ffc team mailing list archive
-
ffc team
-
Mailing list archive
-
Message #00682
Re: outer products
Looks good! I'll add it later today.
/Anders
On Wed, Sep 27, 2006 at 09:45:49AM +0200, Dag Lindbo wrote:
> Hi,
>
> I've written a simple operator for the outer prduct as disgussed
> yesterday. The description of how to create a patch in the manual is not
> producing a sensible patch ('make clean' does not do it for python).
>
> So, I attach my version of 'operators.py'.
>
> Description:
> element = FiniteElement("Vector Lagrange", "triangle", 1)
> (...)
> f1 = Function(element)
> f2 = Function(element)
>
> outer(f1,f2) returns the outer product f1'*f2, a rank-2 tensor.
>
> //Dag Lindbo
>
> > On Tue, Sep 26, 2006 at 07:33:27PM +0200, Dag Lindbo wrote:
> >> > On Tue, Sep 26, 2006 at 06:00:46PM +0200, Johan Jansson wrote:
> >> >> On Tue, Sep 26, 2006 at 05:53:51PM +0200, Anders Logg wrote:
> >> >>
> >> >> ...
> >> >>
> >> >> > Good point. The following example seems to work:
> >> >> >
> >> >> > element = FiniteElement("Vector Lagrange", "triangle", 1)
> >> >> > v = BasisFunction(element)
> >> >> > print mult(transp([vec(v)]), [vec(v)])
> >> >> > print mult([vec(v)], transp([vec(v)]))
> >> >> >
> >> >> > Should we add a new operator mat() that returns [vec()] or should
> >> we
> >> >> > make vec() return this directly so it works like a column vector?
> >> >> >
> >> >> >
> >> >> > /Anders
> >> >>
> >> >> The second alternative is probably best. I think mat() should be
> >> >> reserved for matrix-valued functions, to perform the equivalent of
> >> >> vec().
> >> >>
> >> >> Johan
> >> >
> >> > Sounds good, but this will require some work. A number of other
> >> > operators in operators.py will need to be updated correspondingly.
> >> >
> >> > If anyone is willing to try, you're more than welcome. If not, I'll
> >> > wait until the reimplementation (and extension) of the form language.
> >>
> >> Tomrrow morning I'll write a simple operator 'outer(vec(n),vec(n))' that
> >> might (if I'm sucessful) be enough until the extension of the language
> >> is
> >> complete.
> >>
> >> /Dag
> >
> > ok.
> >
> > /Anders
> >
> """This module extends the form algebra with a collection of operators
> based on the basic form algebra operations."""
>
> __author__ = "Anders Logg (logg@xxxxxxxxx)"
> __date__ = "2005-09-07 -- 2005-12-20"
> __copyright__ = "Copyright (C) 2005-2006 Anders Logg"
> __license__ = "GNU GPL Version 2"
>
> # Modified by Ola Skavhaug, 2005
>
> # Python modules
> import sys
> import Numeric
>
> # FFC common modules
> sys.path.append("../../")
> from ffc.common.exceptions import *
>
> # FFC compiler modules
> from index import *
> from algebra import *
> from projection import *
> from finiteelement import *
>
> def Identity(n):
> "Return identity matrix of given size."
> # Let Numeric handle the identity
> return Numeric.identity(n)
>
> def rank(v):
> "Return rank for given object."
> if isinstance(v, BasisFunction):
> return v.element.rank() - len(v.component)
> elif isinstance(v, Product):
> return rank(v.basisfunctions[0])
> elif isinstance(v, Sum):
> return rank(v.products[0])
> elif isinstance(v, Function):
> return rank(Sum(v))
> else:
> return Numeric.rank(v)
> return 0
>
> def vec(v):
> "Create vector of scalar functions from given vector-valued function."
> # Check if we already have a vector
> if isinstance(v, list):
> return v
> # Check if we have an element of the algebra
> if isinstance(v, Element):
> # Check that we have a vector
> if not rank(v) == 1:
> raise FormError, (v, "Cannot create vector from scalar expression.")
> # Get vector dimension
> n = __tensordim(v, 0)
> # Create list of scalar components
> return [v[i] for i in range(n)]
> # Let Numeric handle the conversion
> if isinstance(v, Numeric.ArrayType) and len(v.shape) == 1:
> return v.tolist()
> # Unable to find a proper conversion
> raise FormError, (v, "Unable to convert given expression to a vector,")
>
> def dot(v, w):
> "Return scalar product of given functions."
> # Check ranks
> if rank(v) == rank(w) == 1:
> # Check dimensions
> if not len(v) == len(w):
> raise FormError, ((v, w), "Dimensions don't match for scalar product.")
> # Use index notation if possible
> if isinstance(v, Element) and isinstance(w, Element):
> i = Index()
> return v[i]*w[i]
> # Otherwise, use Numeric.dot
> return Numeric.dot(vec(v), vec(w))
> elif rank(v) == rank(w) == 2:
> # Check dimensions
> if not len(v) == len(w):
> raise FormError, ((v, w), "Dimensions don't match for scalar product.")
> # Compute dot product (:) of matrices
> return Numeric.sum([v[i][j]*w[i][j] for i in range(len(v)) for j in range(len(v[i]))])
>
> def cross(v, w):
> "Return cross product of given functions."
> # Check dimensions
> if not len(v) == len(w):
> raise FormError, ((v, w), "Cross product only defined for vectors in R^3.")
> # Compute cross product
> return [v[1]*w[2] - v[2]*w[1], v[2]*w[0] - v[0]*w[2], v[0]*w[1] - v[1]*w[0]]
>
> def trace(v):
> "Return trace of given matrix"
> # Let Numeric handle the trace
> return Numeric.trace(v)
>
> def transp(v):
> "Return transpose of given matrix."
> # Let Numeric handle the transpose."
> return Numeric.transpose(v)
>
> def mult(v, w):
> "Compute matrix-matrix product of given matrices."
> # First, convert to Numeric.array (safe for both array and list arguments)
> vv = Numeric.array(v)
> ww = Numeric.array(w)
> if len(vv.shape) == 0 or len(ww.shape) == 0:
> # One argument is a scalar
> return vv*ww
> if len(vv.shape) == len(ww.shape) == 1:
> # Vector times vector
> return Numeric.multiply(vv, ww)
> elif len(vv.shape) == 2 and (len(ww.shape) == 1 or len(ww.shape) == 2):
> # Matvec or matmat product, use matrixmultiply instead
> return Numeric.matrixmultiply(vv, ww)
> else:
> raise FormError, ((v, w), "Dimensions don't match for multiplication.")
>
> def D(v, i):
> "Return derivative of v in given coordinate direction."
> # Use member function dx() if possible
> if isinstance(v, Element):
> return v.dx(i)
> # Otherwise, apply to each component
> return [D(v[j], i) for j in range(len(v))]
>
> def grad(v):
> "Return gradient of given function."
> # Get shape dimension
> d = __shapedim(v)
> # Check if we have a vector
> if rank(v) == 1:
> return [ [D(v[i], j) for j in range(d)] for i in range(len(v)) ]
> # Otherwise assume we have a scalar
> return [D(v, i) for i in range(d)]
>
> def div(v):
> "Return divergence of given function."
> # Use index notation if possible
> if isinstance(v, Element):
> i = Index()
> return v[i].dx(i)
> # Otherwise, use Numeric.sum
> return Numeric.sum([D(v[i], i) for i in range(len(v))])
>
> def rot(v):
> "Return rotation of given function."
> # Check dimensions
> if not len(v) == __shapedim(v) == 3:
> raise FormError, (v, "Rotation only defined for v : R^3 --> R^3")
> # Compute rotation
> return [D(v[2], 1) - D(v[1], 2), D(v[0], 2) - D(v[2], 0), D(v[1], 0) - D(v[0], 1)]
>
> def curl(v):
> "Alternative name for rot."
> return rot(v)
>
> def mean(v):
> "Return mean value of given Function (projection onto piecewise constants)."
> # Check that we got a Function
> if not isinstance(v, Function):
> raise FormError, (v, "Mean values are only supported for Functions.")
> # Different projections needed for scalar and vector-valued elements
> element = v.e0
> if element.rank() == 0:
> P0 = FiniteElement("Discontinuous Lagrange", element.shape_str, 0)
> pi = Projection(P0)
> return pi(v)
> else:
> P0 = FiniteElement("Discontinuous vector Lagrange", element.shape_str, 0, element.tensordim(0))
> pi = Projection(P0)
> return pi(v)
>
> def outer(v,w):
> "Return outer product of vector valued functions, p = v'*w"
> # Check that we got a Function
> if not isinstance(v, Function):
> raise FormError, (v, "Outer products are only defined for Functions.")
> if not isinstance(w, Function):
> raise FormError, (w, "Outer products are only defined for Functions.")
> if not len(v) == len(w):
> raise FormError, ((v, w),"Invalid operand dims in outer product")
>
> vv = vec(v)
> ww = vec(w)
>
> return mult(transp([vv]),[ww])
>
> def __shapedim(v):
> "Return shape dimension for given object."
> if isinstance(v, list):
> # Check that all components have the same shape dimension
> for i in range(len(v) - 1):
> if not __shapedim(v[i]) == __shapedim(v[i + 1]):
> raise FormError, (v, "Components have different shape dimensions.")
> # Return length of first term
> return __shapedim(v[0])
> elif isinstance(v, BasisFunction):
> return v.element.shapedim()
> elif isinstance(v, Product):
> return __shapedim(v.basisfunctions[0])
> elif isinstance(v, Sum):
> return __shapedim(v.products[0])
> elif isinstance(v, Function):
> return __shapedim(Sum(v))
> else:
> raise FormError, (v, "Shape dimension is not defined for given expression.")
> return 0
>
> def __tensordim(v, i):
> "Return size of given dimension for given object."
> if i < 0 or i >= rank(v):
> raise FormError, ((v, i), "Tensor dimension out of range.")
> if isinstance(v, BasisFunction):
> return v.element.tensordim(i + len(v.component))
> elif isinstance(v, Product):
> return __tensordim(v.basisfunctions[0], i)
> elif isinstance(v, Sum):
> return __tensordim(v.products[0], i)
> elif isinstance(v, Function):
> return __tensordim(Sum(v), i)
> else:
> raise FormError, ((v, i), "Tensor dimension is not defined for given expression.")
> return 0
>
> if __name__ == "__main__":
>
> scalar = FiniteElement("Lagrange", "tetrahedron", 2)
> vector = FiniteElement("Vector Lagrange", "tetrahedron", 2)
>
> i = Index()
>
> v = BasisFunction(scalar)
> u = BasisFunction(scalar)
> w = Function(scalar)
>
> V = BasisFunction(vector)
> U = BasisFunction(vector)
> W = Function(vector)
>
> i = Index()
> j = Index()
>
> dx = Integral()
>
> print dot(grad(v), grad(u))*dx
> print vec(U)
> print dot(U, V)
> print dot(vec(V), vec(U))
> print dot(U, grad(v))
> print div(U)
> print dot(rot(V), rot(U))
> print div(grad(dot(rot(V), U)))*dx
> print cross(V, U)
> print trace(mult(Identity(len(V)), grad(V)))
> _______________________________________________
> FFC-dev mailing list
> FFC-dev@xxxxxxxxxx
> http://www.fenics.org/mailman/listinfo/ffc-dev
Follow ups
References