERT)
+ if self.labels[HORZ] and not self.labels[VERT]:
+ self.borders[HORZ] += 10
+
+ def draw_rectangle_bottom(self, x0, y0, x1, y1):
+ self.context.arc(x0+5, y1-5, 5, math.pi/2, math.pi)
+ self.context.line_to(x0, y0+5)
+ self.context.arc(x0+5, y0+5, 5, -math.pi, -math.pi/2)
+ self.context.line_to(x1, y0)
+ self.context.line_to(x1, y1)
+ self.context.line_to(x0+5, y1)
+ self.context.close_path()
+
+ def draw_rectangle_top(self, x0, y0, x1, y1):
+ self.context.arc(x1-5, y0+5, 5, -math.pi/2, 0)
+ self.context.line_to(x1, y1-5)
+ self.context.arc(x1-5, y1-5, 5, 0, math.pi/2)
+ self.context.line_to(x0, y1)
+ self.context.line_to(x0, y0)
+ self.context.line_to(x1, y0)
+ self.context.close_path()
+
+ def draw_rectangle(self, index, length, x0, y0, x1, y1):
+ if length == 1:
+ BarPlot.draw_rectangle(self, x0, y0, x1, y1)
+ elif index == 0:
+ self.draw_rectangle_bottom(x0, y0, x1, y1)
+ elif index == length-1:
+ self.draw_rectangle_top(x0, y0, x1, y1)
+ else:
+ self.context.rectangle(x0, y0, x1-x0, y1-y0)
+
+ #TODO: Review BarPlot.render_grid code
+ def render_grid(self):
+ self.context.set_source_rgba(0.8, 0.8, 0.8)
+ if self.labels[HORZ]:
+ self.context.set_font_size(self.font_size * 0.8)
+ step = (self.dimensions[HORZ] - 2*self.borders[HORZ] - self.value_label)/(len(self.labels[HORZ])-1)
+ x = self.borders[HORZ]
+ next_x = 0
+ for item in self.labels[HORZ]:
+ width = self.context.text_extents(item)[2]
+ if x - width/2 > next_x and x - width/2 > self.border:
+ self.context.move_to(x, self.border)
+ self.context.line_to(x, self.dimensions[VERT] - self.borders[VERT])
+ self.context.stroke()
+ next_x = x + width/2
+ x += step
+ else:
+ lines = 11
+ horizontal_step = float(self.plot_dimensions[HORZ])/(lines-1)
+ x = self.borders[HORZ]
+ for y in xrange(0, lines):
+ self.context.move_to(x, self.border)
+ self.context.line_to(x, self.dimensions[VERT] - self.borders[VERT])
+ self.context.stroke()
+ x += horizontal_step
+
+ def render_horz_labels(self):
+ step = (self.dimensions[HORZ] - 2*self.borders[HORZ])/(len(self.labels[HORZ])-1)
+ x = self.borders[HORZ]
+ next_x = 0
+
+ for item in self.labels[HORZ]:
+ self.context.set_source_rgba(*self.label_color)
+ width = self.context.text_extents(item)[2]
+ if x - width/2 > next_x and x - width/2 > self.border:
+ self.context.move_to(x - width/2, self.dimensions[VERT] - self.borders[VERT] + self.max_value[HORZ] + 3)
+ self.context.show_text(item)
+ next_x = x + width/2
+ x += step
+
+ def render_vert_labels(self):
+ series_length = len(self.labels[VERT])
+ step = (self.plot_dimensions[VERT] - (series_length + 1)*self.space)/(len(self.labels[VERT]))
+ y = self.border + step/2 + self.space
+
+ for item in self.labels[VERT]:
+ self.context.set_source_rgba(*self.label_color)
+ width, height = self.context.text_extents(item)[2:4]
+ self.context.move_to(self.borders[HORZ] - width - 5, y + height/2)
+ self.context.show_text(item)
+ y += step + self.space
+ self.labels[VERT].reverse()
+
+ def render_values(self):
+ self.context.set_source_rgba(*self.value_label_color)
+ self.context.set_font_size(self.font_size * 0.8)
+ if self.stack:
+ for i,group in enumerate(self.series):
+ value = sum(group.to_list())
+ height = self.context.text_extents(str(value))[3]
+ x = self.borders[HORZ] + value*self.steps[HORZ] + 2
+ y = self.borders[VERT] + (i+0.5)*self.steps[VERT] + (i+1)*self.space + height/2
+ self.context.move_to(x, y)
+ self.context.show_text(str(value))
+ else:
+ for i,group in enumerate(self.series):
+ inner_step = self.steps[VERT]/len(group)
+ y0 = self.border + i*self.steps[VERT] + (i+1)*self.space
+ for number,data in enumerate(group):
+ height = self.context.text_extents(str(data.content))[3]
+ self.context.move_to(self.borders[HORZ] + data.content*self.steps[HORZ] + 2, y0 + 0.5*inner_step + height/2, )
+ self.context.show_text(str(data.content))
+ y0 += inner_step
+
+ def render_plot(self):
+ if self.stack:
+ for i,group in enumerate(self.series):
+ x0 = self.borders[HORZ]
+ y0 = self.borders[VERT] + i*self.steps[VERT] + (i+1)*self.space
+ for number,data in enumerate(group):
+ if self.series_colors[number][4] in ('radial','linear') :
+ linear = cairo.LinearGradient( data.content*self.steps[HORZ]/2, y0, data.content*self.steps[HORZ]/2, y0 + self.steps[VERT] )
+ color = self.series_colors[number]
+ linear.add_color_stop_rgba(0.0, 3.5*color[0]/5.0, 3.5*color[1]/5.0, 3.5*color[2]/5.0,1.0)
+ linear.add_color_stop_rgba(1.0, *color[:4])
+ self.context.set_source(linear)
+ elif self.series_colors[number][4] == 'solid':
+ self.context.set_source_rgba(*self.series_colors[number][:4])
+ if self.rounded_corners:
+ self.draw_rectangle(number, len(group), x0, y0, x0+data.content*self.steps[HORZ], y0+self.steps[VERT])
+ self.context.fill()
+ else:
+ self.context.rectangle(x0, y0, data.content*self.steps[HORZ], self.steps[VERT])
+ self.context.fill()
+ x0 += data.content*self.steps[HORZ]
+ else:
+ for i,group in enumerate(self.series):
+ inner_step = self.steps[VERT]/len(group)
+ x0 = self.borders[HORZ]
+ y0 = self.border + i*self.steps[VERT] + (i+1)*self.space
+ for number,data in enumerate(group):
+ linear = cairo.LinearGradient(data.content*self.steps[HORZ]/2, y0, data.content*self.steps[HORZ]/2, y0 + inner_step)
+ color = self.series_colors[number]
+ linear.add_color_stop_rgba(0.0, 3.5*color[0]/5.0, 3.5*color[1]/5.0, 3.5*color[2]/5.0,1.0)
+ linear.add_color_stop_rgba(1.0, *color[:4])
+ self.context.set_source(linear)
+ if self.rounded_corners and data.content != 0:
+ BarPlot.draw_round_rectangle(self,x0, y0, x0 + data.content*self.steps[HORZ], y0 + inner_step)
+ self.context.fill()
+ else:
+ self.context.rectangle(x0, y0, data.content*self.steps[HORZ], inner_step)
+ self.context.fill()
+ y0 += inner_step
+
+class VerticalBarPlot(BarPlot):
+ def __init__(self,
+ surface = None,
+ data = None,
+ width = 640,
+ height = 480,
+ background = "white light_gray",
+ border = 0,
+ display_values = False,
+ grid = False,
+ rounded_corners = False,
+ stack = False,
+ three_dimension = False,
+ series_labels = None,
+ x_labels = None,
+ y_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ series_colors = None):
+
+ BarPlot.__init__(self, surface, data, width, height, background, border,
+ display_values, grid, rounded_corners, stack, three_dimension,
+ x_labels, y_labels, x_bounds, y_bounds, series_colors, VERT)
+ self.series_labels = series_labels
+
+ def calc_vert_extents(self):
+ self.calc_extents(VERT)
+ if self.labels[VERT] and not self.labels[HORZ]:
+ self.borders[VERT] += 10
+
+ def draw_rectangle_bottom(self, x0, y0, x1, y1):
+ self.context.move_to(x1,y1)
+ self.context.arc(x1-5, y1-5, 5, 0, math.pi/2)
+ self.context.line_to(x0+5, y1)
+ self.context.arc(x0+5, y1-5, 5, math.pi/2, math.pi)
+ self.context.line_to(x0, y0)
+ self.context.line_to(x1, y0)
+ self.context.line_to(x1, y1)
+ self.context.close_path()
+
+ def draw_rectangle_top(self, x0, y0, x1, y1):
+ self.context.arc(x0+5, y0+5, 5, -math.pi, -math.pi/2)
+ self.context.line_to(x1-5, y0)
+ self.context.arc(x1-5, y0+5, 5, -math.pi/2, 0)
+ self.context.line_to(x1, y1)
+ self.context.line_to(x0, y1)
+ self.context.line_to(x0, y0)
+ self.context.close_path()
+
+ def draw_rectangle(self, index, length, x0, y0, x1, y1):
+ if length == 1:
+ BarPlot.draw_rectangle(self, x0, y0, x1, y1)
+ elif index == 0:
+ self.draw_rectangle_bottom(x0, y0, x1, y1)
+ elif index == length-1:
+ self.draw_rectangle_top(x0, y0, x1, y1)
+ else:
+ self.context.rectangle(x0, y0, x1-x0, y1-y0)
+
+ def render_grid(self):
+ self.context.set_source_rgba(0.8, 0.8, 0.8)
+ if self.labels[VERT]:
+ lines = len(self.labels[VERT])
+ vertical_step = float(self.plot_dimensions[self.main_dir])/(lines-1)
+ y = self.borders[VERT] + self.value_label
+ else:
+ lines = 11
+ vertical_step = float(self.plot_dimensions[self.main_dir])/(lines-1)
+ y = 1.2*self.border + self.value_label
+ for x in xrange(0, lines):
+ self.context.move_to(self.borders[HORZ], y)
+ self.context.line_to(self.dimensions[HORZ] - self.border, y)
+ self.context.stroke()
+ y += vertical_step
+
+ def render_ground(self):
+ self.draw_3d_rectangle_front(self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT],
+ self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10)
+ self.context.fill()
+
+ self.draw_3d_rectangle_side (self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT],
+ self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10)
+ self.context.fill()
+
+ self.draw_3d_rectangle_top (self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT],
+ self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10)
+ self.context.fill()
+
+ def render_horz_labels(self):
+ series_length = len(self.labels[HORZ])
+ step = float (self.plot_dimensions[HORZ] - (series_length + 1)*self.space)/len(self.labels[HORZ])
+ x = self.borders[HORZ] + step/2 + self.space
+ next_x = 0
+
+ for item in self.labels[HORZ]:
+ self.context.set_source_rgba(*self.label_color)
+ width = self.context.text_extents(item)[2]
+ if not(x - width/2 > next_x and x - width/2 > self.borders[HORZ]):
+ items = [item[:len(item)/2], item[len(item)/2:],]
+ else:
+ items = [item,]
+ for i, item in enumerate(items):
+ width = self.context.text_extents(item)[2]
+ height = self.context.text_extents(item)[3]
+ v_space = (len(items) - i - 1) * height
+
+ if x - width/2 > next_x and x - width/2 > self.borders[HORZ]:
+ self.context.move_to(x - width/2, self.dimensions[VERT] - self.borders[VERT] + self.max_value[HORZ] + 3 - v_space + 3)
+ self.context.show_text(item)
+ next_x = x + width/2
+ x += step + self.space
+
+ def render_vert_labels(self):
+ self.context.set_source_rgba(*self.label_color)
+ y = self.borders[VERT] + self.value_label
+ step = (self.dimensions[VERT] - 2*self.borders[VERT] - self.value_label)/(len(self.labels[VERT]) - 1)
+ self.labels[VERT].reverse()
+ for item in self.labels[VERT]:
+ width, height = self.context.text_extents(item)[2:4]
+ self.context.move_to(self.borders[HORZ] - width - 5, y + height/2)
+ self.context.show_text(item)
+ y += step
+ self.labels[VERT].reverse()
+
+ def render_values(self):
+ self.context.set_source_rgba(*self.value_label_color)
+ self.context.set_font_size(self.font_size * 0.8)
+ if self.stack:
+ for i,group in enumerate(self.series):
+ value = sum(group.to_list())
+ width = self.context.text_extents(str(value))[2]
+ x = self.borders[HORZ] + (i+0.5)*self.steps[HORZ] + (i+1)*self.space - width/2
+ y = value*self.steps[VERT] + 2
+ self.context.move_to(x, self.plot_top-y)
+ self.context.show_text(str(value))
+ else:
+ for i,group in enumerate(self.series):
+ inner_step = self.steps[HORZ]/len(group)
+ x0 = self.borders[HORZ] + i*self.steps[HORZ] + (i+1)*self.space
+ for number,data in enumerate(group):
+ width = self.context.text_extents(str(data.content))[2]
+ self.context.move_to(x0 + 0.5*inner_step - width/2, self.plot_top - data.content*self.steps[VERT] - 2)
+ self.context.show_text(str(data.content))
+ x0 += inner_step
+
+ def render_plot(self):
+ if self.stack:
+ for i,group in enumerate(self.series):
+ x0 = self.borders[HORZ] + i*self.steps[HORZ] + (i+1)*self.space
+ y0 = 0
+ for number,data in enumerate(group):
+ if self.series_colors[number][4] in ('linear','radial'):
+ linear = cairo.LinearGradient( x0, data.content*self.steps[VERT]/2, x0 + self.steps[HORZ], data.content*self.steps[VERT]/2 )
+ color = self.series_colors[number]
+ linear.add_color_stop_rgba(0.0, 3.5*color[0]/5.0, 3.5*color[1]/5.0, 3.5*color[2]/5.0,1.0)
+ linear.add_color_stop_rgba(1.0, *color[:4])
+ self.context.set_source(linear)
+ elif self.series_colors[number][4] == 'solid':
+ self.context.set_source_rgba(*self.series_colors[number][:4])
+ if self.rounded_corners:
+ self.draw_rectangle(number, len(group), x0, self.plot_top - y0 - data.content*self.steps[VERT], x0 + self.steps[HORZ], self.plot_top - y0)
+ self.context.fill()
+ else:
+ self.context.rectangle(x0, self.plot_top - y0 - data.content*self.steps[VERT], self.steps[HORZ], data.content*self.steps[VERT])
+ self.context.fill()
+ y0 += data.content*self.steps[VERT]
+ else:
+ for i,group in enumerate(self.series):
+ inner_step = self.steps[HORZ]/len(group)
+ y0 = self.borders[VERT]
+ x0 = self.borders[HORZ] + i*self.steps[HORZ] + (i+1)*self.space
+ for number,data in enumerate(group):
+ if self.series_colors[number][4] == 'linear':
+ linear = cairo.LinearGradient( x0, data.content*self.steps[VERT]/2, x0 + inner_step, data.content*self.steps[VERT]/2 )
+ color = self.series_colors[number]
+ linear.add_color_stop_rgba(0.0, 3.5*color[0]/5.0, 3.5*color[1]/5.0, 3.5*color[2]/5.0,1.0)
+ linear.add_color_stop_rgba(1.0, *color[:4])
+ self.context.set_source(linear)
+ elif self.series_colors[number][4] == 'solid':
+ self.context.set_source_rgba(*self.series_colors[number][:4])
+ if self.rounded_corners and data.content != 0:
+ BarPlot.draw_round_rectangle(self, x0, self.plot_top - data.content*self.steps[VERT], x0+inner_step, self.plot_top)
+ self.context.fill()
+ elif self.three_dimension:
+ self.draw_3d_rectangle_front(x0, self.plot_top - data.content*self.steps[VERT], x0+inner_step, self.plot_top, 5)
+ self.context.fill()
+ self.draw_3d_rectangle_side(x0, self.plot_top - data.content*self.steps[VERT], x0+inner_step, self.plot_top, 5)
+ self.context.fill()
+ self.draw_3d_rectangle_top(x0, self.plot_top - data.content*self.steps[VERT], x0+inner_step, self.plot_top, 5)
+ self.context.fill()
+ else:
+ self.context.rectangle(x0, self.plot_top - data.content*self.steps[VERT], inner_step, data.content*self.steps[VERT])
+ if (i, number) in self.bar_borders:
+ self.context.fill_preserve()
+ self.context.set_source_rgb(1, 0, 0)
+ self.context.stroke()
+ else:
+ self.context.fill()
+
+ x0 += inner_step
+
+class StreamChart(VerticalBarPlot):
+ def __init__(self,
+ surface = None,
+ data = None,
+ width = 640,
+ height = 480,
+ background = "white light_gray",
+ border = 0,
+ grid = False,
+ series_legend = None,
+ x_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ series_colors = None):
+
+ VerticalBarPlot.__init__(self, surface, data, width, height, background, border,
+ False, grid, False, True, False,
+ None, x_labels, None, x_bounds, y_bounds, series_colors)
+
+ def calc_steps(self):
+ other_dir = other_direction(self.main_dir)
+ self.series_amplitude = self.bounds[self.main_dir][1] - self.bounds[self.main_dir][0]
+ if self.series_amplitude:
+ self.steps[self.main_dir] = float(self.plot_dimensions[self.main_dir])/self.series_amplitude
+ else:
+ self.steps[self.main_dir] = 0.00
+ series_length = len(self.data)
+ self.steps[other_dir] = float(self.plot_dimensions[other_dir])/series_length
+
+ def render_legend(self):
+ pass
+
+ def ground(self, index):
+ sum_values = sum(self.data[index])
+ return -0.5*sum_values
+
+ def calc_angles(self):
+ middle = self.plot_top - self.plot_dimensions[VERT]/2.0
+ self.angles = [tuple([0.0 for x in range(len(self.data)+1)])]
+ for x_index in range(1, len(self.data)-1):
+ t = []
+ x0 = self.borders[HORZ] + (0.5 + x_index - 1)*self.steps[HORZ]
+ x2 = self.borders[HORZ] + (0.5 + x_index + 1)*self.steps[HORZ]
+ y0 = middle - self.ground(x_index-1)*self.steps[VERT]
+ y2 = middle - self.ground(x_index+1)*self.steps[VERT]
+ t.append(math.atan(float(y0-y2)/(x0-x2)))
+ for data_index in range(len(self.data[x_index])):
+ x0 = self.borders[HORZ] + (0.5 + x_index - 1)*self.steps[HORZ]
+ x2 = self.borders[HORZ] + (0.5 + x_index + 1)*self.steps[HORZ]
+ y0 = middle - self.ground(x_index-1)*self.steps[VERT] - self.data[x_index-1][data_index]*self.steps[VERT]
+ y2 = middle - self.ground(x_index+1)*self.steps[VERT] - self.data[x_index+1][data_index]*self.steps[VERT]
+
+ for i in range(0,data_index):
+ y0 -= self.data[x_index-1][i]*self.steps[VERT]
+ y2 -= self.data[x_index+1][i]*self.steps[VERT]
+
+ if data_index == len(self.data[0])-1 and False:
+ self.context.set_source_rgba(0.0,0.0,0.0,0.3)
+ self.context.move_to(x0,y0)
+ self.context.line_to(x2,y2)
+ self.context.stroke()
+ self.context.arc(x0,y0,2,0,2*math.pi)
+ self.context.fill()
+ t.append(math.atan(float(y0-y2)/(x0-x2)))
+ self.angles.append(tuple(t))
+ self.angles.append(tuple([0.0 for x in range(len(self.data)+1)]))
+
+ def render_plot(self):
+ self.calc_angles()
+ middle = self.plot_top - self.plot_dimensions[VERT]/2.0
+ p = 0.4*self.steps[HORZ]
+ for data_index in range(len(self.data[0])-1,-1,-1):
+ self.context.set_source_rgba(*self.series_colors[data_index][:4])
+
+ #draw the upper line
+ for x_index in range(len(self.data)-1) :
+ x1 = self.borders[HORZ] + (0.5 + x_index)*self.steps[HORZ]
+ y1 = middle - self.ground(x_index)*self.steps[VERT] - self.data[x_index][data_index]*self.steps[VERT]
+ x2 = self.borders[HORZ] + (0.5 + x_index + 1)*self.steps[HORZ]
+ y2 = middle - self.ground(x_index + 1)*self.steps[VERT] - self.data[x_index + 1][data_index]*self.steps[VERT]
+
+ for i in range(0,data_index):
+ y1 -= self.data[x_index][i]*self.steps[VERT]
+ y2 -= self.data[x_index+1][i]*self.steps[VERT]
+
+ if x_index == 0:
+ self.context.move_to(x1,y1)
+
+ ang1 = self.angles[x_index][data_index+1]
+ ang2 = self.angles[x_index+1][data_index+1] + math.pi
+ self.context.curve_to(x1+p*math.cos(ang1),y1+p*math.sin(ang1),
+ x2+p*math.cos(ang2),y2+p*math.sin(ang2),
+ x2,y2)
+
+ for x_index in range(len(self.data)-1,0,-1) :
+ x1 = self.borders[HORZ] + (0.5 + x_index)*self.steps[HORZ]
+ y1 = middle - self.ground(x_index)*self.steps[VERT]
+ x2 = self.borders[HORZ] + (0.5 + x_index - 1)*self.steps[HORZ]
+ y2 = middle - self.ground(x_index - 1)*self.steps[VERT]
+
+ for i in range(0,data_index):
+ y1 -= self.data[x_index][i]*self.steps[VERT]
+ y2 -= self.data[x_index-1][i]*self.steps[VERT]
+
+ if x_index == len(self.data)-1:
+ self.context.line_to(x1,y1+2)
+
+ #revert angles by pi degrees to take the turn back
+ ang1 = self.angles[x_index][data_index] + math.pi
+ ang2 = self.angles[x_index-1][data_index]
+ self.context.curve_to(x1+p*math.cos(ang1),y1+p*math.sin(ang1),
+ x2+p*math.cos(ang2),y2+p*math.sin(ang2),
+ x2,y2+2)
+
+ self.context.close_path()
+ self.context.fill()
+
+ if False:
+ self.context.move_to(self.borders[HORZ] + 0.5*self.steps[HORZ], middle)
+ for x_index in range(len(self.data)-1) :
+ x1 = self.borders[HORZ] + (0.5 + x_index)*self.steps[HORZ]
+ y1 = middle - self.ground(x_index)*self.steps[VERT] - self.data[x_index][data_index]*self.steps[VERT]
+ x2 = self.borders[HORZ] + (0.5 + x_index + 1)*self.steps[HORZ]
+ y2 = middle - self.ground(x_index + 1)*self.steps[VERT] - self.data[x_index + 1][data_index]*self.steps[VERT]
+
+ for i in range(0,data_index):
+ y1 -= self.data[x_index][i]*self.steps[VERT]
+ y2 -= self.data[x_index+1][i]*self.steps[VERT]
+
+ ang1 = self.angles[x_index][data_index+1]
+ ang2 = self.angles[x_index+1][data_index+1] + math.pi
+ self.context.set_source_rgba(1.0,0.0,0.0)
+ self.context.arc(x1+p*math.cos(ang1),y1+p*math.sin(ang1),2,0,2*math.pi)
+ self.context.fill()
+ self.context.set_source_rgba(0.0,0.0,0.0)
+ self.context.arc(x2+p*math.cos(ang2),y2+p*math.sin(ang2),2,0,2*math.pi)
+ self.context.fill()
+ '''self.context.set_source_rgba(0.0,0.0,0.0,0.3)
+ self.context.arc(x2,y2,2,0,2*math.pi)
+ self.context.fill()'''
+ self.context.move_to(x1,y1)
+ self.context.line_to(x1+p*math.cos(ang1),y1+p*math.sin(ang1))
+ self.context.stroke()
+ self.context.move_to(x2,y2)
+ self.context.line_to(x2+p*math.cos(ang2),y2+p*math.sin(ang2))
+ self.context.stroke()
+ if False:
+ for x_index in range(len(self.data)-1,0,-1) :
+ x1 = self.borders[HORZ] + (0.5 + x_index)*self.steps[HORZ]
+ y1 = middle - self.ground(x_index)*self.steps[VERT]
+ x2 = self.borders[HORZ] + (0.5 + x_index - 1)*self.steps[HORZ]
+ y2 = middle - self.ground(x_index - 1)*self.steps[VERT]
+
+ for i in range(0,data_index):
+ y1 -= self.data[x_index][i]*self.steps[VERT]
+ y2 -= self.data[x_index-1][i]*self.steps[VERT]
+
+ #revert angles by pi degrees to take the turn back
+ ang1 = self.angles[x_index][data_index] + math.pi
+ ang2 = self.angles[x_index-1][data_index]
+ self.context.set_source_rgba(0.0,1.0,0.0)
+ self.context.arc(x1+p*math.cos(ang1),y1+p*math.sin(ang1),2,0,2*math.pi)
+ self.context.fill()
+ self.context.set_source_rgba(0.0,0.0,1.0)
+ self.context.arc(x2+p*math.cos(ang2),y2+p*math.sin(ang2),2,0,2*math.pi)
+ self.context.fill()
+ '''self.context.set_source_rgba(0.0,0.0,0.0,0.3)
+ self.context.arc(x2,y2,2,0,2*math.pi)
+ self.context.fill()'''
+ self.context.move_to(x1,y1)
+ self.context.line_to(x1+p*math.cos(ang1),y1+p*math.sin(ang1))
+ self.context.stroke()
+ self.context.move_to(x2,y2)
+ self.context.line_to(x2+p*math.cos(ang2),y2+p*math.sin(ang2))
+ self.context.stroke()
+ #break
+
+ #self.context.arc(self.dimensions[HORZ]/2, self.dimensions[VERT]/2,50,0,3*math.pi/2)
+ #self.context.fill()
+
+
+class PiePlot(Plot):
+ #TODO: Check the old cairoplot, graphs aren't matching
+ def __init__ (self,
+ surface = None,
+ data = None,
+ width = 640,
+ height = 480,
+ background = "white light_gray",
+ gradient = False,
+ shadow = False,
+ colors = None):
+
+ Plot.__init__( self, surface, data, width, height, background, series_colors = colors )
+ self.center = (self.dimensions[HORZ]/2, self.dimensions[VERT]/2)
+ self.total = sum( self.series.to_list() )
+ self.radius = min(self.dimensions[HORZ]/3,self.dimensions[VERT]/3)
+ self.gradient = gradient
+ self.shadow = shadow
+
+ def sort_function(x,y):
+ return x.content - y.content
+
+ def load_series(self, data, x_labels=None, y_labels=None, series_colors=None):
+ Plot.load_series(self, data, x_labels, y_labels, series_colors)
+ # Already done inside series
+ #self.data = sorted(self.data)
+
+ def draw_piece(self, angle, next_angle):
+ self.context.move_to(self.center[0],self.center[1])
+ self.context.line_to(self.center[0] + self.radius*math.cos(angle), self.center[1] + self.radius*math.sin(angle))
+ self.context.arc(self.center[0], self.center[1], self.radius, angle, next_angle)
+ self.context.line_to(self.center[0], self.center[1])
+ self.context.close_path()
+
+ def render(self):
+ self.render_background()
+ self.render_bounding_box()
+ if self.shadow:
+ self.render_shadow()
+ self.render_plot()
+ self.render_series_labels()
+
+ def render_shadow(self):
+ horizontal_shift = 3
+ vertical_shift = 3
+ self.context.set_source_rgba(0, 0, 0, 0.5)
+ self.context.arc(self.center[0] + horizontal_shift, self.center[1] + vertical_shift, self.radius, 0, 2*math.pi)
+ self.context.fill()
+
+ def render_series_labels(self):
+ angle = 0
+ next_angle = 0
+ x0,y0 = self.center
+ cr = self.context
+ for number,key in enumerate(self.series_labels):
+ # self.data[number] should be just a number
+ data = sum(self.series[number].to_list())
+
+ next_angle = angle + 2.0*math.pi*data/self.total
+ cr.set_source_rgba(*self.series_colors[number][:4])
+ w = cr.text_extents(key)[2]
+ if (angle + next_angle)/2 < math.pi/2 or (angle + next_angle)/2 > 3*math.pi/2:
+ cr.move_to(x0 + (self.radius+10)*math.cos((angle+next_angle)/2), y0 + (self.radius+10)*math.sin((angle+next_angle)/2) )
+ else:
+ cr.move_to(x0 + (self.radius+10)*math.cos((angle+next_angle)/2) - w, y0 + (self.radius+10)*math.sin((angle+next_angle)/2) )
+ cr.show_text(key)
+ angle = next_angle
+
+ def render_plot(self):
+ angle = 0
+ next_angle = 0
+ x0,y0 = self.center
+ cr = self.context
+ for number,group in enumerate(self.series):
+ # Group should be just a number
+ data = sum(group.to_list())
+ next_angle = angle + 2.0*math.pi*data/self.total
+ if self.gradient or self.series_colors[number][4] in ('linear','radial'):
+ gradient_color = cairo.RadialGradient(self.center[0], self.center[1], 0, self.center[0], self.center[1], self.radius)
+ gradient_color.add_color_stop_rgba(0.3, *self.series_colors[number][:4])
+ gradient_color.add_color_stop_rgba(1, self.series_colors[number][0]*0.7,
+ self.series_colors[number][1]*0.7,
+ self.series_colors[number][2]*0.7,
+ self.series_colors[number][3])
+ cr.set_source(gradient_color)
+ else:
+ cr.set_source_rgba(*self.series_colors[number][:4])
+
+ self.draw_piece(angle, next_angle)
+ cr.fill()
+
+ cr.set_source_rgba(1.0, 1.0, 1.0)
+ self.draw_piece(angle, next_angle)
+ cr.stroke()
+
+ angle = next_angle
+
+class DonutPlot(PiePlot):
+ def __init__ (self,
+ surface = None,
+ data = None,
+ width = 640,
+ height = 480,
+ background = "white light_gray",
+ gradient = False,
+ shadow = False,
+ colors = None,
+ inner_radius=-1):
+
+ Plot.__init__( self, surface, data, width, height, background, series_colors = colors )
+
+ self.center = ( self.dimensions[HORZ]/2, self.dimensions[VERT]/2 )
+ self.total = sum( self.series.to_list() )
+ self.radius = min( self.dimensions[HORZ]/3,self.dimensions[VERT]/3 )
+ self.inner_radius = inner_radius*self.radius
+
+ if inner_radius == -1:
+ self.inner_radius = self.radius/3
+
+ self.gradient = gradient
+ self.shadow = shadow
+
+ def draw_piece(self, angle, next_angle):
+ self.context.move_to(self.center[0] + (self.inner_radius)*math.cos(angle), self.center[1] + (self.inner_radius)*math.sin(angle))
+ self.context.line_to(self.center[0] + self.radius*math.cos(angle), self.center[1] + self.radius*math.sin(angle))
+ self.context.arc(self.center[0], self.center[1], self.radius, angle, next_angle)
+ self.context.line_to(self.center[0] + (self.inner_radius)*math.cos(next_angle), self.center[1] + (self.inner_radius)*math.sin(next_angle))
+ self.context.arc_negative(self.center[0], self.center[1], self.inner_radius, next_angle, angle)
+ self.context.close_path()
+
+ def render_shadow(self):
+ horizontal_shift = 3
+ vertical_shift = 3
+ self.context.set_source_rgba(0, 0, 0, 0.5)
+ self.context.arc(self.center[0] + horizontal_shift, self.center[1] + vertical_shift, self.inner_radius, 0, 2*math.pi)
+ self.context.arc_negative(self.center[0] + horizontal_shift, self.center[1] + vertical_shift, self.radius, 0, -2*math.pi)
+ self.context.fill()
+
+class GanttChart (Plot) :
+ def __init__(self,
+ surface = None,
+ data = None,
+ width = 640,
+ height = 480,
+ x_labels = None,
+ y_labels = None,
+ colors = None):
+ self.bounds = {}
+ self.max_value = {}
+ Plot.__init__(self, surface, data, width, height, x_labels = x_labels, y_labels = y_labels, series_colors = colors)
+
+ def load_series(self, data, x_labels=None, y_labels=None, series_colors=None):
+ Plot.load_series(self, data, x_labels, y_labels, series_colors)
+ self.calc_boundaries()
+
+ def calc_boundaries(self):
+ self.bounds[HORZ] = (0,len(self.series))
+ end_pos = max(self.series.to_list())
+
+ #for group in self.series:
+ # if hasattr(item, "__delitem__"):
+ # for sub_item in item:
+ # end_pos = max(sub_item)
+ # else:
+ # end_pos = max(item)
+ self.bounds[VERT] = (0,end_pos)
+
+ def calc_extents(self, direction):
+ self.max_value[direction] = 0
+ if self.labels[direction]:
+ self.max_value[direction] = max(self.context.text_extents(item)[2] for item in self.labels[direction])
+ else:
+ self.max_value[direction] = self.context.text_extents( str(self.bounds[direction][1] + 1) )[2]
+
+ def calc_horz_extents(self):
+ self.calc_extents(HORZ)
+ self.borders[HORZ] = 100 + self.max_value[HORZ]
+
+ def calc_vert_extents(self):
+ self.calc_extents(VERT)
+ self.borders[VERT] = self.dimensions[VERT]/(self.bounds[HORZ][1] + 1)
+
+ def calc_steps(self):
+ self.horizontal_step = (self.dimensions[HORZ] - self.borders[HORZ])/(len(self.labels[VERT]))
+ self.vertical_step = self.borders[VERT]
+
+ def render(self):
+ self.calc_horz_extents()
+ self.calc_vert_extents()
+ self.calc_steps()
+ self.render_background()
+
+ self.render_labels()
+ self.render_grid()
+ self.render_plot()
+
+ def render_background(self):
+ cr = self.context
+ cr.set_source_rgba(255,255,255)
+ cr.rectangle(0,0,self.dimensions[HORZ], self.dimensions[VERT])
+ cr.fill()
+ for number,group in enumerate(self.series):
+ linear = cairo.LinearGradient(self.dimensions[HORZ]/2, self.borders[VERT] + number*self.vertical_step,
+ self.dimensions[HORZ]/2, self.borders[VERT] + (number+1)*self.vertical_step)
+ linear.add_color_stop_rgba(0,1.0,1.0,1.0,1.0)
+ linear.add_color_stop_rgba(1.0,0.9,0.9,0.9,1.0)
+ cr.set_source(linear)
+ cr.rectangle(0,self.borders[VERT] + number*self.vertical_step,self.dimensions[HORZ],self.vertical_step)
+ cr.fill()
+
+ def render_grid(self):
+ cr = self.context
+ cr.set_source_rgba(0.7, 0.7, 0.7)
+ cr.set_dash((1,0,0,0,0,0,1))
+ cr.set_line_width(0.5)
+ for number,label in enumerate(self.labels[VERT]):
+ h = cr.text_extents(label)[3]
+ cr.move_to(self.borders[HORZ] + number*self.horizontal_step, self.vertical_step/2 + h)
+ cr.line_to(self.borders[HORZ] + number*self.horizontal_step, self.dimensions[VERT])
+ cr.stroke()
+
+ def render_labels(self):
+ self.context.set_font_size(0.02 * self.dimensions[HORZ])
+
+ self.render_horz_labels()
+ self.render_vert_labels()
+
+ def render_horz_labels(self):
+ cr = self.context
+ labels = self.labels[HORZ]
+ if not labels:
+ labels = [str(i) for i in range(1, self.bounds[HORZ][1] + 1) ]
+ for number,label in enumerate(labels):
+ if label != None:
+ cr.set_source_rgba(0.5, 0.5, 0.5)
+ w,h = cr.text_extents(label)[2], cr.text_extents(label)[3]
+ cr.move_to(40,self.borders[VERT] + number*self.vertical_step + self.vertical_step/2 + h/2)
+ cr.show_text(label)
+
+ def render_vert_labels(self):
+ cr = self.context
+ labels = self.labels[VERT]
+ if not labels:
+ labels = [str(i) for i in range(1, self.bounds[VERT][1] + 1) ]
+ for number,label in enumerate(labels):
+ w,h = cr.text_extents(label)[2], cr.text_extents(label)[3]
+ cr.move_to(self.borders[HORZ] + number*self.horizontal_step - w/2, self.vertical_step/2)
+ cr.show_text(label)
+
+ def render_rectangle(self, x0, y0, x1, y1, color):
+ self.draw_shadow(x0, y0, x1, y1)
+ self.draw_rectangle(x0, y0, x1, y1, color)
+
+ def draw_rectangular_shadow(self, gradient, x0, y0, w, h):
+ self.context.set_source(gradient)
+ self.context.rectangle(x0,y0,w,h)
+ self.context.fill()
+
+ def draw_circular_shadow(self, x, y, radius, ang_start, ang_end, mult, shadow):
+ gradient = cairo.RadialGradient(x, y, 0, x, y, 2*radius)
+ gradient.add_color_stop_rgba(0, 0, 0, 0, shadow)
+ gradient.add_color_stop_rgba(1, 0, 0, 0, 0)
+ self.context.set_source(gradient)
+ self.context.move_to(x,y)
+ self.context.line_to(x + mult[0]*radius,y + mult[1]*radius)
+ self.context.arc(x, y, 8, ang_start, ang_end)
+ self.context.line_to(x,y)
+ self.context.close_path()
+ self.context.fill()
+
+ def draw_rectangle(self, x0, y0, x1, y1, color):
+ cr = self.context
+ middle = (x0+x1)/2
+ linear = cairo.LinearGradient(middle,y0,middle,y1)
+ linear.add_color_stop_rgba(0,3.5*color[0]/5.0, 3.5*color[1]/5.0, 3.5*color[2]/5.0,1.0)
+ linear.add_color_stop_rgba(1,*color[:4])
+ cr.set_source(linear)
+
+ cr.arc(x0+5, y0+5, 5, 0, 2*math.pi)
+ cr.arc(x1-5, y0+5, 5, 0, 2*math.pi)
+ cr.arc(x0+5, y1-5, 5, 0, 2*math.pi)
+ cr.arc(x1-5, y1-5, 5, 0, 2*math.pi)
+ cr.rectangle(x0+5,y0,x1-x0-10,y1-y0)
+ cr.rectangle(x0,y0+5,x1-x0,y1-y0-10)
+ cr.fill()
+
+ def draw_shadow(self, x0, y0, x1, y1):
+ shadow = 0.4
+ h_mid = (x0+x1)/2
+ v_mid = (y0+y1)/2
+ h_linear_1 = cairo.LinearGradient(h_mid,y0-4,h_mid,y0+4)
+ h_linear_2 = cairo.LinearGradient(h_mid,y1-4,h_mid,y1+4)
+ v_linear_1 = cairo.LinearGradient(x0-4,v_mid,x0+4,v_mid)
+ v_linear_2 = cairo.LinearGradient(x1-4,v_mid,x1+4,v_mid)
+
+ h_linear_1.add_color_stop_rgba( 0, 0, 0, 0, 0)
+ h_linear_1.add_color_stop_rgba( 1, 0, 0, 0, shadow)
+ h_linear_2.add_color_stop_rgba( 0, 0, 0, 0, shadow)
+ h_linear_2.add_color_stop_rgba( 1, 0, 0, 0, 0)
+ v_linear_1.add_color_stop_rgba( 0, 0, 0, 0, 0)
+ v_linear_1.add_color_stop_rgba( 1, 0, 0, 0, shadow)
+ v_linear_2.add_color_stop_rgba( 0, 0, 0, 0, shadow)
+ v_linear_2.add_color_stop_rgba( 1, 0, 0, 0, 0)
+
+ self.draw_rectangular_shadow(h_linear_1,x0+4,y0-4,x1-x0-8,8)
+ self.draw_rectangular_shadow(h_linear_2,x0+4,y1-4,x1-x0-8,8)
+ self.draw_rectangular_shadow(v_linear_1,x0-4,y0+4,8,y1-y0-8)
+ self.draw_rectangular_shadow(v_linear_2,x1-4,y0+4,8,y1-y0-8)
+
+ self.draw_circular_shadow(x0+4, y0+4, 4, math.pi, 3*math.pi/2, (-1,0), shadow)
+ self.draw_circular_shadow(x1-4, y0+4, 4, 3*math.pi/2, 2*math.pi, (0,-1), shadow)
+ self.draw_circular_shadow(x0+4, y1-4, 4, math.pi/2, math.pi, (0,1), shadow)
+ self.draw_circular_shadow(x1-4, y1-4, 4, 0, math.pi/2, (1,0), shadow)
+
+ def render_plot(self):
+ for index,group in enumerate(self.series):
+ for data in group:
+ self.render_rectangle(self.borders[HORZ] + data.content[0]*self.horizontal_step,
+ self.borders[VERT] + index*self.vertical_step + self.vertical_step/4.0,
+ self.borders[HORZ] + data.content[1]*self.horizontal_step,
+ self.borders[VERT] + index*self.vertical_step + 3.0*self.vertical_step/4.0,
+ self.series_colors[index])
+
+# Function definition
+
+def scatter_plot(name,
+ data = None,
+ errorx = None,
+ errory = None,
+ width = 640,
+ height = 480,
+ background = "white light_gray",
+ border = 0,
+ axis = False,
+ dash = False,
+ discrete = False,
+ dots = False,
+ grid = False,
+ series_legend = False,
+ x_labels = None,
+ y_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ z_bounds = None,
+ x_title = None,
+ y_title = None,
+ series_colors = None,
+ circle_colors = None):
+
+ '''
+ - Function to plot scatter data.
+
+ - Parameters
+
+ data - The values to be ploted might be passed in a two basic:
+ list of points: [(0,0), (0,1), (0,2)] or [(0,0,1), (0,1,4), (0,2,1)]
+ lists of coordinates: [ [0,0,0] , [0,1,2] ] or [ [0,0,0] , [0,1,2] , [1,4,1] ]
+ Notice that these kinds of that can be grouped in order to form more complex data
+ using lists of lists or dictionaries;
+ series_colors - Define color values for each of the series
+ circle_colors - Define a lower and an upper bound for the circle colors for variable radius
+ (3 dimensions) series
+ '''
+
+ plot = ScatterPlot( name, data, errorx, errory, width, height, background, border,
+ axis, dash, discrete, dots, grid, series_legend, x_labels, y_labels,
+ x_bounds, y_bounds, z_bounds, x_title, y_title, series_colors, circle_colors )
+ plot.render()
+ plot.commit()
+
+def dot_line_plot(name,
+ data,
+ width,
+ height,
+ background = "white light_gray",
+ border = 0,
+ axis = False,
+ dash = False,
+ dots = False,
+ grid = False,
+ series_legend = False,
+ x_labels = None,
+ y_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ x_title = None,
+ y_title = None,
+ series_colors = None):
+ '''
+ - Function to plot graphics using dots and lines.
+
+ dot_line_plot (name, data, width, height, background = "white light_gray", border = 0, axis = False, grid = False, x_labels = None, y_labels = None, x_bounds = None, y_bounds = None)
+
+ - Parameters
+
+ name - Name of the desired output file, no need to input the .svg as it will be added at runtim;
+ data - The list, list of lists or dictionary holding the data to be plotted;
+ width, height - Dimensions of the output image;
+ background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient.
+ If left None, a gray to white gradient will be generated;
+ border - Distance in pixels of a square border into which the graphics will be drawn;
+ axis - Whether or not the axis are to be drawn;
+ dash - Boolean or a list or a dictionary of booleans indicating whether or not the associated series should be drawn in dashed mode;
+ dots - Whether or not dots should be drawn on each point;
+ grid - Whether or not the gris is to be drawn;
+ series_legend - Whether or not the legend is to be drawn;
+ x_labels, y_labels - lists of strings containing the horizontal and vertical labels for the axis;
+ x_bounds, y_bounds - tuples containing the lower and upper value bounds for the data to be plotted;
+ x_title - Whether or not to plot a title over the x axis.
+ y_title - Whether or not to plot a title over the y axis.
+
+ - Examples of use
+
+ data = [0, 1, 3, 8, 9, 0, 10, 10, 2, 1]
+ CairoPlot.dot_line_plot('teste', data, 400, 300)
+
+ data = { "john" : [10, 10, 10, 10, 30], "mary" : [0, 0, 3, 5, 15], "philip" : [13, 32, 11, 25, 2] }
+ x_labels = ["jan/2008", "feb/2008", "mar/2008", "apr/2008", "may/2008" ]
+ CairoPlot.dot_line_plot( 'test', data, 400, 300, axis = True, grid = True,
+ series_legend = True, x_labels = x_labels )
+ '''
+ plot = DotLinePlot( name, data, width, height, background, border,
+ axis, dash, dots, grid, series_legend, x_labels, y_labels,
+ x_bounds, y_bounds, x_title, y_title, series_colors )
+ plot.render()
+ plot.commit()
+
+def function_plot(name,
+ data,
+ width,
+ height,
+ background = "white light_gray",
+ border = 0,
+ axis = True,
+ dots = False,
+ discrete = False,
+ grid = False,
+ series_legend = False,
+ x_labels = None,
+ y_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ x_title = None,
+ y_title = None,
+ series_colors = None,
+ step = 1):
+
+ '''
+ - Function to plot functions.
+
+ function_plot(name, data, width, height, background = "white light_gray", border = 0, axis = True, grid = False, dots = False, x_labels = None, y_labels = None, x_bounds = None, y_bounds = None, step = 1, discrete = False)
+
+ - Parameters
+
+ name - Name of the desired output file, no need to input the .svg as it will be added at runtim;
+ data - The list, list of lists or dictionary holding the data to be plotted;
+ width, height - Dimensions of the output image;
+ background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient.
+ If left None, a gray to white gradient will be generated;
+ border - Distance in pixels of a square border into which the graphics will be drawn;
+ axis - Whether or not the axis are to be drawn;
+ grid - Whether or not the gris is to be drawn;
+ dots - Whether or not dots should be shown at each point;
+ x_labels, y_labels - lists of strings containing the horizontal and vertical labels for the axis;
+ x_bounds, y_bounds - tuples containing the lower and upper value bounds for the data to be plotted;
+ step - the horizontal distance from one point to the other. The smaller, the smoother the curve will be;
+ discrete - whether or not the function should be plotted in discrete format.
+
+ - Example of use
+
+ data = lambda x : x**2
+ CairoPlot.function_plot('function4', data, 400, 300, grid = True, x_bounds=(-10,10), step = 0.1)
+ '''
+
+ plot = FunctionPlot( name, data, width, height, background, border,
+ axis, discrete, dots, grid, series_legend, x_labels, y_labels,
+ x_bounds, y_bounds, x_title, y_title, series_colors, step )
+ plot.render()
+ plot.commit()
+
+def pie_plot( name, data, width, height, background = "white light_gray", gradient = False, shadow = False, colors = None ):
+
+ '''
+ - Function to plot pie graphics.
+
+ pie_plot(name, data, width, height, background = "white light_gray", gradient = False, colors = None)
+
+ - Parameters
+
+ name - Name of the desired output file, no need to input the .svg as it will be added at runtim;
+ data - The list, list of lists or dictionary holding the data to be plotted;
+ width, height - Dimensions of the output image;
+ background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient.
+ If left None, a gray to white gradient will be generated;
+ gradient - Whether or not the pie color will be painted with a gradient;
+ shadow - Whether or not there will be a shadow behind the pie;
+ colors - List of slices colors.
+
+ - Example of use
+
+ teste_data = {"john" : 123, "mary" : 489, "philip" : 890 , "suzy" : 235}
+ CairoPlot.pie_plot("pie_teste", teste_data, 500, 500)
+ '''
+
+ plot = PiePlot( name, data, width, height, background, gradient, shadow, colors )
+ plot.render()
+ plot.commit()
+
+def donut_plot(name, data, width, height, background = "white light_gray", gradient = False, shadow = False, colors = None, inner_radius = -1):
+
+ '''
+ - Function to plot donut graphics.
+
+ donut_plot(name, data, width, height, background = "white light_gray", gradient = False, inner_radius = -1)
+
+ - Parameters
+
+ name - Name of the desired output file, no need to input the .svg as it will be added at runtim;
+ data - The list, list of lists or dictionary holding the data to be plotted;
+ width, height - Dimensions of the output image;
+ background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient.
+ If left None, a gray to white gradient will be generated;
+ shadow - Whether or not there will be a shadow behind the donut;
+ gradient - Whether or not the donut color will be painted with a gradient;
+ colors - List of slices colors;
+ inner_radius - The radius of the donut's inner circle.
+
+ - Example of use
+
+ teste_data = {"john" : 123, "mary" : 489, "philip" : 890 , "suzy" : 235}
+ CairoPlot.donut_plot("donut_teste", teste_data, 500, 500)
+ '''
+
+ plot = DonutPlot(name, data, width, height, background, gradient, shadow, colors, inner_radius)
+ plot.render()
+ plot.commit()
+
+def gantt_chart(name, pieces, width, height, x_labels, y_labels, colors):
+
+ '''
+ - Function to generate Gantt Charts.
+
+ gantt_chart(name, pieces, width, height, x_labels, y_labels, colors):
+
+ - Parameters
+
+ name - Name of the desired output file, no need to input the .svg as it will be added at runtim;
+ pieces - A list defining the spaces to be drawn. The user must pass, for each line, the index of its start and the index of its end. If a line must have two or more spaces, they must be passed inside a list;
+ width, height - Dimensions of the output image;
+ x_labels - A list of names for each of the vertical lines;
+ y_labels - A list of names for each of the horizontal spaces;
+ colors - List containing the colors expected for each of the horizontal spaces
+
+ - Example of use
+
+ pieces = [ (0.5,5.5) , [(0,4),(6,8)] , (5.5,7) , (7,8)]
+ x_labels = [ 'teste01', 'teste02', 'teste03', 'teste04']
+ y_labels = [ '0001', '0002', '0003', '0004', '0005', '0006', '0007', '0008', '0009', '0010' ]
+ colors = [ (1.0, 0.0, 0.0), (1.0, 0.7, 0.0), (1.0, 1.0, 0.0), (0.0, 1.0, 0.0) ]
+ CairoPlot.gantt_chart('gantt_teste', pieces, 600, 300, x_labels, y_labels, colors)
+ '''
+
+ plot = GanttChart(name, pieces, width, height, x_labels, y_labels, colors)
+ plot.render()
+ plot.commit()
+
+def vertical_bar_plot(name,
+ data,
+ width,
+ height,
+ background = "white light_gray",
+ border = 0,
+ display_values = False,
+ grid = False,
+ rounded_corners = False,
+ stack = False,
+ three_dimension = False,
+ series_labels = None,
+ x_labels = None,
+ y_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ colors = None,
+ bar_borders=None):
+ #TODO: Fix docstring for vertical_bar_plot
+ '''
+ - Function to generate vertical Bar Plot Charts.
+
+ bar_plot(name, data, width, height, background, border, grid, rounded_corners, three_dimension,
+ x_labels, y_labels, x_bounds, y_bounds, colors):
+
+ - Parameters
+
+ name - Name of the desired output file, no need to input the .svg as it will be added at runtime;
+ data - The list, list of lists or dictionary holding the data to be plotted;
+ width, height - Dimensions of the output image;
+ background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient.
+ If left None, a gray to white gradient will be generated;
+ border - Distance in pixels of a square border into which the graphics will be drawn;
+ grid - Whether or not the gris is to be drawn;
+ rounded_corners - Whether or not the bars should have rounded corners;
+ three_dimension - Whether or not the bars should be drawn in pseudo 3D;
+ x_labels, y_labels - lists of strings containing the horizontal and vertical labels for the axis;
+ x_bounds, y_bounds - tuples containing the lower and upper value bounds for the data to be plotted;
+ colors - List containing the colors expected for each of the bars.
+
+ - Example of use
+
+ data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
+ CairoPlot.vertical_bar_plot ('bar2', data, 400, 300, border = 20, grid = True, rounded_corners = False)
+ '''
+
+ plot = VerticalBarPlot(name, data, width, height, background, border,
+ display_values, grid, rounded_corners, stack, three_dimension,
+ series_labels, x_labels, y_labels, x_bounds, y_bounds, colors)
+ plot.bar_borders = bar_borders or list()
+ plot.render()
+ plot.commit()
+
+def horizontal_bar_plot(name,
+ data,
+ width,
+ height,
+ background = "white light_gray",
+ border = 0,
+ display_values = False,
+ grid = False,
+ rounded_corners = False,
+ stack = False,
+ three_dimension = False,
+ series_labels = None,
+ x_labels = None,
+ y_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ colors = None):
+
+ #TODO: Fix docstring for horizontal_bar_plot
+ '''
+ - Function to generate Horizontal Bar Plot Charts.
+
+ bar_plot(name, data, width, height, background, border, grid, rounded_corners, three_dimension,
+ x_labels, y_labels, x_bounds, y_bounds, colors):
+
+ - Parameters
+
+ name - Name of the desired output file, no need to input the .svg as it will be added at runtime;
+ data - The list, list of lists or dictionary holding the data to be plotted;
+ width, height - Dimensions of the output image;
+ background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient.
+ If left None, a gray to white gradient will be generated;
+ border - Distance in pixels of a square border into which the graphics will be drawn;
+ grid - Whether or not the gris is to be drawn;
+ rounded_corners - Whether or not the bars should have rounded corners;
+ three_dimension - Whether or not the bars should be drawn in pseudo 3D;
+ x_labels, y_labels - lists of strings containing the horizontal and vertical labels for the axis;
+ x_bounds, y_bounds - tuples containing the lower and upper value bounds for the data to be plotted;
+ colors - List containing the colors expected for each of the bars.
+
+ - Example of use
+
+ data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
+ CairoPlot.bar_plot ('bar2', data, 400, 300, border = 20, grid = True, rounded_corners = False)
+ '''
+
+ plot = HorizontalBarPlot(name, data, width, height, background, border,
+ display_values, grid, rounded_corners, stack, three_dimension,
+ series_labels, x_labels, y_labels, x_bounds, y_bounds, colors)
+ plot.render()
+ plot.commit()
+
+def stream_chart(name,
+ data,
+ width,
+ height,
+ background = "white light_gray",
+ border = 0,
+ grid = False,
+ series_legend = None,
+ x_labels = None,
+ x_bounds = None,
+ y_bounds = None,
+ colors = None):
+
+ #TODO: Fix docstring for horizontal_bar_plot
+ plot = StreamChart(name, data, width, height, background, border,
+ grid, series_legend, x_labels, x_bounds, y_bounds, colors)
+ plot.render()
+ plot.commit()
+
+
+if __name__ == "__main__":
+ import tests
+ import seriestests
=== added directory 'tools/development/query_sets'
=== added file 'tools/development/query_sets/timerange_always.txt'
--- tools/development/query_sets/timerange_always.txt 1970-01-01 00:00:00 +0000
+++ tools/development/query_sets/timerange_always.txt 2011-12-25 16:24:04 +0000
@@ -0,0 +1,9 @@
+TimeRange.always(), [], StorageState.Any, 100, ResultType.MostRecentEvents
+TimeRange.always(), [], StorageState.Any, 100, ResultType.MostRecentSubjects
+TimeRange.always(), [], StorageState.Any, 100, ResultType.MostPopularSubjects
+TimeRange.always(), [], StorageState.Any, 100, ResultType.MostPopularActor
+TimeRange.always(), [], StorageState.Any, 100, ResultType.MostRecentActor
+TimeRange.always(), [], StorageState.Any, 100, ResultType.MostRecentSubjectInterpretation
+TimeRange.always(), [], StorageState.Any, 100, ResultType.MostPopularSubjectInterpretation
+TimeRange.always(), [], StorageState.Any, 100, ResultType.MostRecentMimeType
+TimeRange.always(), [], StorageState.Any, 100, ResultType.MostPopularMimeType
=== added file 'tools/development/query_sets/timerange_interval.txt'
--- tools/development/query_sets/timerange_interval.txt 1970-01-01 00:00:00 +0000
+++ tools/development/query_sets/timerange_interval.txt 2011-12-25 16:24:04 +0000
@@ -0,0 +1,9 @@
+(1, 60000), [], StorageState.Any, 6, ResultType.MostRecentEvents
+(1, 60000), [], StorageState.Any, 6, ResultType.MostRecentSubjects
+(1, 60000), [], StorageState.Any, 6, ResultType.MostPopularSubjects
+(1, 60000), [], StorageState.Any, 6, ResultType.MostPopularActor
+(1, 60000), [], StorageState.Any, 6, ResultType.MostRecentActor
+(1, 60000), [], StorageState.Any, 6, ResultType.MostRecentSubjectInterpretation
+(1, 60000), [], StorageState.Any, 6, ResultType.MostPopularSubjectInterpretation
+(1, 60000), [], StorageState.Any, 6, ResultType.MostRecentMimeType
+(1, 60000), [], StorageState.Any, 6, ResultType.MostPopularMimeType
=== added file 'tools/development/query_timings.py'
--- tools/development/query_timings.py 1970-01-01 00:00:00 +0000
+++ tools/development/query_timings.py 2011-12-31 00:22:58 +0000
@@ -0,0 +1,222 @@
+#! /usr/bin/env python
+# -.- coding: utf-8 -.-
+
+# Zeitgeist
+#
+# Copyright © 2010 Markus Korn <thekorn@xxxxxxx>
+# Copyright © 2011 Collabora Ltd.
+# By Seif Lotfy <seif@xxxxxxxxx>
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU Lesser General Public License as published by
+# the Free Software Foundation, either version 2.1 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public License
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
+
+import os
+import random
+import time
+import json
+import sys
+import logging
+
+from optparse import OptionParser
+from logging import handlers
+from collections import defaultdict
+
+from zeitgeist.datamodel import TimeRange, StorageState, ResultType
+from zeitgeist.datamodel import Event
+import benchmark as engine
+
+from cairoplot import vertical_bar_plot
+
+
+class QueryPlanHandler(handlers.MemoryHandler):
+
+ @staticmethod
+ def get_plan(msg):
+ if "SELECT id FROM event_view" not in msg:
+ return None
+ msg = msg.splitlines()
+ if not "PLAN:" in msg:
+ return None
+ for plan in msg[msg.index("PLAN:")+1:]:
+ if "INDEX" not in plan and "PRIMARY KEY" not in plan:
+ return False
+ return True
+
+ def __init__(self):
+ handlers.MemoryHandler.__init__(self, 200000, logging.DEBUG)
+ self.uses_index = None
+
+ def emit(self, record):
+ x = self.get_plan(record.msg)
+ if x is not None:
+ if not x or self.uses_index is None:
+ self.uses_index = x
+ return handlers.MemoryHandler.emit(self, record)
+
+def get_reference_engine():
+ return engine
+
+def get_query_set(source):
+ for line in open(source):
+ yield line.strip()
+
+def get_cmdline():
+ parser = OptionParser()
+ parser.add_option("-o", dest="output", help="write output to FILE", metavar="FILE")
+ parser.add_option("--queries", dest="queryset", help="run all queries in FILE", metavar="FILE")
+ parser.add_option("--name", dest="name", help="name of the data series", metavar="NAME")
+ parser.add_option("-i", dest="isolated", action="store_true",
+ default=False, help="run each query isolated")
+ parser.add_option("-m", dest="merge", action="store_true",
+ default=False, help="if the datafile already contains data the new data gets merged")
+ parser.add_option("--plot", dest="plot_files", metavar="DATA_FILE",
+ action="append", type="str")
+ parser.add_option("--type", dest="type", help="type of plot")
+ (options, args) = parser.parse_args()
+ assert not args
+ return options
+
+def get_name(data, alternative_name):
+ try:
+ return data["__metadata__"]["name"]
+ except:
+ return alternative_name
+
+def get_data(dataset, query, key):
+ try:
+ return float(dataset[query][key])
+ except:
+ return 0.0
+
+def compare_queries(a, b):
+ result = cmp(a.strip().split()[-1], b.strip().split()[-1])
+ if result != 0:
+ return result
+ return cmp(a[0], b[0])
+
+def plot(output_filename, plot_type, *data_files):
+ raw_data = map(lambda x: json.load(open(x)), data_files)
+ series_labels = map(lambda x: get_name(x[1], data_files[x[0]]), enumerate(raw_data))
+ queries = sorted(
+ filter(lambda x: x != "__metadata__", set(sum([d.keys() for d in raw_data], []))),
+ cmp=compare_queries
+ )
+ data = []
+ max_value = 0
+ no_index = list()
+ style = plot_type
+ for n, query in enumerate(queries):
+ x = [get_data(d, query, style) for d in raw_data]
+ print x
+ y = max(x)
+ idx_border = [not d.get(query, {}).get("uses_index", True) for d in raw_data]
+ for i, b in enumerate(idx_border):
+ if b:
+ no_index.append((n, i))
+ if y > max_value:
+ max_value = y
+ data.append(x)
+ y_parts = max_value / float(4)
+ y_labels = ["%.5fs" %(i*y_parts) for i in range(5)]
+ vertical_bar_plot(
+ output_filename, data, len(queries)*400, 600,
+ x_labels=queries, y_labels=y_labels,
+ grid=True, series_labels=series_labels, bar_borders=no_index)
+
+
+if __name__ == "__main__":
+ options = get_cmdline()
+ if options.plot_files:
+ if options.type in ("marsh_time", "get_events_time", "find_ids_time", "find_events", "overall"):
+ assert options.output
+ plot(options.output, options.type, *options.plot_files)
+ else:
+ print "please specify plot type (marsh_time, get_events_time, find_ids_time, find_events, overall)"
+ else:
+ engine = get_reference_engine()
+ result = {}
+ if options.name:
+ result["__metadata__"] = {
+ "name": options.name,
+ }
+ if options.output and os.path.exists(options.output):
+ existing_data = json.load(open(options.output))
+ else:
+ existing_data = {}
+ logging.basicConfig(level=logging.DEBUG)
+ for query in get_query_set(options.queryset):
+ args = eval(query)
+ start_time = time.time()
+ logging.getLogger("").removeHandler(logging.getLogger("").handlers[0])
+ handler = QueryPlanHandler()
+ logging.getLogger("").addHandler(handler)
+ results = {}
+ for i in xrange (50):
+ t1 = time.time()
+ temp = engine.find_events(*args)
+ temp["overall"] = time.time() - t1
+ if len(results.keys()) == 0:
+ for key in results.keys():
+ temp[key] = temp[key]
+ results = temp
+ else:
+ for key in temp.keys():
+ if key != "events":
+ results[key] += temp[key]
+ print results[key]
+
+ for key in temp.keys():
+ if key != "events":
+ results[key] = results[key]/50
+
+ print (results.keys())
+
+ events = results["events"]
+ run_time = results["find_events"]
+ find_ids_time = results["overall"]
+ find_events_time = results["find_event_ids"]
+ get_events_time = results["get_events"]
+ marsh_time = results["marsh_events"]
+
+ print "===>", find_ids_time
+
+ if query in existing_data and options.merge:
+ print "=================================="
+ counter = existing_data[query].get("counter", 1)
+ old_time = existing_data[query]["overall"]
+ run_time = (old_time * counter + run_time)/(counter + 1)
+
+ result[query] = {
+ "overall": run_time,
+ "counter": counter + 1,
+ "find_ids_time": find_ids_time,
+ "get_events_time": get_events_time,
+ "find_events": find_events_time,
+ "marsh_time": marsh_time,
+ }
+ else:
+ result[query] = {
+ "overall": run_time,
+ "find_ids_time": find_ids_time,
+ "get_events_time": get_events_time,
+ "find_events": find_events_time,
+ "marsh_time": marsh_time,
+ }
+ if options.output:
+ f = open(options.output, "w")
+ else:
+ f = sys.stdout
+ try:
+ json.dump(result, f, indent=4)
+ finally:
+ f.close()
=== added file 'tools/development/series.py'
--- tools/development/series.py 1970-01-01 00:00:00 +0000
+++ tools/development/series.py 2011-12-25 16:24:04 +0000
@@ -0,0 +1,1140 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+
+# Serie.py
+#
+# Copyright (c) 2008 Magnun Leno da Silva
+#
+# Author: Magnun Leno da Silva <magnun.leno@xxxxxxxxx>
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public License
+# as published by the Free Software Foundation; either version 2 of
+# the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this program; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
+# USA
+
+# Contributor: Rodrigo Moreiro Araujo <alf.rodrigo@xxxxxxxxx>
+
+#import cairoplot
+import doctest
+
+NUMTYPES = (int, float, long)
+LISTTYPES = (list, tuple)
+STRTYPES = (str, unicode)
+FILLING_TYPES = ['linear', 'solid', 'gradient']
+DEFAULT_COLOR_FILLING = 'solid'
+#TODO: Define default color list
+DEFAULT_COLOR_LIST = None
+
+class Data(object):
+ '''
+ Class that models the main data structure.
+ It can hold:
+ - a number type (int, float or long)
+ - a tuple, witch represents a point and can have 2 or 3 items (x,y,z)
+ - if a list is passed it will be converted to a tuple.
+
+ obs: In case a tuple is passed it will convert to tuple
+ '''
+ def __init__(self, data=None, name=None, parent=None):
+ '''
+ Starts main atributes from the Data class
+ @name - Name for each point;
+ @content - The real data, can be an int, float, long or tuple, which
+ represents a point (x,y) or (x,y,z);
+ @parent - A pointer that give the data access to it's parent.
+
+ Usage:
+ >>> d = Data(name='empty'); print d
+ empty: ()
+ >>> d = Data((1,1),'point a'); print d
+ point a: (1, 1)
+ >>> d = Data((1,2,3),'point b'); print d
+ point b: (1, 2, 3)
+ >>> d = Data([2,3],'point c'); print d
+ point c: (2, 3)
+ >>> d = Data(12, 'simple value'); print d
+ simple value: 12
+ '''
+ # Initial values
+ self.__content = None
+ self.__name = None
+
+ # Setting passed values
+ self.parent = parent
+ self.name = name
+ self.content = data
+
+ # Name property
+ @apply
+ def name():
+ doc = '''
+ Name is a read/write property that controls the input of name.
+ - If passed an invalid value it cleans the name with None
+
+ Usage:
+ >>> d = Data(13); d.name = 'name_test'; print d
+ name_test: 13
+ >>> d.name = 11; print d
+ 13
+ >>> d.name = 'other_name'; print d
+ other_name: 13
+ >>> d.name = None; print d
+ 13
+ >>> d.name = 'last_name'; print d
+ last_name: 13
+ >>> d.name = ''; print d
+ 13
+ '''
+ def fget(self):
+ '''
+ returns the name as a string
+ '''
+ return self.__name
+
+ def fset(self, name):
+ '''
+ Sets the name of the Data
+ '''
+ if type(name) in STRTYPES and len(name) > 0:
+ self.__name = name
+ else:
+ self.__name = None
+
+
+
+ return property(**locals())
+
+ # Content property
+ @apply
+ def content():
+ doc = '''
+ Content is a read/write property that validate the data passed
+ and return it.
+
+ Usage:
+ >>> d = Data(); d.content = 13; d.content
+ 13
+ >>> d = Data(); d.content = (1,2); d.content
+ (1, 2)
+ >>> d = Data(); d.content = (1,2,3); d.content
+ (1, 2, 3)
+ >>> d = Data(); d.content = [1,2,3]; d.content
+ (1, 2, 3)
+ >>> d = Data(); d.content = [1.5,.2,3.3]; d.content
+ (1.5, 0.20000000000000001, 3.2999999999999998)
+ '''
+ def fget(self):
+ '''
+ Return the content of Data
+ '''
+ return self.__content
+
+ def fset(self, data):
+ '''
+ Ensures that data is a valid tuple/list or a number (int, float
+ or long)
+ '''
+ # Type: None
+ if data is None:
+ self.__content = None
+ return
+
+ # Type: Int or Float
+ elif type(data) in NUMTYPES:
+ self.__content = data
+
+ # Type: List or Tuple
+ elif type(data) in LISTTYPES:
+ # Ensures the correct size
+ if len(data) not in (2, 3):
+ raise TypeError, "Data (as list/tuple) must have 2 or 3 items"
+ return
+
+ # Ensures that all items in list/tuple is a number
+ isnum = lambda x : type(x) not in NUMTYPES
+
+ if max(map(isnum, data)):
+ # An item in data isn't an int or a float
+ raise TypeError, "All content of data must be a number (int or float)"
+
+ # Convert the tuple to list
+ if type(data) is list:
+ data = tuple(data)
+
+ # Append a copy and sets the type
+ self.__content = data[:]
+
+ # Unknown type!
+ else:
+ self.__content = None
+ raise TypeError, "Data must be an int, float or a tuple with two or three items"
+ return
+
+ return property(**locals())
+
+
+ def clear(self):
+ '''
+ Clear the all Data (content, name and parent)
+ '''
+ self.content = None
+ self.name = None
+ self.parent = None
+
+ def copy(self):
+ '''
+ Returns a copy of the Data structure
+ '''
+ # The copy
+ new_data = Data()
+ if self.content is not None:
+ # If content is a point
+ if type(self.content) is tuple:
+ new_data.__content = self.content[:]
+
+ # If content is a number
+ else:
+ new_data.__content = self.content
+
+ # If it has a name
+ if self.name is not None:
+ new_data.__name = self.name
+
+ return new_data
+
+ def __str__(self):
+ '''
+ Return a string representation of the Data structure
+ '''
+ if self.name is None:
+ if self.content is None:
+ return ''
+ return str(self.content)
+ else:
+ if self.content is None:
+ return self.name+": ()"
+ return self.name+": "+str(self.content)
+
+ def __len__(self):
+ '''
+ Return the length of the Data.
+ - If it's a number return 1;
+ - If it's a list return it's length;
+ - If its None return 0.
+ '''
+ if self.content is None:
+ return 0
+ elif type(self.content) in NUMTYPES:
+ return 1
+ return len(self.content)
+
+
+
+
+class Group(object):
+ '''
+ Class that models a group of data. Every value (int, float, long, tuple
+ or list) passed is converted to a list of Data.
+ It can receive:
+ - A single number (int, float, long);
+ - A list of numbers;
+ - A tuple of numbers;
+ - An instance of Data;
+ - A list of Data;
+
+ Obs: If a tuple with 2 or 3 items is passed it is converted to a point.
+ If a tuple with only 1 item is passed it's converted to a number;
+ If a tuple with more than 2 items is passed it's converted to a
+ list of numbers
+ '''
+ def __init__(self, group=None, name=None, parent=None):
+ '''
+ Starts main atributes in Group instance.
+ @data_list - a list of data which forms the group;
+ @range - a range that represent the x axis of possible functions;
+ @name - name of the data group;
+ @parent - the Serie parent of this group.
+
+ Usage:
+ >>> g = Group(13, 'simple number'); print g
+ simple number ['13']
+ >>> g = Group((1,2), 'simple point'); print g
+ simple point ['(1, 2)']
+ >>> g = Group([1,2,3,4], 'list of numbers'); print g
+ list of numbers ['1', '2', '3', '4']
+ >>> g = Group((1,2,3,4),'int in tuple'); print g
+ int in tuple ['1', '2', '3', '4']
+ >>> g = Group([(1,2),(2,3),(3,4)], 'list of points'); print g
+ list of points ['(1, 2)', '(2, 3)', '(3, 4)']
+ >>> g = Group([[1,2,3],[1,2,3]], '2D coordinate lists'); print g
+ 2D coordinated lists ['(1, 1)', '(2, 2)', '(3, 3)']
+ >>> g = Group([[1,2],[1,2],[1,2]], '3D coordinate lists'); print g
+ 3D coordinated lists ['(1, 1, 1)', '(2, 2, 2)']
+ '''
+ # Initial values
+ self.__data_list = []
+ self.__range = []
+ self.__name = None
+
+
+ self.parent = parent
+ self.name = name
+ self.data_list = group
+
+ # Name property
+ @apply
+ def name():
+ doc = '''
+ Name is a read/write property that controls the input of name.
+ - If passed an invalid value it cleans the name with None
+
+ Usage:
+ >>> g = Group(13); g.name = 'name_test'; print g
+ name_test ['13']
+ >>> g.name = 11; print g
+ ['13']
+ >>> g.name = 'other_name'; print g
+ other_name ['13']
+ >>> g.name = None; print g
+ ['13']
+ >>> g.name = 'last_name'; print g
+ last_name ['13']
+ >>> g.name = ''; print g
+ ['13']
+ '''
+ def fget(self):
+ '''
+ Returns the name as a string
+ '''
+ return self.__name
+
+ def fset(self, name):
+ '''
+ Sets the name of the Group
+ '''
+ if type(name) in STRTYPES and len(name) > 0:
+ self.__name = name
+ else:
+ self.__name = None
+
+ return property(**locals())
+
+ # data_list property
+ @apply
+ def data_list():
+ doc = '''
+ The data_list is a read/write property that can be a list of
+ numbers, a list of points or a list of 2 or 3 coordinate lists. This
+ property uses mainly the self.add_data method.
+
+ Usage:
+ >>> g = Group(); g.data_list = 13; print g
+ ['13']
+ >>> g.data_list = (1,2); print g
+ ['(1, 2)']
+ >>> g.data_list = Data((1,2),'point a'); print g
+ ['point a: (1, 2)']
+ >>> g.data_list = [1,2,3]; print g
+ ['1', '2', '3']
+ >>> g.data_list = (1,2,3,4); print g
+ ['1', '2', '3', '4']
+ >>> g.data_list = [(1,2),(2,3),(3,4)]; print g
+ ['(1, 2)', '(2, 3)', '(3, 4)']
+ >>> g.data_list = [[1,2],[1,2]]; print g
+ ['(1, 1)', '(2, 2)']
+ >>> g.data_list = [[1,2],[1,2],[1,2]]; print g
+ ['(1, 1, 1)', '(2, 2, 2)']
+ >>> g.range = (10); g.data_list = lambda x:x**2; print g
+ ['(0.0, 0.0)', '(1.0, 1.0)', '(2.0, 4.0)', '(3.0, 9.0)', '(4.0, 16.0)', '(5.0, 25.0)', '(6.0, 36.0)', '(7.0, 49.0)', '(8.0, 64.0)', '(9.0, 81.0)']
+ '''
+ def fget(self):
+ '''
+ Returns the value of data_list
+ '''
+ return self.__data_list
+
+ def fset(self, group):
+ '''
+ Ensures that group is valid.
+ '''
+ # None
+ if group is None:
+ self.__data_list = []
+
+ # Int/float/long or Instance of Data
+ elif type(group) in NUMTYPES or isinstance(group, Data):
+ # Clean data_list
+ self.__data_list = []
+ self.add_data(group)
+
+ # One point
+ elif type(group) is tuple and len(group) in (2,3):
+ self.__data_list = []
+ self.add_data(group)
+
+ # list of items
+ elif type(group) in LISTTYPES and type(group[0]) is not list:
+ # Clean data_list
+ self.__data_list = []
+ for item in group:
+ # try to append and catch an exception
+ self.add_data(item)
+
+ # function lambda
+ elif callable(group):
+ # Explicit is better than implicit
+ function = group
+ # Has range
+ if len(self.range) is not 0:
+ # Clean data_list
+ self.__data_list = []
+ # Generate values for the lambda function
+ for x in self.range:
+ #self.add_data((x,round(group(x),2)))
+ self.add_data((x,function(x)))
+
+ # Only have range in parent
+ elif self.parent is not None and len(self.parent.range) is not 0:
+ # Copy parent range
+ self.__range = self.parent.range[:]
+ # Clean data_list
+ self.__data_list = []
+ # Generate values for the lambda function
+ for x in self.range:
+ #self.add_data((x,round(group(x),2)))
+ self.add_data((x,function(x)))
+
+ # Don't have range anywhere
+ else:
+ # x_data don't exist
+ raise Exception, "Data argument is valid but to use function type please set x_range first"
+
+ # Coordinate Lists
+ elif type(group) in LISTTYPES and type(group[0]) is list:
+ # Clean data_list
+ self.__data_list = []
+ data = []
+ if len(group) == 3:
+ data = zip(group[0], group[1], group[2])
+ elif len(group) == 2:
+ data = zip(group[0], group[1])
+ else:
+ raise TypeError, "Only one list of coordinates was received."
+
+ for item in data:
+ self.add_data(item)
+
+ else:
+ raise TypeError, "Group type not supported"
+
+ return property(**locals())
+
+ @apply
+ def range():
+ doc = '''
+ The range is a read/write property that generates a range of values
+ for the x axis of the functions. When passed a tuple it almost works
+ like the built-in range funtion:
+ - 1 item, represent the end of the range started from 0;
+ - 2 items, represents the start and the end, respectively;
+ - 3 items, the last one represents the step;
+
+ When passed a list the range function understands as a valid range.
+
+ Usage:
+ >>> g = Group(); g.range = 10; print g.range
+ [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
+ >>> g = Group(); g.range = (5); print g.range
+ [0.0, 1.0, 2.0, 3.0, 4.0]
+ >>> g = Group(); g.range = (1,7); print g.range
+ [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
+ >>> g = Group(); g.range = (0,10,2); print g.range
+ [0.0, 2.0, 4.0, 6.0, 8.0]
+ >>>
+ >>> g = Group(); g.range = [0]; print g.range
+ [0.0]
+ >>> g = Group(); g.range = [0,10,20]; print g.range
+ [0.0, 10.0, 20.0]
+ '''
+ def fget(self):
+ '''
+ Returns the range
+ '''
+ return self.__range
+
+ def fset(self, x_range):
+ '''
+ Controls the input of a valid type and generate the range
+ '''
+ # if passed a simple number convert to tuple
+ if type(x_range) in NUMTYPES:
+ x_range = (x_range,)
+
+ # A list, just convert to float
+ if type(x_range) is list and len(x_range) > 0:
+ # Convert all to float
+ x_range = map(float, x_range)
+ # Prevents repeated values and convert back to list
+ self.__range = list(set(x_range[:]))
+ # Sort the list to ascending order
+ self.__range.sort()
+
+ # A tuple, must check the lengths and generate the values
+ elif type(x_range) is tuple and len(x_range) in (1,2,3):
+ # Convert all to float
+ x_range = map(float, x_range)
+
+ # Inital values
+ start = 0.0
+ step = 1.0
+ end = 0.0
+
+ # Only the end and it can't be less or iqual to 0
+ if len(x_range) is 1 and x_range > 0:
+ end = x_range[0]
+
+ # The start and the end but the start must be less then the end
+ elif len(x_range) is 2 and x_range[0] < x_range[1]:
+ start = x_range[0]
+ end = x_range[1]
+
+ # All 3, but the start must be less then the end
+ elif x_range[0] <= x_range[1]:
+ start = x_range[0]
+ end = x_range[1]
+ step = x_range[2]
+
+ # Starts the range
+ self.__range = []
+ # Generate the range
+ # Can't use the range function because it doesn't support float values
+ while start < end:
+ self.__range.append(start)
+ start += step
+
+ # Incorrect type
+ else:
+ raise Exception, "x_range must be a list with one or more items or a tuple with 2 or 3 items"
+
+ return property(**locals())
+
+ def add_data(self, data, name=None):
+ '''
+ Append a new data to the data_list.
+ - If data is an instance of Data, append it
+ - If it's an int, float, tuple or list create an instance of Data and append it
+
+ Usage:
+ >>> g = Group()
+ >>> g.add_data(12); print g
+ ['12']
+ >>> g.add_data(7,'other'); print g
+ ['12', 'other: 7']
+ >>>
+ >>> g = Group()
+ >>> g.add_data((1,1),'a'); print g
+ ['a: (1, 1)']
+ >>> g.add_data((2,2),'b'); print g
+ ['a: (1, 1)', 'b: (2, 2)']
+ >>>
+ >>> g.add_data(Data((1,2),'c')); print g
+ ['a: (1, 1)', 'b: (2, 2)', 'c: (1, 2)']
+ '''
+ if not isinstance(data, Data):
+ # Try to convert
+ data = Data(data,name,self)
+
+ if data.content is not None:
+ self.__data_list.append(data.copy())
+ self.__data_list[-1].parent = self
+
+
+ def to_list(self):
+ '''
+ Returns the group as a list of numbers (int, float or long) or a
+ list of tuples (points 2D or 3D).
+
+ Usage:
+ >>> g = Group([1,2,3,4],'g1'); g.to_list()
+ [1, 2, 3, 4]
+ >>> g = Group([(1,2),(2,3),(3,4)],'g2'); g.to_list()
+ [(1, 2), (2, 3), (3, 4)]
+ >>> g = Group([(1,2,3),(3,4,5)],'g2'); g.to_list()
+ [(1, 2, 3), (3, 4, 5)]
+ '''
+ return [data.content for data in self]
+
+ def copy(self):
+ '''
+ Returns a copy of this group
+ '''
+ new_group = Group()
+ new_group.__name = self.__name
+ if self.__range is not None:
+ new_group.__range = self.__range[:]
+ for data in self:
+ new_group.add_data(data.copy())
+ return new_group
+
+ def get_names(self):
+ '''
+ Return a list with the names of all data in this group
+ '''
+ names = []
+ for data in self:
+ if data.name is None:
+ names.append('Data '+str(data.index()+1))
+ else:
+ names.append(data.name)
+ return names
+
+
+ def __str__ (self):
+ '''
+ Returns a string representing the Group
+ '''
+ ret = ""
+ if self.name is not None:
+ ret += self.name + " "
+ if len(self) > 0:
+ list_str = [str(item) for item in self]
+ ret += str(list_str)
+ else:
+ ret += "[]"
+ return ret
+
+ def __getitem__(self, key):
+ '''
+ Makes a Group iterable, based in the data_list property
+ '''
+ return self.data_list[key]
+
+ def __len__(self):
+ '''
+ Returns the length of the Group, based in the data_list property
+ '''
+ return len(self.data_list)
+
+
+class Colors(object):
+ '''
+ Class that models the colors its labels (names) and its properties, RGB
+ and filling type.
+
+ It can receive:
+ - A list where each item is a list with 3 or 4 items. The
+ first 3 items represent the RGB values and the last argument
+ defines the filling type. The list will be converted to a dict
+ and each color will receve a name based in its position in the
+ list.
+ - A dictionary where each key will be the color name and its item
+ can be a list with 3 or 4 items. The first 3 items represent
+ the RGB colors and the last argument defines the filling type.
+ '''
+ def __init__(self, color_list=None):
+ '''
+ Start the color_list property
+ @ color_list - the list or dict contaning the colors properties.
+ '''
+ self.__color_list = None
+
+ self.color_list = color_list
+
+ @apply
+ def color_list():
+ doc = '''
+ >>> c = Colors([[1,1,1],[2,2,2,'linear'],[3,3,3,'gradient']])
+ >>> print c.color_list
+ {'Color 2': [2, 2, 2, 'linear'], 'Color 3': [3, 3, 3, 'gradient'], 'Color 1': [1, 1, 1, 'solid']}
+ >>> c.color_list = [[1,1,1],(2,2,2,'solid'),(3,3,3,'linear')]
+ >>> print c.color_list
+ {'Color 2': [2, 2, 2, 'solid'], 'Color 3': [3, 3, 3, 'linear'], 'Color 1': [1, 1, 1, 'solid']}
+ >>> c.color_list = {'a':[1,1,1],'b':(2,2,2,'solid'),'c':(3,3,3,'linear'), 'd':(4,4,4)}
+ >>> print c.color_list
+ {'a': [1, 1, 1, 'solid'], 'c': [3, 3, 3, 'linear'], 'b': [2, 2, 2, 'solid'], 'd': [4, 4, 4, 'solid']}
+ '''
+ def fget(self):
+ '''
+ Return the color list
+ '''
+ return self.__color_list
+
+ def fset(self, color_list):
+ '''
+ Format the color list to a dictionary
+ '''
+ if color_list is None:
+ self.__color_list = None
+ return
+
+ if type(color_list) in LISTTYPES and type(color_list[0]) in LISTTYPES:
+ old_color_list = color_list[:]
+ color_list = {}
+ for index, color in enumerate(old_color_list):
+ if len(color) is 3 and max(map(type, color)) in NUMTYPES:
+ color_list['Color '+str(index+1)] = list(color)+[DEFAULT_COLOR_FILLING]
+ elif len(color) is 4 and max(map(type, color[:-1])) in NUMTYPES and color[-1] in FILLING_TYPES:
+ color_list['Color '+str(index+1)] = list(color)
+ else:
+ raise TypeError, "Unsuported color format"
+ elif type(color_list) is not dict:
+ raise TypeError, "Unsuported color format"
+
+ for name, color in color_list.items():
+ if len(color) is 3:
+ if max(map(type, color)) in NUMTYPES:
+ color_list[name] = list(color)+[DEFAULT_COLOR_FILLING]
+ else:
+ raise TypeError, "Unsuported color format"
+ elif len(color) is 4:
+ if max(map(type, color[:-1])) in NUMTYPES and color[-1] in FILLING_TYPES:
+ color_list[name] = list(color)
+ else:
+ raise TypeError, "Unsuported color format"
+ self.__color_list = color_list.copy()
+
+ return property(**locals())
+
+
+class Series(object):
+ '''
+ Class that models a Series (group of groups). Every value (int, float,
+ long, tuple or list) passed is converted to a list of Group or Data.
+ It can receive:
+ - a single number or point, will be converted to a Group of one Data;
+ - a list of numbers, will be converted to a group of numbers;
+ - a list of tuples, will converted to a single Group of points;
+ - a list of lists of numbers, each 'sublist' will be converted to a
+ group of numbers;
+ - a list of lists of tuples, each 'sublist' will be converted to a
+ group of points;
+ - a list of lists of lists, the content of the 'sublist' will be
+ processed as coordinated lists and the result will be converted to
+ a group of points;
+ - a Dictionary where each item can be the same of the list: number,
+ point, list of numbers, list of points or list of lists (coordinated
+ lists);
+ - an instance of Data;
+ - an instance of group.
+ '''
+ def __init__(self, series=None, name=None, property=[], colors=None):
+ '''
+ Starts main atributes in Group instance.
+ @series - a list, dict of data of which the series is composed;
+ @name - name of the series;
+ @property - a list/dict of properties to be used in the plots of
+ this Series
+
+ Usage:
+ >>> print Series([1,2,3,4])
+ ["Group 1 ['1', '2', '3', '4']"]
+ >>> print Series([[1,2,3],[4,5,6]])
+ ["Group 1 ['1', '2', '3']", "Group 2 ['4', '5', '6']"]
+ >>> print Series((1,2))
+ ["Group 1 ['(1, 2)']"]
+ >>> print Series([(1,2),(2,3)])
+ ["Group 1 ['(1, 2)', '(2, 3)']"]
+ >>> print Series([[(1,2),(2,3)],[(4,5),(5,6)]])
+ ["Group 1 ['(1, 2)', '(2, 3)']", "Group 2 ['(4, 5)', '(5, 6)']"]
+ >>> print Series([[[1,2,3],[1,2,3],[1,2,3]]])
+ ["Group 1 ['(1, 1, 1)', '(2, 2, 2)', '(3, 3, 3)']"]
+ >>> print Series({'g1':[1,2,3], 'g2':[4,5,6]})
+ ["g1 ['1', '2', '3']", "g2 ['4', '5', '6']"]
+ >>> print Series({'g1':[(1,2),(2,3)], 'g2':[(4,5),(5,6)]})
+ ["g1 ['(1, 2)', '(2, 3)']", "g2 ['(4, 5)', '(5, 6)']"]
+ >>> print Series({'g1':[[1,2],[1,2]], 'g2':[[4,5],[4,5]]})
+ ["g1 ['(1, 1)', '(2, 2)']", "g2 ['(4, 4)', '(5, 5)']"]
+ >>> print Series(Data(1,'d1'))
+ ["Group 1 ['d1: 1']"]
+ >>> print Series(Group([(1,2),(2,3)],'g1'))
+ ["g1 ['(1, 2)', '(2, 3)']"]
+ '''
+ # Intial values
+ self.__group_list = []
+ self.__name = None
+ self.__range = None
+
+ # TODO: Implement colors with filling
+ self.__colors = None
+
+ self.name = name
+ self.group_list = series
+ self.colors = colors
+
+ # Name property
+ @apply
+ def name():
+ doc = '''
+ Name is a read/write property that controls the input of name.
+ - If passed an invalid value it cleans the name with None
+
+ Usage:
+ >>> s = Series(13); s.name = 'name_test'; print s
+ name_test ["Group 1 ['13']"]
+ >>> s.name = 11; print s
+ ["Group 1 ['13']"]
+ >>> s.name = 'other_name'; print s
+ other_name ["Group 1 ['13']"]
+ >>> s.name = None; print s
+ ["Group 1 ['13']"]
+ >>> s.name = 'last_name'; print s
+ last_name ["Group 1 ['13']"]
+ >>> s.name = ''; print s
+ ["Group 1 ['13']"]
+ '''
+ def fget(self):
+ '''
+ Returns the name as a string
+ '''
+ return self.__name
+
+ def fset(self, name):
+ '''
+ Sets the name of the Group
+ '''
+ if type(name) in STRTYPES and len(name) > 0:
+ self.__name = name
+ else:
+ self.__name = None
+
+ return property(**locals())
+
+
+
+ # Colors property
+ @apply
+ def colors():
+ doc = '''
+ >>> s = Series()
+ >>> s.colors = [[1,1,1],[2,2,2,'linear'],[3,3,3,'gradient']]
+ >>> print s.colors
+ {'Color 2': [2, 2, 2, 'linear'], 'Color 3': [3, 3, 3, 'gradient'], 'Color 1': [1, 1, 1, 'solid']}
+ >>> s.colors = [[1,1,1],(2,2,2,'solid'),(3,3,3,'linear')]
+ >>> print s.colors
+ {'Color 2': [2, 2, 2, 'solid'], 'Color 3': [3, 3, 3, 'linear'], 'Color 1': [1, 1, 1, 'solid']}
+ >>> s.colors = {'a':[1,1,1],'b':(2,2,2,'solid'),'c':(3,3,3,'linear'), 'd':(4,4,4)}
+ >>> print s.colors
+ {'a': [1, 1, 1, 'solid'], 'c': [3, 3, 3, 'linear'], 'b': [2, 2, 2, 'solid'], 'd': [4, 4, 4, 'solid']}
+ '''
+ def fget(self):
+ '''
+ Return the color list
+ '''
+ return self.__colors.color_list
+
+ def fset(self, colors):
+ '''
+ Format the color list to a dictionary
+ '''
+ self.__colors = Colors(colors)
+
+ return property(**locals())
+
+ @apply
+ def range():
+ doc = '''
+ The range is a read/write property that generates a range of values
+ for the x axis of the functions. When passed a tuple it almost works
+ like the built-in range funtion:
+ - 1 item, represent the end of the range started from 0;
+ - 2 items, represents the start and the end, respectively;
+ - 3 items, the last one represents the step;
+
+ When passed a list the range function understands as a valid range.
+
+ Usage:
+ >>> s = Series(); s.range = 10; print s.range
+ [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]
+ >>> s = Series(); s.range = (5); print s.range
+ [0.0, 1.0, 2.0, 3.0, 4.0, 5.0]
+ >>> s = Series(); s.range = (1,7); print s.range
+ [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]
+ >>> s = Series(); s.range = (0,10,2); print s.range
+ [0.0, 2.0, 4.0, 6.0, 8.0, 10.0]
+ >>>
+ >>> s = Series(); s.range = [0]; print s.range
+ [0.0]
+ >>> s = Series(); s.range = [0,10,20]; print s.range
+ [0.0, 10.0, 20.0]
+ '''
+ def fget(self):
+ '''
+ Returns the range
+ '''
+ return self.__range
+
+ def fset(self, x_range):
+ '''
+ Controls the input of a valid type and generate the range
+ '''
+ # if passed a simple number convert to tuple
+ if type(x_range) in NUMTYPES:
+ x_range = (x_range,)
+
+ # A list, just convert to float
+ if type(x_range) is list and len(x_range) > 0:
+ # Convert all to float
+ x_range = map(float, x_range)
+ # Prevents repeated values and convert back to list
+ self.__range = list(set(x_range[:]))
+ # Sort the list to ascending order
+ self.__range.sort()
+
+ # A tuple, must check the lengths and generate the values
+ elif type(x_range) is tuple and len(x_range) in (1,2,3):
+ # Convert all to float
+ x_range = map(float, x_range)
+
+ # Inital values
+ start = 0.0
+ step = 1.0
+ end = 0.0
+
+ # Only the end and it can't be less or iqual to 0
+ if len(x_range) is 1 and x_range > 0:
+ end = x_range[0]
+
+ # The start and the end but the start must be lesser then the end
+ elif len(x_range) is 2 and x_range[0] < x_range[1]:
+ start = x_range[0]
+ end = x_range[1]
+
+ # All 3, but the start must be lesser then the end
+ elif x_range[0] < x_range[1]:
+ start = x_range[0]
+ end = x_range[1]
+ step = x_range[2]
+
+ # Starts the range
+ self.__range = []
+ # Generate the range
+ # Cnat use the range function becouse it don't suport float values
+ while start <= end:
+ self.__range.append(start)
+ start += step
+
+ # Incorrect type
+ else:
+ raise Exception, "x_range must be a list with one or more item or a tuple with 2 or 3 items"
+
+ return property(**locals())
+
+ @apply
+ def group_list():
+ doc = '''
+ The group_list is a read/write property used to pre-process the list
+ of Groups.
+ It can be:
+ - a single number, point or lambda, will be converted to a single
+ Group of one Data;
+ - a list of numbers, will be converted to a group of numbers;
+ - a list of tuples, will converted to a single Group of points;
+ - a list of lists of numbers, each 'sublist' will be converted to
+ a group of numbers;
+ - a list of lists of tuples, each 'sublist' will be converted to a
+ group of points;
+ - a list of lists of lists, the content of the 'sublist' will be
+ processed as coordinated lists and the result will be converted
+ to a group of points;
+ - a list of lambdas, each lambda represents a Group;
+ - a Dictionary where each item can be the same of the list: number,
+ point, list of numbers, list of points, list of lists
+ (coordinated lists) or lambdas
+ - an instance of Data;
+ - an instance of group.
+
+ Usage:
+ >>> s = Series()
+ >>> s.group_list = [1,2,3,4]; print s
+ ["Group 1 ['1', '2', '3', '4']"]
+ >>> s.group_list = [[1,2,3],[4,5,6]]; print s
+ ["Group 1 ['1', '2', '3']", "Group 2 ['4', '5', '6']"]
+ >>> s.group_list = (1,2); print s
+ ["Group 1 ['(1, 2)']"]
+ >>> s.group_list = [(1,2),(2,3)]; print s
+ ["Group 1 ['(1, 2)', '(2, 3)']"]
+ >>> s.group_list = [[(1,2),(2,3)],[(4,5),(5,6)]]; print s
+ ["Group 1 ['(1, 2)', '(2, 3)']", "Group 2 ['(4, 5)', '(5, 6)']"]
+ >>> s.group_list = [[[1,2,3],[1,2,3],[1,2,3]]]; print s
+ ["Group 1 ['(1, 1, 1)', '(2, 2, 2)', '(3, 3, 3)']"]
+ >>> s.group_list = [(0.5,5.5) , [(0,4),(6,8)] , (5.5,7) , (7,9)]; print s
+ ["Group 1 ['(0.5, 5.5)']", "Group 2 ['(0, 4)', '(6, 8)']", "Group 3 ['(5.5, 7)']", "Group 4 ['(7, 9)']"]
+ >>> s.group_list = {'g1':[1,2,3], 'g2':[4,5,6]}; print s
+ ["g1 ['1', '2', '3']", "g2 ['4', '5', '6']"]
+ >>> s.group_list = {'g1':[(1,2),(2,3)], 'g2':[(4,5),(5,6)]}; print s
+ ["g1 ['(1, 2)', '(2, 3)']", "g2 ['(4, 5)', '(5, 6)']"]
+ >>> s.group_list = {'g1':[[1,2],[1,2]], 'g2':[[4,5],[4,5]]}; print s
+ ["g1 ['(1, 1)', '(2, 2)']", "g2 ['(4, 4)', '(5, 5)']"]
+ >>> s.range = 10
+ >>> s.group_list = lambda x:x*2
+ >>> s.group_list = [lambda x:x*2, lambda x:x**2, lambda x:x**3]; print s
+ ["Group 1 ['(0.0, 0.0)', '(1.0, 2.0)', '(2.0, 4.0)', '(3.0, 6.0)', '(4.0, 8.0)', '(5.0, 10.0)', '(6.0, 12.0)', '(7.0, 14.0)', '(8.0, 16.0)', '(9.0, 18.0)', '(10.0, 20.0)']", "Group 2 ['(0.0, 0.0)', '(1.0, 1.0)', '(2.0, 4.0)', '(3.0, 9.0)', '(4.0, 16.0)', '(5.0, 25.0)', '(6.0, 36.0)', '(7.0, 49.0)', '(8.0, 64.0)', '(9.0, 81.0)', '(10.0, 100.0)']", "Group 3 ['(0.0, 0.0)', '(1.0, 1.0)', '(2.0, 8.0)', '(3.0, 27.0)', '(4.0, 64.0)', '(5.0, 125.0)', '(6.0, 216.0)', '(7.0, 343.0)', '(8.0, 512.0)', '(9.0, 729.0)', '(10.0, 1000.0)']"]
+ >>> s.group_list = {'linear':lambda x:x*2, 'square':lambda x:x**2, 'cubic':lambda x:x**3}; print s
+ ["cubic ['(0.0, 0.0)', '(1.0, 1.0)', '(2.0, 8.0)', '(3.0, 27.0)', '(4.0, 64.0)', '(5.0, 125.0)', '(6.0, 216.0)', '(7.0, 343.0)', '(8.0, 512.0)', '(9.0, 729.0)', '(10.0, 1000.0)']", "linear ['(0.0, 0.0)', '(1.0, 2.0)', '(2.0, 4.0)', '(3.0, 6.0)', '(4.0, 8.0)', '(5.0, 10.0)', '(6.0, 12.0)', '(7.0, 14.0)', '(8.0, 16.0)', '(9.0, 18.0)', '(10.0, 20.0)']", "square ['(0.0, 0.0)', '(1.0, 1.0)', '(2.0, 4.0)', '(3.0, 9.0)', '(4.0, 16.0)', '(5.0, 25.0)', '(6.0, 36.0)', '(7.0, 49.0)', '(8.0, 64.0)', '(9.0, 81.0)', '(10.0, 100.0)']"]
+ >>> s.group_list = Data(1,'d1'); print s
+ ["Group 1 ['d1: 1']"]
+ >>> s.group_list = Group([(1,2),(2,3)],'g1'); print s
+ ["g1 ['(1, 2)', '(2, 3)']"]
+ '''
+ def fget(self):
+ '''
+ Return the group list.
+ '''
+ return self.__group_list
+
+ def fset(self, series):
+ '''
+ Controls the input of a valid group list.
+ '''
+ #TODO: Add support to the following strem of data: [ (0.5,5.5) , [(0,4),(6,8)] , (5.5,7) , (7,9)]
+
+ # Type: None
+ if series is None:
+ self.__group_list = []
+
+ # List or Tuple
+ elif type(series) in LISTTYPES:
+ self.__group_list = []
+
+ is_function = lambda x: callable(x)
+ # Groups
+ if list in map(type, series) or max(map(is_function, series)):
+ for group in series:
+ self.add_group(group)
+
+ # single group
+ else:
+ self.add_group(series)
+
+ #old code
+ ## List of numbers
+ #if type(series[0]) in NUMTYPES or type(series[0]) is tuple:
+ # print series
+ # self.add_group(series)
+ #
+ ## List of anything else
+ #else:
+ # for group in series:
+ # self.add_group(group)
+
+ # Dict representing series of groups
+ elif type(series) is dict:
+ self.__group_list = []
+ names = series.keys()
+ names.sort()
+ for name in names:
+ self.add_group(Group(series[name],name,self))
+
+ # A single lambda
+ elif callable(series):
+ self.__group_list = []
+ self.add_group(series)
+
+ # Int/float, instance of Group or Data
+ elif type(series) in NUMTYPES or isinstance(series, Group) or isinstance(series, Data):
+ self.__group_list = []
+ self.add_group(series)
+
+ # Default
+ else:
+ raise TypeError, "Serie type not supported"
+
+ return property(**locals())
+
+ def add_group(self, group, name=None):
+ '''
+ Append a new group in group_list
+ '''
+ if not isinstance(group, Group):
+ #Try to convert
+ group = Group(group, name, self)
+
+ if len(group.data_list) is not 0:
+ # Auto naming groups
+ if group.name is None:
+ group.name = "Group "+str(len(self.__group_list)+1)
+
+ self.__group_list.append(group)
+ self.__group_list[-1].parent = self
+
+ def copy(self):
+ '''
+ Returns a copy of the Series
+ '''
+ new_series = Series()
+ new_series.__name = self.__name
+ if self.__range is not None:
+ new_series.__range = self.__range[:]
+ #Add color property in the copy method
+ #self.__colors = None
+
+ for group in self:
+ new_series.add_group(group.copy())
+
+ return new_series
+
+ def get_names(self):
+ '''
+ Returns a list of the names of all groups in the Serie
+ '''
+ names = []
+ for group in self:
+ if group.name is None:
+ names.append('Group '+str(group.index()+1))
+ else:
+ names.append(group.name)
+
+ return names
+
+ def to_list(self):
+ '''
+ Returns a list with the content of all groups and data
+ '''
+ big_list = []
+ for group in self:
+ for data in group:
+ if type(data.content) in NUMTYPES:
+ big_list.append(data.content)
+ else:
+ big_list = big_list + list(data.content)
+ return big_list
+
+ def __getitem__(self, key):
+ '''
+ Makes the Series iterable, based in the group_list property
+ '''
+ return self.__group_list[key]
+
+ def __str__(self):
+ '''
+ Returns a string that represents the Series
+ '''
+ ret = ""
+ if self.name is not None:
+ ret += self.name + " "
+ if len(self) > 0:
+ list_str = [str(item) for item in self]
+ ret += str(list_str)
+ else:
+ ret += "[]"
+ return ret
+
+ def __len__(self):
+ '''
+ Returns the length of the Series, based in the group_lsit property
+ '''
+ return len(self.group_list)
+
+
+if __name__ == '__main__':
+ doctest.testmod()