ffc team mailing list archive
-
ffc team
-
Mailing list archive
-
Message #00688
Re: outer products
Somewhat connected to this discussion, how hard will it be to add
tensor-valued functions to FFC? This would be a great addition as it is
tedious to program and a significant source of errors. I can image that
this is easy from the DOLFIN side since FFC generates the dof mapping.
Garth
Anders Logg wrote:
> Looks good! I'll add it later today.
>
> /Anders
>
>
> On Wed, Sep 27, 2006 at 09:45:49AM +0200, Dag Lindbo wrote:
>> Hi,
>>
>> I've written a simple operator for the outer prduct as disgussed
>> yesterday. The description of how to create a patch in the manual is not
>> producing a sensible patch ('make clean' does not do it for python).
>>
>> So, I attach my version of 'operators.py'.
>>
>> Description:
>> element = FiniteElement("Vector Lagrange", "triangle", 1)
>> (...)
>> f1 = Function(element)
>> f2 = Function(element)
>>
>> outer(f1,f2) returns the outer product f1'*f2, a rank-2 tensor.
>>
>> //Dag Lindbo
>>
>>> On Tue, Sep 26, 2006 at 07:33:27PM +0200, Dag Lindbo wrote:
>>>>> On Tue, Sep 26, 2006 at 06:00:46PM +0200, Johan Jansson wrote:
>>>>>> On Tue, Sep 26, 2006 at 05:53:51PM +0200, Anders Logg wrote:
>>>>>>
>>>>>> ...
>>>>>>
>>>>>>> Good point. The following example seems to work:
>>>>>>>
>>>>>>> element = FiniteElement("Vector Lagrange", "triangle", 1)
>>>>>>> v = BasisFunction(element)
>>>>>>> print mult(transp([vec(v)]), [vec(v)])
>>>>>>> print mult([vec(v)], transp([vec(v)]))
>>>>>>>
>>>>>>> Should we add a new operator mat() that returns [vec()] or should
>>>> we
>>>>>>> make vec() return this directly so it works like a column vector?
>>>>>>>
>>>>>>>
>>>>>>> /Anders
>>>>>> The second alternative is probably best. I think mat() should be
>>>>>> reserved for matrix-valued functions, to perform the equivalent of
>>>>>> vec().
>>>>>>
>>>>>> Johan
>>>>> Sounds good, but this will require some work. A number of other
>>>>> operators in operators.py will need to be updated correspondingly.
>>>>>
>>>>> If anyone is willing to try, you're more than welcome. If not, I'll
>>>>> wait until the reimplementation (and extension) of the form language.
>>>> Tomrrow morning I'll write a simple operator 'outer(vec(n),vec(n))' that
>>>> might (if I'm sucessful) be enough until the extension of the language
>>>> is
>>>> complete.
>>>>
>>>> /Dag
>>> ok.
>>>
>>> /Anders
>>>
>
>> """This module extends the form algebra with a collection of operators
>> based on the basic form algebra operations."""
>>
>> __author__ = "Anders Logg (logg@xxxxxxxxx)"
>> __date__ = "2005-09-07 -- 2005-12-20"
>> __copyright__ = "Copyright (C) 2005-2006 Anders Logg"
>> __license__ = "GNU GPL Version 2"
>>
>> # Modified by Ola Skavhaug, 2005
>>
>> # Python modules
>> import sys
>> import Numeric
>>
>> # FFC common modules
>> sys.path.append("../../")
>> from ffc.common.exceptions import *
>>
>> # FFC compiler modules
>> from index import *
>> from algebra import *
>> from projection import *
>> from finiteelement import *
>>
>> def Identity(n):
>> "Return identity matrix of given size."
>> # Let Numeric handle the identity
>> return Numeric.identity(n)
>>
>> def rank(v):
>> "Return rank for given object."
>> if isinstance(v, BasisFunction):
>> return v.element.rank() - len(v.component)
>> elif isinstance(v, Product):
>> return rank(v.basisfunctions[0])
>> elif isinstance(v, Sum):
>> return rank(v.products[0])
>> elif isinstance(v, Function):
>> return rank(Sum(v))
>> else:
>> return Numeric.rank(v)
>> return 0
>>
>> def vec(v):
>> "Create vector of scalar functions from given vector-valued function."
>> # Check if we already have a vector
>> if isinstance(v, list):
>> return v
>> # Check if we have an element of the algebra
>> if isinstance(v, Element):
>> # Check that we have a vector
>> if not rank(v) == 1:
>> raise FormError, (v, "Cannot create vector from scalar expression.")
>> # Get vector dimension
>> n = __tensordim(v, 0)
>> # Create list of scalar components
>> return [v[i] for i in range(n)]
>> # Let Numeric handle the conversion
>> if isinstance(v, Numeric.ArrayType) and len(v.shape) == 1:
>> return v.tolist()
>> # Unable to find a proper conversion
>> raise FormError, (v, "Unable to convert given expression to a vector,")
>>
>> def dot(v, w):
>> "Return scalar product of given functions."
>> # Check ranks
>> if rank(v) == rank(w) == 1:
>> # Check dimensions
>> if not len(v) == len(w):
>> raise FormError, ((v, w), "Dimensions don't match for scalar product.")
>> # Use index notation if possible
>> if isinstance(v, Element) and isinstance(w, Element):
>> i = Index()
>> return v[i]*w[i]
>> # Otherwise, use Numeric.dot
>> return Numeric.dot(vec(v), vec(w))
>> elif rank(v) == rank(w) == 2:
>> # Check dimensions
>> if not len(v) == len(w):
>> raise FormError, ((v, w), "Dimensions don't match for scalar product.")
>> # Compute dot product (:) of matrices
>> return Numeric.sum([v[i][j]*w[i][j] for i in range(len(v)) for j in range(len(v[i]))])
>>
>> def cross(v, w):
>> "Return cross product of given functions."
>> # Check dimensions
>> if not len(v) == len(w):
>> raise FormError, ((v, w), "Cross product only defined for vectors in R^3.")
>> # Compute cross product
>> return [v[1]*w[2] - v[2]*w[1], v[2]*w[0] - v[0]*w[2], v[0]*w[1] - v[1]*w[0]]
>>
>> def trace(v):
>> "Return trace of given matrix"
>> # Let Numeric handle the trace
>> return Numeric.trace(v)
>>
>> def transp(v):
>> "Return transpose of given matrix."
>> # Let Numeric handle the transpose."
>> return Numeric.transpose(v)
>>
>> def mult(v, w):
>> "Compute matrix-matrix product of given matrices."
>> # First, convert to Numeric.array (safe for both array and list arguments)
>> vv = Numeric.array(v)
>> ww = Numeric.array(w)
>> if len(vv.shape) == 0 or len(ww.shape) == 0:
>> # One argument is a scalar
>> return vv*ww
>> if len(vv.shape) == len(ww.shape) == 1:
>> # Vector times vector
>> return Numeric.multiply(vv, ww)
>> elif len(vv.shape) == 2 and (len(ww.shape) == 1 or len(ww.shape) == 2):
>> # Matvec or matmat product, use matrixmultiply instead
>> return Numeric.matrixmultiply(vv, ww)
>> else:
>> raise FormError, ((v, w), "Dimensions don't match for multiplication.")
>>
>> def D(v, i):
>> "Return derivative of v in given coordinate direction."
>> # Use member function dx() if possible
>> if isinstance(v, Element):
>> return v.dx(i)
>> # Otherwise, apply to each component
>> return [D(v[j], i) for j in range(len(v))]
>>
>> def grad(v):
>> "Return gradient of given function."
>> # Get shape dimension
>> d = __shapedim(v)
>> # Check if we have a vector
>> if rank(v) == 1:
>> return [ [D(v[i], j) for j in range(d)] for i in range(len(v)) ]
>> # Otherwise assume we have a scalar
>> return [D(v, i) for i in range(d)]
>>
>> def div(v):
>> "Return divergence of given function."
>> # Use index notation if possible
>> if isinstance(v, Element):
>> i = Index()
>> return v[i].dx(i)
>> # Otherwise, use Numeric.sum
>> return Numeric.sum([D(v[i], i) for i in range(len(v))])
>>
>> def rot(v):
>> "Return rotation of given function."
>> # Check dimensions
>> if not len(v) == __shapedim(v) == 3:
>> raise FormError, (v, "Rotation only defined for v : R^3 --> R^3")
>> # Compute rotation
>> return [D(v[2], 1) - D(v[1], 2), D(v[0], 2) - D(v[2], 0), D(v[1], 0) - D(v[0], 1)]
>>
>> def curl(v):
>> "Alternative name for rot."
>> return rot(v)
>>
>> def mean(v):
>> "Return mean value of given Function (projection onto piecewise constants)."
>> # Check that we got a Function
>> if not isinstance(v, Function):
>> raise FormError, (v, "Mean values are only supported for Functions.")
>> # Different projections needed for scalar and vector-valued elements
>> element = v.e0
>> if element.rank() == 0:
>> P0 = FiniteElement("Discontinuous Lagrange", element.shape_str, 0)
>> pi = Projection(P0)
>> return pi(v)
>> else:
>> P0 = FiniteElement("Discontinuous vector Lagrange", element.shape_str, 0, element.tensordim(0))
>> pi = Projection(P0)
>> return pi(v)
>>
>> def outer(v,w):
>> "Return outer product of vector valued functions, p = v'*w"
>> # Check that we got a Function
>> if not isinstance(v, Function):
>> raise FormError, (v, "Outer products are only defined for Functions.")
>> if not isinstance(w, Function):
>> raise FormError, (w, "Outer products are only defined for Functions.")
>> if not len(v) == len(w):
>> raise FormError, ((v, w),"Invalid operand dims in outer product")
>>
>> vv = vec(v)
>> ww = vec(w)
>>
>> return mult(transp([vv]),[ww])
>>
>> def __shapedim(v):
>> "Return shape dimension for given object."
>> if isinstance(v, list):
>> # Check that all components have the same shape dimension
>> for i in range(len(v) - 1):
>> if not __shapedim(v[i]) == __shapedim(v[i + 1]):
>> raise FormError, (v, "Components have different shape dimensions.")
>> # Return length of first term
>> return __shapedim(v[0])
>> elif isinstance(v, BasisFunction):
>> return v.element.shapedim()
>> elif isinstance(v, Product):
>> return __shapedim(v.basisfunctions[0])
>> elif isinstance(v, Sum):
>> return __shapedim(v.products[0])
>> elif isinstance(v, Function):
>> return __shapedim(Sum(v))
>> else:
>> raise FormError, (v, "Shape dimension is not defined for given expression.")
>> return 0
>>
>> def __tensordim(v, i):
>> "Return size of given dimension for given object."
>> if i < 0 or i >= rank(v):
>> raise FormError, ((v, i), "Tensor dimension out of range.")
>> if isinstance(v, BasisFunction):
>> return v.element.tensordim(i + len(v.component))
>> elif isinstance(v, Product):
>> return __tensordim(v.basisfunctions[0], i)
>> elif isinstance(v, Sum):
>> return __tensordim(v.products[0], i)
>> elif isinstance(v, Function):
>> return __tensordim(Sum(v), i)
>> else:
>> raise FormError, ((v, i), "Tensor dimension is not defined for given expression.")
>> return 0
>>
>> if __name__ == "__main__":
>>
>> scalar = FiniteElement("Lagrange", "tetrahedron", 2)
>> vector = FiniteElement("Vector Lagrange", "tetrahedron", 2)
>>
>> i = Index()
>>
>> v = BasisFunction(scalar)
>> u = BasisFunction(scalar)
>> w = Function(scalar)
>>
>> V = BasisFunction(vector)
>> U = BasisFunction(vector)
>> W = Function(vector)
>>
>> i = Index()
>> j = Index()
>>
>> dx = Integral()
>>
>> print dot(grad(v), grad(u))*dx
>> print vec(U)
>> print dot(U, V)
>> print dot(vec(V), vec(U))
>> print dot(U, grad(v))
>> print div(U)
>> print dot(rot(V), rot(U))
>> print div(grad(dot(rot(V), U)))*dx
>> print cross(V, U)
>> print trace(mult(Identity(len(V)), grad(V)))
>> _______________________________________________
>> FFC-dev mailing list
>> FFC-dev@xxxxxxxxxx
>> http://www.fenics.org/mailman/listinfo/ffc-dev
>
> _______________________________________________
> FFC-dev mailing list
> FFC-dev@xxxxxxxxxx
> http://www.fenics.org/mailman/listinfo/ffc-dev
>
Follow ups
References
-
outer products
From: Dag Lindbo, 2006-09-26
-
Re: outer products
From: Anders Logg, 2006-09-26
-
Re: outer products
From: Johan Jansson, 2006-09-26
-
Re: outer products
From: Anders Logg, 2006-09-26
-
Re: outer products
From: Johan Jansson, 2006-09-26
-
Re: outer products
From: Anders Logg, 2006-09-26
-
Re: outer products
From: Dag Lindbo, 2006-09-26
-
Re: outer products
From: Anders Logg, 2006-09-26
-
Re: outer products
From: Dag Lindbo, 2006-09-27
-
Re: outer products
From: Anders Logg, 2006-09-27