dolfin team mailing list archive
-
dolfin team
-
Mailing list archive
-
Message #12872
Re: Curl-curl demo
Marie Rognes wrote:
Bartosz Sawicki wrote:
I've written simple demo of curl-curl equation. It is based on
eddy-currents phenomena in low conducting materials. So far, in the
demo directory, there are no examples of this kind of PDE, where
Nedelec elements are used.
If you found it useful, please consider placing it in the repository.
The patch which I'm sending, contains cpp and python code. Cpp works
fine, but demo.py gives wrong results. I have no idea, whats wrong
in the python code. Please, take a look, this is probably bug.
>
(1) There seems to be a minus sign discrepancy between the two demos
in the EddyCurrents part.
You are right, there should be minus in both demos.
(2) In the python demo, replace
bc = DirichletBC(P1, zero, DirichletBoundary())
by bc = DirichletBC(PN, zero, DirichletBoundary())
Oh, good! How could I miss that. This is the bug which I was looking
for. Now both examples works perfectly. Thank you very much.
Do you want me to send improved patch? Or you can change this two
characters?
I have no pushing privileges for dolfin -- so I guess someone higher up
the hierarchy will get it done when they have time.
But, it is probably easiest if you fix the bugs and send the perfect
patch.
The perfect patch is in the attachment.
cheers,
diff -r 124a218df971 demo/pde/curl-curl/cpp/CurrentDensity.form
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/demo/pde/curl-curl/cpp/CurrentDensity.form Thu Apr 02 11:34:05 2009 -0600
@@ -0,0 +1,20 @@
+# Copyright (C) 2009 Bartosz Sawicki.
+# Licensed under the GNU LGPL Version 2.1.
+#
+# First added: 2009-03-30
+# Last changed: 2009-03-30
+#
+# The bilinear form a(v, u) and linear form L(v) for
+# curl operator.
+#
+# Compile this form with FFC: ffc -l dolfin CurrentDensity.form
+
+eL = VectorElement("CG", "tetrahedron", 1)
+eN = FiniteElement("Nedelec", "tetrahedron", 0)
+
+v = TestFunction(eL)
+u = TrialFunction(eL)
+T = Function(eN)
+
+a = dot(v,u)*dx
+L = dot(v,curl(T))*dx
diff -r 124a218df971 demo/pde/curl-curl/cpp/EddyCurrents.form
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/demo/pde/curl-curl/cpp/EddyCurrents.form Thu Apr 02 11:34:05 2009 -0600
@@ -0,0 +1,20 @@
+# Copyright (C) 2009 Bartosz Sawicki.
+# Licensed under the GNU LGPL Version 2.1.
+#
+# First added: 2009-03-30
+# Last changed: 2009-03-30
+#
+# The bilinear form a(v, u) and linear form L(v) for
+# curl-curl eddy currents equation.
+#
+# Compile this form with FFC: ffc -l dolfin EddyCurrents.form
+
+eN = FiniteElement("Nedelec", "tetrahedron", 0)
+eL = VectorElement("Lagrange", "tetrahedron", 1)
+
+v = TestFunction(eN)
+u = TrialFunction(eN)
+dBdt = Function(eL)
+
+a = dot(rot(v), rot(u))*dx
+L = -dot(v, dBdt)*dx
diff -r 124a218df971 demo/pde/curl-curl/cpp/SConstruct
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/demo/pde/curl-curl/cpp/SConstruct Thu Apr 02 11:34:05 2009 -0600
@@ -0,0 +1,16 @@
+# This is an example of a simple SConstruct file for building
+# programs against DOLFIN. To build this demo, just type 'scons'.
+
+import os, commands
+
+# Get compiler from pkg-config
+compiler = commands.getoutput('pkg-config --variable=compiler dolfin')
+
+# Create a SCons Environment based on the main os environment
+env = Environment(ENV=os.environ, CXX=compiler)
+
+# Get compiler flags from pkg-config
+env.ParseConfig('pkg-config --cflags --libs dolfin')
+
+# Program name
+env.Program('demo', 'main.cpp')
diff -r 124a218df971 demo/pde/curl-curl/cpp/main.cpp
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/demo/pde/curl-curl/cpp/main.cpp Thu Apr 02 11:34:05 2009 -0600
@@ -0,0 +1,98 @@
+// Copyright (C) 2009 Bartosz Sawicki.
+// Licensed under the GNU LGPL Version 2.1.
+//
+// First added: 2009-03-30
+// Last changed: 2009-03-30
+//
+// Eddy currents phenomena in low conducting body can be
+// described using electric vector potential and curl-curl operator:
+// \nabla \times \nabla \times T = - \frac{\partial B}{\partial t}
+// Electric vector potential defined as:
+// \nabla \times T = J
+//
+// Boundary condition
+// J_n = 0,
+// T_t=T_w=0, \frac{\partial T_n}{\partial n} = 0
+// which is naturaly fulfilled for zero Dirichlet BC with Nedelec (edge)
+// elements.
+
+#include <dolfin.h>
+#include "EddyCurrents.h"
+#include "CurrentDensity.h"
+
+using namespace dolfin;
+
+int main()
+{
+
+ // Homogenous external magnetic field (dB/dt)
+ class Source : public Function
+ {
+ public:
+ void eval(real* values, const double* x) const
+ {
+ values[0] = 0.0;
+ values[1] = 0.0;
+ values[2] = 1.0;
+ }
+ };
+
+ // Zero Dirichlet BC
+ class Zero : public Function
+ {
+ public:
+ void eval(real* values, const double* x) const
+ {
+ values[0] = 0.0;
+ values[1] = 0.0;
+ values[2] = 0.0;
+ }
+ };
+
+ // Everywhere on external surface
+ class DirichletBoundary: public SubDomain
+ {
+ bool inside(const real* x, bool on_boundary) const
+ {
+ return on_boundary;
+ }
+ };
+
+ // Create demo mesh
+ UnitSphere mesh(10);
+
+ // Define functions
+ Source dBdt;
+ Zero zero;
+ Function T;
+ Function J;
+
+ // Define function space and boundary condition
+ EddyCurrentsFunctionSpace V(mesh);
+ DirichletBoundary boundary;
+ DirichletBC bc(V, zero, boundary);
+
+ // Use forms to define variational problem
+ EddyCurrentsBilinearForm a(V,V);
+ EddyCurrentsLinearForm L(V);
+ L.dBdt = dBdt;
+ VariationalProblem problem (a, L, bc);
+
+ // Solve problem using default solver
+ problem.solve(T);
+
+ // Define variational problem for current density (J)
+ CurrentDensityFunctionSpace V1(mesh);
+ CurrentDensityBilinearForm a1(V1,V1);
+ CurrentDensityLinearForm L1(V1);
+ L1.T = T;
+ VariationalProblem problem1(a1, L1);
+
+ // Solve problem using default solver
+ problem1.solve(J);
+
+ // Plot solution
+ plot(J);
+
+ return 0;
+}
diff -r 124a218df971 demo/pde/curl-curl/python/demo.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/demo/pde/curl-curl/python/demo.py Thu Apr 02 11:34:05 2009 -0600
@@ -0,0 +1,64 @@
+""" Eddy currents phenomena in low conducting body can be
+described using electric vector potential and curl-curl operator:
+ \nabla \times \nabla \times T = - \frac{\partial B}{\partial t}
+Electric vector potential defined as:
+ \nabla \times T = J
+
+Boundary condition:
+ J_n = 0,
+ T_t=T_w=0, \frac{\partial T_n}{\partial n} = 0
+which is naturaly fulfilled for zero Dirichlet BC with Nedelec (edge)
+elements.
+"""
+
+__author__ = "Bartosz Sawicki (sawickib@xxxxxxxxxxxxx)"
+__date__ = "2009-04-02"
+__copyright__ = "Copyright (C) 2009 Bartosz Sawicki"
+__license__ = "GNU LGPL Version 2.1"
+
+from dolfin import *
+
+# Create mesh
+mesh = UnitSphere(10)
+
+# Define function spaces
+PN = FunctionSpace(mesh, "Nedelec", 0)
+P1 = VectorFunctionSpace(mesh, "CG", 1)
+
+# Define test and trial functions
+v0 = TestFunction(PN)
+u0 = TrialFunction(PN)
+v1 = TestFunction(P1)
+u1 = TrialFunction(P1)
+
+# Define functions
+dBdt = Function(P1, ("0.0", "0.0", "1.0"))
+zero = Function(P1, ("0.0", "0.0", "0.0"))
+T = Function(PN)
+J = Function(P1)
+
+# Dirichlet boundary
+class DirichletBoundary(SubDomain):
+ def inside(self, x, on_boundary):
+ return on_boundary
+
+# Boundary condition
+bc = DirichletBC(PN, zero, DirichletBoundary())
+
+# Eddy currents equation (using potential T)
+Teqn = (dot(rot(v0), rot(u0))*dx, -dot(v0, dBdt)*dx)
+Tproblem = VariationalProblem( Teqn[0], Teqn[1], bc)
+T = Tproblem.solve()
+
+# Current density equation
+Jeqn = (dot(v1, u1)*dx, dot(v1, curl(T))*dx)
+Jproblem = VariationalProblem( Jeqn[0], Jeqn[1])
+J = Jproblem.solve()
+
+# Plot solution
+plot(J)
+
+# Hold plot
+interactive()
+
+
Follow ups
References