← Back to team overview

ffc team mailing list archive

Re: [Bug 511929] Re: Missing domain_type

 

On Tue, 2010-02-02 at 10:50 +0100, Anders Logg wrote:
> On Tue, Feb 02, 2010 at 10:42:23AM +0100, Mehdi Nikbakht wrote:
> >
> >
> > On Tue, 2010-02-02 at 10:30 +0100, Anders Logg wrote:
> > > I tried looking at this but I'm unsure how it should be
> > > handled. Should a cell_integral class be generated or should a
> > > surface_integral class be generated?
> > >
> >
> > We handle terms related to surface integral inside a class derived from
> > ufc::cell_integral. I have started working on updating ffcpum module
> > which is built against standard ffc.
> >
> > Mehdi
> 
> So a surface integral should just result in a standard cell integral
> being generated? Then what is the point of having *dc? When the code
> has been generated, you won't be able to tell which cell integrals
> came from *dx and which came from *dc.

Although we could have them in a separate class, we handle them inside
cell_integral class to have compatibility with ufc interface. 

Note that having *dc helps us to compute the corresponding terms by
using gauss points located on a surface. 

I don't see the point on being able to tell which cell integrals came
from *dx and which one from *dc, we add all of them to the global
element tensor.

Mehdi 
> 
> --
> Anders

// This code conforms with the UFC specification version 1.0
// and was automatically generated by FFC version 0.7.0.
//
// Warning: This code was generated with the option '-l dolfin'
// and contains DOLFIN-specific wrappers that depend on DOLFIN.

#ifndef __POISSON_H
#define __POISSON_H

#include <cmath>
#include <algorithm>
#include <stdexcept>
#include <fstream>
#include <boost/assign/list_of.hpp>
#include <ufc.h>
#include <pum/GenericPUM.h>
    
/// This class defines the interface for a finite element.

class poisson_0_finite_element_0_0: public ufc::finite_element
{
public:

  /// Constructor
  poisson_0_finite_element_0_0() : ufc::finite_element()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson_0_finite_element_0_0()
  {
    // Do nothing
  }

  /// Return a string identifying the finite element
  virtual const char* signature() const
  {
    return "FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)";
  }

  /// Return the cell shape
  virtual ufc::shape cell_shape() const
  {
    return ufc::triangle;
  }

  /// Return the dimension of the finite element function space
  virtual unsigned int space_dimension() const
  {
    return 3;
  }

  /// Return the rank of the value space
  virtual unsigned int value_rank() const
  {
    return 0;
  }

  /// Return the dimension of the value space for axis i
  virtual unsigned int value_dimension(unsigned int i) const
  {
    return 1;
  }

  /// Evaluate basis function i at given point in cell
  virtual void evaluate_basis(unsigned int i,
                              double* values,
                              const double* coordinates,
                              const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Reset values
    *values = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    const double psitilde_a_1 = x;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    const double psitilde_bs_0_1 = 1.5*y + 0.5;
    const double psitilde_bs_1_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
    // Table(s) of coefficients
    static const double coefficients0[3][3] = \
    {{0.471404520791032, -0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0, 0.333333333333333}};
    
    // Extract relevant coefficients
    const double coeff0_0 = coefficients0[dof][0];
    const double coeff0_1 = coefficients0[dof][1];
    const double coeff0_2 = coefficients0[dof][2];
    
    // Compute value(s)
    *values = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2;
  }

  /// Evaluate all basis functions at given point in cell
  virtual void evaluate_basis_all(double* values,
                                  const double* coordinates,
                                  const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");
  }

  /// Evaluate order n derivatives of basis function i at given point in cell
  virtual void evaluate_basis_derivatives(unsigned int i,
                                          unsigned int n,
                                          double* values,
                                          const double* coordinates,
                                          const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Compute number of derivatives
    unsigned int num_derivatives = 1;
    
    for (unsigned int j = 0; j < n; j++)
      num_derivatives *= 2;
    
    
    // Declare pointer to two dimensional array that holds combinations of derivatives and initialise
    unsigned int **combinations = new unsigned int *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      combinations[j] = new unsigned int [n];
      for (unsigned int k = 0; k < n; k++)
        combinations[j][k] = 0;
    }
    
    // Generate combinations of derivatives
    for (unsigned int row = 1; row < num_derivatives; row++)
    {
      for (unsigned int num = 0; num < row; num++)
      {
        for (unsigned int col = n-1; col+1 > 0; col--)
        {
          if (combinations[row][col] + 1 > 1)
            combinations[row][col] = 0;
          else
          {
            combinations[row][col] += 1;
            break;
          }
        }
      }
    }
    
    // Compute inverse of Jacobian
    const double Jinv[2][2] =  {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}};
    
    // Declare transformation matrix
    // Declare pointer to two dimensional array and initialise
    double **transform = new double *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      transform[j] = new double [num_derivatives];
      for (unsigned int k = 0; k < num_derivatives; k++)
        transform[j][k] = 1;
    }
    
    // Construct transformation matrix
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        for (unsigned int k = 0; k < n; k++)
          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];
      }
    }
    
    // Reset values
    for (unsigned int j = 0; j < 1*num_derivatives; j++)
      values[j] = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    const double psitilde_a_1 = x;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    const double psitilde_bs_0_1 = 1.5*y + 0.5;
    const double psitilde_bs_1_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
    // Table(s) of coefficients
    static const double coefficients0[3][3] = \
    {{0.471404520791032, -0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0, 0.333333333333333}};
    
    // Interesting (new) part
    // Tables of derivatives of the polynomial base (transpose)
    static const double dmats0[3][3] = \
    {{0, 0, 0},
    {4.89897948556636, 0, 0},
    {0, 0, 0}};
    
    static const double dmats1[3][3] = \
    {{0, 0, 0},
    {2.44948974278318, 0, 0},
    {4.24264068711928, 0, 0}};
    
    // Compute reference derivatives
    // Declare pointer to array of derivatives on FIAT element
    double *derivatives = new double [num_derivatives];
    
    // Declare coefficients
    double coeff0_0 = 0;
    double coeff0_1 = 0;
    double coeff0_2 = 0;
    
    // Declare new coefficients
    double new_coeff0_0 = 0;
    double new_coeff0_1 = 0;
    double new_coeff0_2 = 0;
    
    // Loop possible derivatives
    for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)
    {
      // Get values from coefficients array
      new_coeff0_0 = coefficients0[dof][0];
      new_coeff0_1 = coefficients0[dof][1];
      new_coeff0_2 = coefficients0[dof][2];
    
      // Loop derivative order
      for (unsigned int j = 0; j < n; j++)
      {
        // Update old coefficients
        coeff0_0 = new_coeff0_0;
        coeff0_1 = new_coeff0_1;
        coeff0_2 = new_coeff0_2;
    
        if(combinations[deriv_num][j] == 0)
        {
          new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0];
          new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1];
          new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2];
        }
        if(combinations[deriv_num][j] == 1)
        {
          new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0];
          new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1];
          new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2];
        }
    
      }
      // Compute derivatives on reference element as dot product of coefficients and basisvalues
      derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;
    }
    
    // Transform derivatives back to physical element
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        values[row] += transform[row][col]*derivatives[col];
      }
    }
    // Delete pointer to array of derivatives on FIAT element
    delete [] derivatives;
    
    // Delete pointer to array of combinations of derivatives and transform
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      delete [] combinations[row];
      delete [] transform[row];
    }
    
    delete [] combinations;
    delete [] transform;
  }

  /// Evaluate order n derivatives of all basis functions at given point in cell
  virtual void evaluate_basis_derivatives_all(unsigned int n,
                                              double* values,
                                              const double* coordinates,
                                              const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");
  }

  /// Evaluate linear functional for dof i on the function f
  virtual double evaluate_dof(unsigned int i,
                              const ufc::function& f,
                              const ufc::cell& c) const
  {
    // The reference points, direction and weights:
    static const double X[3][1][2] = {{{0, 0}}, {{1, 0}}, {{0, 1}}};
    static const double W[3][1] = {{1}, {1}, {1}};
    static const double D[3][1][1] = {{{1}}, {{1}}, {{1}}};
    
    const double * const * x = c.coordinates;
    double result = 0.0;
    // Iterate over the points:
    // Evaluate basis functions for affine mapping
    const double w0 = 1.0 - X[i][0][0] - X[i][0][1];
    const double w1 = X[i][0][0];
    const double w2 = X[i][0][1];
    
    // Compute affine mapping y = F(X)
    double y[2];
    y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];
    y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];
    
    // Evaluate function at physical points
    double values[1];
    f.evaluate(values, y, c);
    
    // Map function values using appropriate mapping
    // Affine map: Do nothing
    
    // Note that we do not map the weights (yet).
    
    // Take directional components
    for(int k = 0; k < 1; k++)
      result += values[k]*D[i][0][k];
    // Multiply by weights
    result *= W[i][0];
    
    return result;
  }

  /// Evaluate linear functionals for all dofs on the function f
  virtual void evaluate_dofs(double* values,
                             const ufc::function& f,
                             const ufc::cell& c) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Interpolate vertex values from dof values
  virtual void interpolate_vertex_values(double* vertex_values,
                                         const double* dof_values,
                                         const ufc::cell& c) const
  {
    // Evaluate at vertices and use affine mapping
    vertex_values[0] = dof_values[0];
    vertex_values[1] = dof_values[1];
    vertex_values[2] = dof_values[2];
  }

  /// Return the number of sub elements (for a mixed element)
  virtual unsigned int num_sub_elements() const
  {
    return 1;
  }

  /// Create a new finite element for sub element i (for a mixed element)
  virtual ufc::finite_element* create_sub_element(unsigned int i) const
  {
    return new poisson_0_finite_element_0_0();
  }

};

/// This class defines the interface for a finite element.

class poisson_0_finite_element_0_1: public ufc::finite_element
{
public:

  /// Constructor
  poisson_0_finite_element_0_1() : ufc::finite_element()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson_0_finite_element_0_1()
  {
    // Do nothing
  }

  /// Return a string identifying the finite element
  virtual const char* signature() const
  {
    return "FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)";
  }

  /// Return the cell shape
  virtual ufc::shape cell_shape() const
  {
    return ufc::triangle;
  }

  /// Return the dimension of the finite element function space
  virtual unsigned int space_dimension() const
  {
    return 3;
  }

  /// Return the rank of the value space
  virtual unsigned int value_rank() const
  {
    return 0;
  }

  /// Return the dimension of the value space for axis i
  virtual unsigned int value_dimension(unsigned int i) const
  {
    return 1;
  }

  /// Evaluate basis function i at given point in cell
  virtual void evaluate_basis(unsigned int i,
                              double* values,
                              const double* coordinates,
                              const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Reset values
    *values = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    const double psitilde_a_1 = x;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    const double psitilde_bs_0_1 = 1.5*y + 0.5;
    const double psitilde_bs_1_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
    // Table(s) of coefficients
    static const double coefficients0[3][3] = \
    {{0.471404520791032, -0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0, 0.333333333333333}};
    
    // Extract relevant coefficients
    const double coeff0_0 = coefficients0[dof][0];
    const double coeff0_1 = coefficients0[dof][1];
    const double coeff0_2 = coefficients0[dof][2];
    
    // Compute value(s)
    *values = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2;
  }

  /// Evaluate all basis functions at given point in cell
  virtual void evaluate_basis_all(double* values,
                                  const double* coordinates,
                                  const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");
  }

  /// Evaluate order n derivatives of basis function i at given point in cell
  virtual void evaluate_basis_derivatives(unsigned int i,
                                          unsigned int n,
                                          double* values,
                                          const double* coordinates,
                                          const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Compute number of derivatives
    unsigned int num_derivatives = 1;
    
    for (unsigned int j = 0; j < n; j++)
      num_derivatives *= 2;
    
    
    // Declare pointer to two dimensional array that holds combinations of derivatives and initialise
    unsigned int **combinations = new unsigned int *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      combinations[j] = new unsigned int [n];
      for (unsigned int k = 0; k < n; k++)
        combinations[j][k] = 0;
    }
    
    // Generate combinations of derivatives
    for (unsigned int row = 1; row < num_derivatives; row++)
    {
      for (unsigned int num = 0; num < row; num++)
      {
        for (unsigned int col = n-1; col+1 > 0; col--)
        {
          if (combinations[row][col] + 1 > 1)
            combinations[row][col] = 0;
          else
          {
            combinations[row][col] += 1;
            break;
          }
        }
      }
    }
    
    // Compute inverse of Jacobian
    const double Jinv[2][2] =  {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}};
    
    // Declare transformation matrix
    // Declare pointer to two dimensional array and initialise
    double **transform = new double *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      transform[j] = new double [num_derivatives];
      for (unsigned int k = 0; k < num_derivatives; k++)
        transform[j][k] = 1;
    }
    
    // Construct transformation matrix
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        for (unsigned int k = 0; k < n; k++)
          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];
      }
    }
    
    // Reset values
    for (unsigned int j = 0; j < 1*num_derivatives; j++)
      values[j] = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    const double psitilde_a_1 = x;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    const double psitilde_bs_0_1 = 1.5*y + 0.5;
    const double psitilde_bs_1_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
    // Table(s) of coefficients
    static const double coefficients0[3][3] = \
    {{0.471404520791032, -0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0, 0.333333333333333}};
    
    // Interesting (new) part
    // Tables of derivatives of the polynomial base (transpose)
    static const double dmats0[3][3] = \
    {{0, 0, 0},
    {4.89897948556636, 0, 0},
    {0, 0, 0}};
    
    static const double dmats1[3][3] = \
    {{0, 0, 0},
    {2.44948974278318, 0, 0},
    {4.24264068711928, 0, 0}};
    
    // Compute reference derivatives
    // Declare pointer to array of derivatives on FIAT element
    double *derivatives = new double [num_derivatives];
    
    // Declare coefficients
    double coeff0_0 = 0;
    double coeff0_1 = 0;
    double coeff0_2 = 0;
    
    // Declare new coefficients
    double new_coeff0_0 = 0;
    double new_coeff0_1 = 0;
    double new_coeff0_2 = 0;
    
    // Loop possible derivatives
    for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)
    {
      // Get values from coefficients array
      new_coeff0_0 = coefficients0[dof][0];
      new_coeff0_1 = coefficients0[dof][1];
      new_coeff0_2 = coefficients0[dof][2];
    
      // Loop derivative order
      for (unsigned int j = 0; j < n; j++)
      {
        // Update old coefficients
        coeff0_0 = new_coeff0_0;
        coeff0_1 = new_coeff0_1;
        coeff0_2 = new_coeff0_2;
    
        if(combinations[deriv_num][j] == 0)
        {
          new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0];
          new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1];
          new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2];
        }
        if(combinations[deriv_num][j] == 1)
        {
          new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0];
          new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1];
          new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2];
        }
    
      }
      // Compute derivatives on reference element as dot product of coefficients and basisvalues
      derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;
    }
    
    // Transform derivatives back to physical element
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        values[row] += transform[row][col]*derivatives[col];
      }
    }
    // Delete pointer to array of derivatives on FIAT element
    delete [] derivatives;
    
    // Delete pointer to array of combinations of derivatives and transform
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      delete [] combinations[row];
      delete [] transform[row];
    }
    
    delete [] combinations;
    delete [] transform;
  }

  /// Evaluate order n derivatives of all basis functions at given point in cell
  virtual void evaluate_basis_derivatives_all(unsigned int n,
                                              double* values,
                                              const double* coordinates,
                                              const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");
  }

  /// Evaluate linear functional for dof i on the function f
  virtual double evaluate_dof(unsigned int i,
                              const ufc::function& f,
                              const ufc::cell& c) const
  {
    // The reference points, direction and weights:
    static const double X[3][1][2] = {{{0, 0}}, {{1, 0}}, {{0, 1}}};
    static const double W[3][1] = {{1}, {1}, {1}};
    static const double D[3][1][1] = {{{1}}, {{1}}, {{1}}};
    
    const double * const * x = c.coordinates;
    double result = 0.0;
    // Iterate over the points:
    // Evaluate basis functions for affine mapping
    const double w0 = 1.0 - X[i][0][0] - X[i][0][1];
    const double w1 = X[i][0][0];
    const double w2 = X[i][0][1];
    
    // Compute affine mapping y = F(X)
    double y[2];
    y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];
    y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];
    
    // Evaluate function at physical points
    double values[1];
    f.evaluate(values, y, c);
    
    // Map function values using appropriate mapping
    // Affine map: Do nothing
    
    // Note that we do not map the weights (yet).
    
    // Take directional components
    for(int k = 0; k < 1; k++)
      result += values[k]*D[i][0][k];
    // Multiply by weights
    result *= W[i][0];
    
    return result;
  }

  /// Evaluate linear functionals for all dofs on the function f
  virtual void evaluate_dofs(double* values,
                             const ufc::function& f,
                             const ufc::cell& c) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Interpolate vertex values from dof values
  virtual void interpolate_vertex_values(double* vertex_values,
                                         const double* dof_values,
                                         const ufc::cell& c) const
  {
    // Evaluate at vertices and use affine mapping
    vertex_values[0] = dof_values[0];
    vertex_values[1] = dof_values[1];
    vertex_values[2] = dof_values[2];
  }

  /// Return the number of sub elements (for a mixed element)
  virtual unsigned int num_sub_elements() const
  {
    return 1;
  }

  /// Create a new finite element for sub element i (for a mixed element)
  virtual ufc::finite_element* create_sub_element(unsigned int i) const
  {
    return new poisson_0_finite_element_0_1();
  }

};

/// This class defines the interface for a finite element.

class poisson_0_finite_element_0: public ufc::finite_element
{
public:

  /// Constructor
  poisson_0_finite_element_0() : ufc::finite_element()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson_0_finite_element_0()
  {
    // Do nothing
  }

  /// Return a string identifying the finite element
  virtual const char* signature() const
  {
    return "MixedElement(*[FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), ElementRestriction(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), Measure('surface', 0, None))], **{'value_shape': (2,) })";
  }

  /// Return the cell shape
  virtual ufc::shape cell_shape() const
  {
    return ufc::triangle;
  }

  /// Return the dimension of the finite element function space
  virtual unsigned int space_dimension() const
  {
    return 6;
  }

  /// Return the rank of the value space
  virtual unsigned int value_rank() const
  {
    return 1;
  }

  /// Return the dimension of the value space for axis i
  virtual unsigned int value_dimension(unsigned int i) const
  {
    return 2;
  }

  /// Evaluate basis function i at given point in cell
  virtual void evaluate_basis(unsigned int i,
                              double* values,
                              const double* coordinates,
                              const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Reset values
    values[0] = 0;
    values[1] = 0;
    
    if (0 <= i && i <= 2)
    {
      // Map degree of freedom to element degree of freedom
      const unsigned int dof = i;
    
      // Generate scalings
      const double scalings_y_0 = 1;
      const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
      // Compute psitilde_a
      const double psitilde_a_0 = 1;
      const double psitilde_a_1 = x;
    
      // Compute psitilde_bs
      const double psitilde_bs_0_0 = 1;
      const double psitilde_bs_0_1 = 1.5*y + 0.5;
      const double psitilde_bs_1_0 = 1;
    
      // Compute basisvalues
      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
      const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
      const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
      // Table(s) of coefficients
      static const double coefficients0[3][3] =   \
      {{0.471404520791032, -0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0, 0.333333333333333}};
    
      // Extract relevant coefficients
      const double coeff0_0 =   coefficients0[dof][0];
      const double coeff0_1 =   coefficients0[dof][1];
      const double coeff0_2 =   coefficients0[dof][2];
    
      // Compute value(s)
      values[0] = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2;
    }
    
    if (3 <= i && i <= 5)
    {
      // Map degree of freedom to element degree of freedom
      const unsigned int dof = i - 3;
    
      // Generate scalings
      const double scalings_y_0 = 1;
      const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
      // Compute psitilde_a
      const double psitilde_a_0 = 1;
      const double psitilde_a_1 = x;
    
      // Compute psitilde_bs
      const double psitilde_bs_0_0 = 1;
      const double psitilde_bs_0_1 = 1.5*y + 0.5;
      const double psitilde_bs_1_0 = 1;
    
      // Compute basisvalues
      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
      const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
      const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
      // Table(s) of coefficients
      static const double coefficients0[3][3] =   \
      {{0.471404520791032, -0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0, 0.333333333333333}};
    
      // Extract relevant coefficients
      const double coeff0_0 =   coefficients0[dof][0];
      const double coeff0_1 =   coefficients0[dof][1];
      const double coeff0_2 =   coefficients0[dof][2];
    
      // Compute value(s)
      values[1] = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2;
    }
    
  }

  /// Evaluate all basis functions at given point in cell
  virtual void evaluate_basis_all(double* values,
                                  const double* coordinates,
                                  const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");
  }

  /// Evaluate order n derivatives of basis function i at given point in cell
  virtual void evaluate_basis_derivatives(unsigned int i,
                                          unsigned int n,
                                          double* values,
                                          const double* coordinates,
                                          const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Compute number of derivatives
    unsigned int num_derivatives = 1;
    
    for (unsigned int j = 0; j < n; j++)
      num_derivatives *= 2;
    
    
    // Declare pointer to two dimensional array that holds combinations of derivatives and initialise
    unsigned int **combinations = new unsigned int *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      combinations[j] = new unsigned int [n];
      for (unsigned int k = 0; k < n; k++)
        combinations[j][k] = 0;
    }
    
    // Generate combinations of derivatives
    for (unsigned int row = 1; row < num_derivatives; row++)
    {
      for (unsigned int num = 0; num < row; num++)
      {
        for (unsigned int col = n-1; col+1 > 0; col--)
        {
          if (combinations[row][col] + 1 > 1)
            combinations[row][col] = 0;
          else
          {
            combinations[row][col] += 1;
            break;
          }
        }
      }
    }
    
    // Compute inverse of Jacobian
    const double Jinv[2][2] =  {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}};
    
    // Declare transformation matrix
    // Declare pointer to two dimensional array and initialise
    double **transform = new double *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      transform[j] = new double [num_derivatives];
      for (unsigned int k = 0; k < num_derivatives; k++)
        transform[j][k] = 1;
    }
    
    // Construct transformation matrix
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        for (unsigned int k = 0; k < n; k++)
          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];
      }
    }
    
    // Reset values
    for (unsigned int j = 0; j < 2*num_derivatives; j++)
      values[j] = 0;
    
    if (0 <= i && i <= 2)
    {
      // Map degree of freedom to element degree of freedom
      const unsigned int dof = i;
    
      // Generate scalings
      const double scalings_y_0 = 1;
      const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
      // Compute psitilde_a
      const double psitilde_a_0 = 1;
      const double psitilde_a_1 = x;
    
      // Compute psitilde_bs
      const double psitilde_bs_0_0 = 1;
      const double psitilde_bs_0_1 = 1.5*y + 0.5;
      const double psitilde_bs_1_0 = 1;
    
      // Compute basisvalues
      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
      const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
      const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
      // Table(s) of coefficients
      static const double coefficients0[3][3] =   \
      {{0.471404520791032, -0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0, 0.333333333333333}};
    
      // Interesting (new) part
      // Tables of derivatives of the polynomial base (transpose)
      static const double dmats0[3][3] =   \
      {{0, 0, 0},
      {4.89897948556636, 0, 0},
      {0, 0, 0}};
    
      static const double dmats1[3][3] =   \
      {{0, 0, 0},
      {2.44948974278318, 0, 0},
      {4.24264068711928, 0, 0}};
    
      // Compute reference derivatives
      // Declare pointer to array of derivatives on FIAT element
      double *derivatives = new double [num_derivatives];
    
      // Declare coefficients
      double coeff0_0 = 0;
      double coeff0_1 = 0;
      double coeff0_2 = 0;
    
      // Declare new coefficients
      double new_coeff0_0 = 0;
      double new_coeff0_1 = 0;
      double new_coeff0_2 = 0;
    
      // Loop possible derivatives
      for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)
      {
        // Get values from coefficients array
        new_coeff0_0 = coefficients0[dof][0];
        new_coeff0_1 = coefficients0[dof][1];
        new_coeff0_2 = coefficients0[dof][2];
    
        // Loop derivative order
        for (unsigned int j = 0; j < n; j++)
        {
          // Update old coefficients
          coeff0_0 = new_coeff0_0;
          coeff0_1 = new_coeff0_1;
          coeff0_2 = new_coeff0_2;
    
          if(combinations[deriv_num][j] == 0)
          {
            new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0];
            new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1];
            new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2];
          }
          if(combinations[deriv_num][j] == 1)
          {
            new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0];
            new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1];
            new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2];
          }
    
        }
        // Compute derivatives on reference element as dot product of coefficients and basisvalues
        derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;
      }
    
      // Transform derivatives back to physical element
      for (unsigned int row = 0; row < num_derivatives; row++)
      {
        for (unsigned int col = 0; col < num_derivatives; col++)
        {
          values[row] += transform[row][col]*derivatives[col];
        }
      }
      // Delete pointer to array of derivatives on FIAT element
      delete [] derivatives;
    
      // Delete pointer to array of combinations of derivatives and transform
      for (unsigned int row = 0; row < num_derivatives; row++)
      {
        delete [] combinations[row];
        delete [] transform[row];
      }
    
      delete [] combinations;
      delete [] transform;
    }
    
    if (3 <= i && i <= 5)
    {
      // Map degree of freedom to element degree of freedom
      const unsigned int dof = i - 3;
    
      // Generate scalings
      const double scalings_y_0 = 1;
      const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
      // Compute psitilde_a
      const double psitilde_a_0 = 1;
      const double psitilde_a_1 = x;
    
      // Compute psitilde_bs
      const double psitilde_bs_0_0 = 1;
      const double psitilde_bs_0_1 = 1.5*y + 0.5;
      const double psitilde_bs_1_0 = 1;
    
      // Compute basisvalues
      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
      const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
      const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
      // Table(s) of coefficients
      static const double coefficients0[3][3] =   \
      {{0.471404520791032, -0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0, 0.333333333333333}};
    
      // Interesting (new) part
      // Tables of derivatives of the polynomial base (transpose)
      static const double dmats0[3][3] =   \
      {{0, 0, 0},
      {4.89897948556636, 0, 0},
      {0, 0, 0}};
    
      static const double dmats1[3][3] =   \
      {{0, 0, 0},
      {2.44948974278318, 0, 0},
      {4.24264068711928, 0, 0}};
    
      // Compute reference derivatives
      // Declare pointer to array of derivatives on FIAT element
      double *derivatives = new double [num_derivatives];
    
      // Declare coefficients
      double coeff0_0 = 0;
      double coeff0_1 = 0;
      double coeff0_2 = 0;
    
      // Declare new coefficients
      double new_coeff0_0 = 0;
      double new_coeff0_1 = 0;
      double new_coeff0_2 = 0;
    
      // Loop possible derivatives
      for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)
      {
        // Get values from coefficients array
        new_coeff0_0 = coefficients0[dof][0];
        new_coeff0_1 = coefficients0[dof][1];
        new_coeff0_2 = coefficients0[dof][2];
    
        // Loop derivative order
        for (unsigned int j = 0; j < n; j++)
        {
          // Update old coefficients
          coeff0_0 = new_coeff0_0;
          coeff0_1 = new_coeff0_1;
          coeff0_2 = new_coeff0_2;
    
          if(combinations[deriv_num][j] == 0)
          {
            new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0];
            new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1];
            new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2];
          }
          if(combinations[deriv_num][j] == 1)
          {
            new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0];
            new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1];
            new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2];
          }
    
        }
        // Compute derivatives on reference element as dot product of coefficients and basisvalues
        derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;
      }
    
      // Transform derivatives back to physical element
      for (unsigned int row = 0; row < num_derivatives; row++)
      {
        for (unsigned int col = 0; col < num_derivatives; col++)
        {
          values[num_derivatives + row] += transform[row][col]*derivatives[col];
        }
      }
      // Delete pointer to array of derivatives on FIAT element
      delete [] derivatives;
    
      // Delete pointer to array of combinations of derivatives and transform
      for (unsigned int row = 0; row < num_derivatives; row++)
      {
        delete [] combinations[row];
        delete [] transform[row];
      }
    
      delete [] combinations;
      delete [] transform;
    }
    
  }

  /// Evaluate order n derivatives of all basis functions at given point in cell
  virtual void evaluate_basis_derivatives_all(unsigned int n,
                                              double* values,
                                              const double* coordinates,
                                              const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");
  }

  /// Evaluate linear functional for dof i on the function f
  virtual double evaluate_dof(unsigned int i,
                              const ufc::function& f,
                              const ufc::cell& c) const
  {
    // The reference points, direction and weights:
    static const double X[6][1][2] = {{{0, 0}}, {{1, 0}}, {{0, 1}}, {{0, 0}}, {{1, 0}}, {{0, 1}}};
    static const double W[6][1] = {{1}, {1}, {1}, {1}, {1}, {1}};
    static const double D[6][1][2] = {{{1, 0}}, {{1, 0}}, {{1, 0}}, {{0, 1}}, {{0, 1}}, {{0, 1}}};
    
    const double * const * x = c.coordinates;
    double result = 0.0;
    // Iterate over the points:
    // Evaluate basis functions for affine mapping
    const double w0 = 1.0 - X[i][0][0] - X[i][0][1];
    const double w1 = X[i][0][0];
    const double w2 = X[i][0][1];
    
    // Compute affine mapping y = F(X)
    double y[2];
    y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];
    y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];
    
    // Evaluate function at physical points
    double values[2];
    f.evaluate(values, y, c);
    
    // Map function values using appropriate mapping
    // Affine map: Do nothing
    
    // Note that we do not map the weights (yet).
    
    // Take directional components
    for(int k = 0; k < 2; k++)
      result += values[k]*D[i][0][k];
    // Multiply by weights
    result *= W[i][0];
    
    return result;
  }

  /// Evaluate linear functionals for all dofs on the function f
  virtual void evaluate_dofs(double* values,
                             const ufc::function& f,
                             const ufc::cell& c) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Interpolate vertex values from dof values
  virtual void interpolate_vertex_values(double* vertex_values,
                                         const double* dof_values,
                                         const ufc::cell& c) const
  {
    // Evaluate at vertices and use affine mapping
    vertex_values[0] = dof_values[0];
    vertex_values[2] = dof_values[1];
    vertex_values[4] = dof_values[2];
    // Evaluate at vertices and use affine mapping
    vertex_values[1] = dof_values[3];
    vertex_values[3] = dof_values[4];
    vertex_values[5] = dof_values[5];
  }

  /// Return the number of sub elements (for a mixed element)
  virtual unsigned int num_sub_elements() const
  {
    return 2;
  }

  /// Create a new finite element for sub element i (for a mixed element)
  virtual ufc::finite_element* create_sub_element(unsigned int i) const
  {
    switch ( i )
    {
    case 0:
      return new poisson_0_finite_element_0_0();
      break;
    case 1:
      return new poisson_0_finite_element_0_1();
      break;
    }
    return 0;
  }

};

/// This class defines the interface for a finite element.

class poisson_0_finite_element_1_0: public ufc::finite_element
{
public:

  /// Constructor
  poisson_0_finite_element_1_0() : ufc::finite_element()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson_0_finite_element_1_0()
  {
    // Do nothing
  }

  /// Return a string identifying the finite element
  virtual const char* signature() const
  {
    return "FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)";
  }

  /// Return the cell shape
  virtual ufc::shape cell_shape() const
  {
    return ufc::triangle;
  }

  /// Return the dimension of the finite element function space
  virtual unsigned int space_dimension() const
  {
    return 3;
  }

  /// Return the rank of the value space
  virtual unsigned int value_rank() const
  {
    return 0;
  }

  /// Return the dimension of the value space for axis i
  virtual unsigned int value_dimension(unsigned int i) const
  {
    return 1;
  }

  /// Evaluate basis function i at given point in cell
  virtual void evaluate_basis(unsigned int i,
                              double* values,
                              const double* coordinates,
                              const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Reset values
    *values = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    const double psitilde_a_1 = x;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    const double psitilde_bs_0_1 = 1.5*y + 0.5;
    const double psitilde_bs_1_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
    // Table(s) of coefficients
    static const double coefficients0[3][3] = \
    {{0.471404520791032, -0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0, 0.333333333333333}};
    
    // Extract relevant coefficients
    const double coeff0_0 = coefficients0[dof][0];
    const double coeff0_1 = coefficients0[dof][1];
    const double coeff0_2 = coefficients0[dof][2];
    
    // Compute value(s)
    *values = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2;
  }

  /// Evaluate all basis functions at given point in cell
  virtual void evaluate_basis_all(double* values,
                                  const double* coordinates,
                                  const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");
  }

  /// Evaluate order n derivatives of basis function i at given point in cell
  virtual void evaluate_basis_derivatives(unsigned int i,
                                          unsigned int n,
                                          double* values,
                                          const double* coordinates,
                                          const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Compute number of derivatives
    unsigned int num_derivatives = 1;
    
    for (unsigned int j = 0; j < n; j++)
      num_derivatives *= 2;
    
    
    // Declare pointer to two dimensional array that holds combinations of derivatives and initialise
    unsigned int **combinations = new unsigned int *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      combinations[j] = new unsigned int [n];
      for (unsigned int k = 0; k < n; k++)
        combinations[j][k] = 0;
    }
    
    // Generate combinations of derivatives
    for (unsigned int row = 1; row < num_derivatives; row++)
    {
      for (unsigned int num = 0; num < row; num++)
      {
        for (unsigned int col = n-1; col+1 > 0; col--)
        {
          if (combinations[row][col] + 1 > 1)
            combinations[row][col] = 0;
          else
          {
            combinations[row][col] += 1;
            break;
          }
        }
      }
    }
    
    // Compute inverse of Jacobian
    const double Jinv[2][2] =  {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}};
    
    // Declare transformation matrix
    // Declare pointer to two dimensional array and initialise
    double **transform = new double *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      transform[j] = new double [num_derivatives];
      for (unsigned int k = 0; k < num_derivatives; k++)
        transform[j][k] = 1;
    }
    
    // Construct transformation matrix
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        for (unsigned int k = 0; k < n; k++)
          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];
      }
    }
    
    // Reset values
    for (unsigned int j = 0; j < 1*num_derivatives; j++)
      values[j] = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    const double psitilde_a_1 = x;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    const double psitilde_bs_0_1 = 1.5*y + 0.5;
    const double psitilde_bs_1_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
    // Table(s) of coefficients
    static const double coefficients0[3][3] = \
    {{0.471404520791032, -0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0, 0.333333333333333}};
    
    // Interesting (new) part
    // Tables of derivatives of the polynomial base (transpose)
    static const double dmats0[3][3] = \
    {{0, 0, 0},
    {4.89897948556636, 0, 0},
    {0, 0, 0}};
    
    static const double dmats1[3][3] = \
    {{0, 0, 0},
    {2.44948974278318, 0, 0},
    {4.24264068711928, 0, 0}};
    
    // Compute reference derivatives
    // Declare pointer to array of derivatives on FIAT element
    double *derivatives = new double [num_derivatives];
    
    // Declare coefficients
    double coeff0_0 = 0;
    double coeff0_1 = 0;
    double coeff0_2 = 0;
    
    // Declare new coefficients
    double new_coeff0_0 = 0;
    double new_coeff0_1 = 0;
    double new_coeff0_2 = 0;
    
    // Loop possible derivatives
    for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)
    {
      // Get values from coefficients array
      new_coeff0_0 = coefficients0[dof][0];
      new_coeff0_1 = coefficients0[dof][1];
      new_coeff0_2 = coefficients0[dof][2];
    
      // Loop derivative order
      for (unsigned int j = 0; j < n; j++)
      {
        // Update old coefficients
        coeff0_0 = new_coeff0_0;
        coeff0_1 = new_coeff0_1;
        coeff0_2 = new_coeff0_2;
    
        if(combinations[deriv_num][j] == 0)
        {
          new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0];
          new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1];
          new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2];
        }
        if(combinations[deriv_num][j] == 1)
        {
          new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0];
          new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1];
          new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2];
        }
    
      }
      // Compute derivatives on reference element as dot product of coefficients and basisvalues
      derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;
    }
    
    // Transform derivatives back to physical element
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        values[row] += transform[row][col]*derivatives[col];
      }
    }
    // Delete pointer to array of derivatives on FIAT element
    delete [] derivatives;
    
    // Delete pointer to array of combinations of derivatives and transform
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      delete [] combinations[row];
      delete [] transform[row];
    }
    
    delete [] combinations;
    delete [] transform;
  }

  /// Evaluate order n derivatives of all basis functions at given point in cell
  virtual void evaluate_basis_derivatives_all(unsigned int n,
                                              double* values,
                                              const double* coordinates,
                                              const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");
  }

  /// Evaluate linear functional for dof i on the function f
  virtual double evaluate_dof(unsigned int i,
                              const ufc::function& f,
                              const ufc::cell& c) const
  {
    // The reference points, direction and weights:
    static const double X[3][1][2] = {{{0, 0}}, {{1, 0}}, {{0, 1}}};
    static const double W[3][1] = {{1}, {1}, {1}};
    static const double D[3][1][1] = {{{1}}, {{1}}, {{1}}};
    
    const double * const * x = c.coordinates;
    double result = 0.0;
    // Iterate over the points:
    // Evaluate basis functions for affine mapping
    const double w0 = 1.0 - X[i][0][0] - X[i][0][1];
    const double w1 = X[i][0][0];
    const double w2 = X[i][0][1];
    
    // Compute affine mapping y = F(X)
    double y[2];
    y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];
    y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];
    
    // Evaluate function at physical points
    double values[1];
    f.evaluate(values, y, c);
    
    // Map function values using appropriate mapping
    // Affine map: Do nothing
    
    // Note that we do not map the weights (yet).
    
    // Take directional components
    for(int k = 0; k < 1; k++)
      result += values[k]*D[i][0][k];
    // Multiply by weights
    result *= W[i][0];
    
    return result;
  }

  /// Evaluate linear functionals for all dofs on the function f
  virtual void evaluate_dofs(double* values,
                             const ufc::function& f,
                             const ufc::cell& c) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Interpolate vertex values from dof values
  virtual void interpolate_vertex_values(double* vertex_values,
                                         const double* dof_values,
                                         const ufc::cell& c) const
  {
    // Evaluate at vertices and use affine mapping
    vertex_values[0] = dof_values[0];
    vertex_values[1] = dof_values[1];
    vertex_values[2] = dof_values[2];
  }

  /// Return the number of sub elements (for a mixed element)
  virtual unsigned int num_sub_elements() const
  {
    return 1;
  }

  /// Create a new finite element for sub element i (for a mixed element)
  virtual ufc::finite_element* create_sub_element(unsigned int i) const
  {
    return new poisson_0_finite_element_1_0();
  }

};

/// This class defines the interface for a finite element.

class poisson_0_finite_element_1_1: public ufc::finite_element
{
public:

  /// Constructor
  poisson_0_finite_element_1_1() : ufc::finite_element()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson_0_finite_element_1_1()
  {
    // Do nothing
  }

  /// Return a string identifying the finite element
  virtual const char* signature() const
  {
    return "FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)";
  }

  /// Return the cell shape
  virtual ufc::shape cell_shape() const
  {
    return ufc::triangle;
  }

  /// Return the dimension of the finite element function space
  virtual unsigned int space_dimension() const
  {
    return 3;
  }

  /// Return the rank of the value space
  virtual unsigned int value_rank() const
  {
    return 0;
  }

  /// Return the dimension of the value space for axis i
  virtual unsigned int value_dimension(unsigned int i) const
  {
    return 1;
  }

  /// Evaluate basis function i at given point in cell
  virtual void evaluate_basis(unsigned int i,
                              double* values,
                              const double* coordinates,
                              const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Reset values
    *values = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    const double psitilde_a_1 = x;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    const double psitilde_bs_0_1 = 1.5*y + 0.5;
    const double psitilde_bs_1_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
    // Table(s) of coefficients
    static const double coefficients0[3][3] = \
    {{0.471404520791032, -0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0, 0.333333333333333}};
    
    // Extract relevant coefficients
    const double coeff0_0 = coefficients0[dof][0];
    const double coeff0_1 = coefficients0[dof][1];
    const double coeff0_2 = coefficients0[dof][2];
    
    // Compute value(s)
    *values = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2;
  }

  /// Evaluate all basis functions at given point in cell
  virtual void evaluate_basis_all(double* values,
                                  const double* coordinates,
                                  const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");
  }

  /// Evaluate order n derivatives of basis function i at given point in cell
  virtual void evaluate_basis_derivatives(unsigned int i,
                                          unsigned int n,
                                          double* values,
                                          const double* coordinates,
                                          const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Compute number of derivatives
    unsigned int num_derivatives = 1;
    
    for (unsigned int j = 0; j < n; j++)
      num_derivatives *= 2;
    
    
    // Declare pointer to two dimensional array that holds combinations of derivatives and initialise
    unsigned int **combinations = new unsigned int *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      combinations[j] = new unsigned int [n];
      for (unsigned int k = 0; k < n; k++)
        combinations[j][k] = 0;
    }
    
    // Generate combinations of derivatives
    for (unsigned int row = 1; row < num_derivatives; row++)
    {
      for (unsigned int num = 0; num < row; num++)
      {
        for (unsigned int col = n-1; col+1 > 0; col--)
        {
          if (combinations[row][col] + 1 > 1)
            combinations[row][col] = 0;
          else
          {
            combinations[row][col] += 1;
            break;
          }
        }
      }
    }
    
    // Compute inverse of Jacobian
    const double Jinv[2][2] =  {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}};
    
    // Declare transformation matrix
    // Declare pointer to two dimensional array and initialise
    double **transform = new double *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      transform[j] = new double [num_derivatives];
      for (unsigned int k = 0; k < num_derivatives; k++)
        transform[j][k] = 1;
    }
    
    // Construct transformation matrix
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        for (unsigned int k = 0; k < n; k++)
          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];
      }
    }
    
    // Reset values
    for (unsigned int j = 0; j < 1*num_derivatives; j++)
      values[j] = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    const double psitilde_a_1 = x;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    const double psitilde_bs_0_1 = 1.5*y + 0.5;
    const double psitilde_bs_1_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
    // Table(s) of coefficients
    static const double coefficients0[3][3] = \
    {{0.471404520791032, -0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0, 0.333333333333333}};
    
    // Interesting (new) part
    // Tables of derivatives of the polynomial base (transpose)
    static const double dmats0[3][3] = \
    {{0, 0, 0},
    {4.89897948556636, 0, 0},
    {0, 0, 0}};
    
    static const double dmats1[3][3] = \
    {{0, 0, 0},
    {2.44948974278318, 0, 0},
    {4.24264068711928, 0, 0}};
    
    // Compute reference derivatives
    // Declare pointer to array of derivatives on FIAT element
    double *derivatives = new double [num_derivatives];
    
    // Declare coefficients
    double coeff0_0 = 0;
    double coeff0_1 = 0;
    double coeff0_2 = 0;
    
    // Declare new coefficients
    double new_coeff0_0 = 0;
    double new_coeff0_1 = 0;
    double new_coeff0_2 = 0;
    
    // Loop possible derivatives
    for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)
    {
      // Get values from coefficients array
      new_coeff0_0 = coefficients0[dof][0];
      new_coeff0_1 = coefficients0[dof][1];
      new_coeff0_2 = coefficients0[dof][2];
    
      // Loop derivative order
      for (unsigned int j = 0; j < n; j++)
      {
        // Update old coefficients
        coeff0_0 = new_coeff0_0;
        coeff0_1 = new_coeff0_1;
        coeff0_2 = new_coeff0_2;
    
        if(combinations[deriv_num][j] == 0)
        {
          new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0];
          new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1];
          new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2];
        }
        if(combinations[deriv_num][j] == 1)
        {
          new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0];
          new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1];
          new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2];
        }
    
      }
      // Compute derivatives on reference element as dot product of coefficients and basisvalues
      derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;
    }
    
    // Transform derivatives back to physical element
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        values[row] += transform[row][col]*derivatives[col];
      }
    }
    // Delete pointer to array of derivatives on FIAT element
    delete [] derivatives;
    
    // Delete pointer to array of combinations of derivatives and transform
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      delete [] combinations[row];
      delete [] transform[row];
    }
    
    delete [] combinations;
    delete [] transform;
  }

  /// Evaluate order n derivatives of all basis functions at given point in cell
  virtual void evaluate_basis_derivatives_all(unsigned int n,
                                              double* values,
                                              const double* coordinates,
                                              const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");
  }

  /// Evaluate linear functional for dof i on the function f
  virtual double evaluate_dof(unsigned int i,
                              const ufc::function& f,
                              const ufc::cell& c) const
  {
    // The reference points, direction and weights:
    static const double X[3][1][2] = {{{0, 0}}, {{1, 0}}, {{0, 1}}};
    static const double W[3][1] = {{1}, {1}, {1}};
    static const double D[3][1][1] = {{{1}}, {{1}}, {{1}}};
    
    const double * const * x = c.coordinates;
    double result = 0.0;
    // Iterate over the points:
    // Evaluate basis functions for affine mapping
    const double w0 = 1.0 - X[i][0][0] - X[i][0][1];
    const double w1 = X[i][0][0];
    const double w2 = X[i][0][1];
    
    // Compute affine mapping y = F(X)
    double y[2];
    y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];
    y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];
    
    // Evaluate function at physical points
    double values[1];
    f.evaluate(values, y, c);
    
    // Map function values using appropriate mapping
    // Affine map: Do nothing
    
    // Note that we do not map the weights (yet).
    
    // Take directional components
    for(int k = 0; k < 1; k++)
      result += values[k]*D[i][0][k];
    // Multiply by weights
    result *= W[i][0];
    
    return result;
  }

  /// Evaluate linear functionals for all dofs on the function f
  virtual void evaluate_dofs(double* values,
                             const ufc::function& f,
                             const ufc::cell& c) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Interpolate vertex values from dof values
  virtual void interpolate_vertex_values(double* vertex_values,
                                         const double* dof_values,
                                         const ufc::cell& c) const
  {
    // Evaluate at vertices and use affine mapping
    vertex_values[0] = dof_values[0];
    vertex_values[1] = dof_values[1];
    vertex_values[2] = dof_values[2];
  }

  /// Return the number of sub elements (for a mixed element)
  virtual unsigned int num_sub_elements() const
  {
    return 1;
  }

  /// Create a new finite element for sub element i (for a mixed element)
  virtual ufc::finite_element* create_sub_element(unsigned int i) const
  {
    return new poisson_0_finite_element_1_1();
  }

};

/// This class defines the interface for a finite element.

class poisson_0_finite_element_1: public ufc::finite_element
{
public:

  /// Constructor
  poisson_0_finite_element_1() : ufc::finite_element()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson_0_finite_element_1()
  {
    // Do nothing
  }

  /// Return a string identifying the finite element
  virtual const char* signature() const
  {
    return "MixedElement(*[FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), ElementRestriction(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), Measure('surface', 0, None))], **{'value_shape': (2,) })";
  }

  /// Return the cell shape
  virtual ufc::shape cell_shape() const
  {
    return ufc::triangle;
  }

  /// Return the dimension of the finite element function space
  virtual unsigned int space_dimension() const
  {
    return 6;
  }

  /// Return the rank of the value space
  virtual unsigned int value_rank() const
  {
    return 1;
  }

  /// Return the dimension of the value space for axis i
  virtual unsigned int value_dimension(unsigned int i) const
  {
    return 2;
  }

  /// Evaluate basis function i at given point in cell
  virtual void evaluate_basis(unsigned int i,
                              double* values,
                              const double* coordinates,
                              const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Reset values
    values[0] = 0;
    values[1] = 0;
    
    if (0 <= i && i <= 2)
    {
      // Map degree of freedom to element degree of freedom
      const unsigned int dof = i;
    
      // Generate scalings
      const double scalings_y_0 = 1;
      const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
      // Compute psitilde_a
      const double psitilde_a_0 = 1;
      const double psitilde_a_1 = x;
    
      // Compute psitilde_bs
      const double psitilde_bs_0_0 = 1;
      const double psitilde_bs_0_1 = 1.5*y + 0.5;
      const double psitilde_bs_1_0 = 1;
    
      // Compute basisvalues
      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
      const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
      const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
      // Table(s) of coefficients
      static const double coefficients0[3][3] =   \
      {{0.471404520791032, -0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0, 0.333333333333333}};
    
      // Extract relevant coefficients
      const double coeff0_0 =   coefficients0[dof][0];
      const double coeff0_1 =   coefficients0[dof][1];
      const double coeff0_2 =   coefficients0[dof][2];
    
      // Compute value(s)
      values[0] = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2;
    }
    
    if (3 <= i && i <= 5)
    {
      // Map degree of freedom to element degree of freedom
      const unsigned int dof = i - 3;
    
      // Generate scalings
      const double scalings_y_0 = 1;
      const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
      // Compute psitilde_a
      const double psitilde_a_0 = 1;
      const double psitilde_a_1 = x;
    
      // Compute psitilde_bs
      const double psitilde_bs_0_0 = 1;
      const double psitilde_bs_0_1 = 1.5*y + 0.5;
      const double psitilde_bs_1_0 = 1;
    
      // Compute basisvalues
      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
      const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
      const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
      // Table(s) of coefficients
      static const double coefficients0[3][3] =   \
      {{0.471404520791032, -0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0, 0.333333333333333}};
    
      // Extract relevant coefficients
      const double coeff0_0 =   coefficients0[dof][0];
      const double coeff0_1 =   coefficients0[dof][1];
      const double coeff0_2 =   coefficients0[dof][2];
    
      // Compute value(s)
      values[1] = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2;
    }
    
  }

  /// Evaluate all basis functions at given point in cell
  virtual void evaluate_basis_all(double* values,
                                  const double* coordinates,
                                  const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");
  }

  /// Evaluate order n derivatives of basis function i at given point in cell
  virtual void evaluate_basis_derivatives(unsigned int i,
                                          unsigned int n,
                                          double* values,
                                          const double* coordinates,
                                          const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Compute number of derivatives
    unsigned int num_derivatives = 1;
    
    for (unsigned int j = 0; j < n; j++)
      num_derivatives *= 2;
    
    
    // Declare pointer to two dimensional array that holds combinations of derivatives and initialise
    unsigned int **combinations = new unsigned int *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      combinations[j] = new unsigned int [n];
      for (unsigned int k = 0; k < n; k++)
        combinations[j][k] = 0;
    }
    
    // Generate combinations of derivatives
    for (unsigned int row = 1; row < num_derivatives; row++)
    {
      for (unsigned int num = 0; num < row; num++)
      {
        for (unsigned int col = n-1; col+1 > 0; col--)
        {
          if (combinations[row][col] + 1 > 1)
            combinations[row][col] = 0;
          else
          {
            combinations[row][col] += 1;
            break;
          }
        }
      }
    }
    
    // Compute inverse of Jacobian
    const double Jinv[2][2] =  {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}};
    
    // Declare transformation matrix
    // Declare pointer to two dimensional array and initialise
    double **transform = new double *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      transform[j] = new double [num_derivatives];
      for (unsigned int k = 0; k < num_derivatives; k++)
        transform[j][k] = 1;
    }
    
    // Construct transformation matrix
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        for (unsigned int k = 0; k < n; k++)
          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];
      }
    }
    
    // Reset values
    for (unsigned int j = 0; j < 2*num_derivatives; j++)
      values[j] = 0;
    
    if (0 <= i && i <= 2)
    {
      // Map degree of freedom to element degree of freedom
      const unsigned int dof = i;
    
      // Generate scalings
      const double scalings_y_0 = 1;
      const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
      // Compute psitilde_a
      const double psitilde_a_0 = 1;
      const double psitilde_a_1 = x;
    
      // Compute psitilde_bs
      const double psitilde_bs_0_0 = 1;
      const double psitilde_bs_0_1 = 1.5*y + 0.5;
      const double psitilde_bs_1_0 = 1;
    
      // Compute basisvalues
      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
      const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
      const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
      // Table(s) of coefficients
      static const double coefficients0[3][3] =   \
      {{0.471404520791032, -0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0, 0.333333333333333}};
    
      // Interesting (new) part
      // Tables of derivatives of the polynomial base (transpose)
      static const double dmats0[3][3] =   \
      {{0, 0, 0},
      {4.89897948556636, 0, 0},
      {0, 0, 0}};
    
      static const double dmats1[3][3] =   \
      {{0, 0, 0},
      {2.44948974278318, 0, 0},
      {4.24264068711928, 0, 0}};
    
      // Compute reference derivatives
      // Declare pointer to array of derivatives on FIAT element
      double *derivatives = new double [num_derivatives];
    
      // Declare coefficients
      double coeff0_0 = 0;
      double coeff0_1 = 0;
      double coeff0_2 = 0;
    
      // Declare new coefficients
      double new_coeff0_0 = 0;
      double new_coeff0_1 = 0;
      double new_coeff0_2 = 0;
    
      // Loop possible derivatives
      for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)
      {
        // Get values from coefficients array
        new_coeff0_0 = coefficients0[dof][0];
        new_coeff0_1 = coefficients0[dof][1];
        new_coeff0_2 = coefficients0[dof][2];
    
        // Loop derivative order
        for (unsigned int j = 0; j < n; j++)
        {
          // Update old coefficients
          coeff0_0 = new_coeff0_0;
          coeff0_1 = new_coeff0_1;
          coeff0_2 = new_coeff0_2;
    
          if(combinations[deriv_num][j] == 0)
          {
            new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0];
            new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1];
            new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2];
          }
          if(combinations[deriv_num][j] == 1)
          {
            new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0];
            new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1];
            new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2];
          }
    
        }
        // Compute derivatives on reference element as dot product of coefficients and basisvalues
        derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;
      }
    
      // Transform derivatives back to physical element
      for (unsigned int row = 0; row < num_derivatives; row++)
      {
        for (unsigned int col = 0; col < num_derivatives; col++)
        {
          values[row] += transform[row][col]*derivatives[col];
        }
      }
      // Delete pointer to array of derivatives on FIAT element
      delete [] derivatives;
    
      // Delete pointer to array of combinations of derivatives and transform
      for (unsigned int row = 0; row < num_derivatives; row++)
      {
        delete [] combinations[row];
        delete [] transform[row];
      }
    
      delete [] combinations;
      delete [] transform;
    }
    
    if (3 <= i && i <= 5)
    {
      // Map degree of freedom to element degree of freedom
      const unsigned int dof = i - 3;
    
      // Generate scalings
      const double scalings_y_0 = 1;
      const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
      // Compute psitilde_a
      const double psitilde_a_0 = 1;
      const double psitilde_a_1 = x;
    
      // Compute psitilde_bs
      const double psitilde_bs_0_0 = 1;
      const double psitilde_bs_0_1 = 1.5*y + 0.5;
      const double psitilde_bs_1_0 = 1;
    
      // Compute basisvalues
      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
      const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
      const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
      // Table(s) of coefficients
      static const double coefficients0[3][3] =   \
      {{0.471404520791032, -0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0, 0.333333333333333}};
    
      // Interesting (new) part
      // Tables of derivatives of the polynomial base (transpose)
      static const double dmats0[3][3] =   \
      {{0, 0, 0},
      {4.89897948556636, 0, 0},
      {0, 0, 0}};
    
      static const double dmats1[3][3] =   \
      {{0, 0, 0},
      {2.44948974278318, 0, 0},
      {4.24264068711928, 0, 0}};
    
      // Compute reference derivatives
      // Declare pointer to array of derivatives on FIAT element
      double *derivatives = new double [num_derivatives];
    
      // Declare coefficients
      double coeff0_0 = 0;
      double coeff0_1 = 0;
      double coeff0_2 = 0;
    
      // Declare new coefficients
      double new_coeff0_0 = 0;
      double new_coeff0_1 = 0;
      double new_coeff0_2 = 0;
    
      // Loop possible derivatives
      for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)
      {
        // Get values from coefficients array
        new_coeff0_0 = coefficients0[dof][0];
        new_coeff0_1 = coefficients0[dof][1];
        new_coeff0_2 = coefficients0[dof][2];
    
        // Loop derivative order
        for (unsigned int j = 0; j < n; j++)
        {
          // Update old coefficients
          coeff0_0 = new_coeff0_0;
          coeff0_1 = new_coeff0_1;
          coeff0_2 = new_coeff0_2;
    
          if(combinations[deriv_num][j] == 0)
          {
            new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0];
            new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1];
            new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2];
          }
          if(combinations[deriv_num][j] == 1)
          {
            new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0];
            new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1];
            new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2];
          }
    
        }
        // Compute derivatives on reference element as dot product of coefficients and basisvalues
        derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;
      }
    
      // Transform derivatives back to physical element
      for (unsigned int row = 0; row < num_derivatives; row++)
      {
        for (unsigned int col = 0; col < num_derivatives; col++)
        {
          values[num_derivatives + row] += transform[row][col]*derivatives[col];
        }
      }
      // Delete pointer to array of derivatives on FIAT element
      delete [] derivatives;
    
      // Delete pointer to array of combinations of derivatives and transform
      for (unsigned int row = 0; row < num_derivatives; row++)
      {
        delete [] combinations[row];
        delete [] transform[row];
      }
    
      delete [] combinations;
      delete [] transform;
    }
    
  }

  /// Evaluate order n derivatives of all basis functions at given point in cell
  virtual void evaluate_basis_derivatives_all(unsigned int n,
                                              double* values,
                                              const double* coordinates,
                                              const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");
  }

  /// Evaluate linear functional for dof i on the function f
  virtual double evaluate_dof(unsigned int i,
                              const ufc::function& f,
                              const ufc::cell& c) const
  {
    // The reference points, direction and weights:
    static const double X[6][1][2] = {{{0, 0}}, {{1, 0}}, {{0, 1}}, {{0, 0}}, {{1, 0}}, {{0, 1}}};
    static const double W[6][1] = {{1}, {1}, {1}, {1}, {1}, {1}};
    static const double D[6][1][2] = {{{1, 0}}, {{1, 0}}, {{1, 0}}, {{0, 1}}, {{0, 1}}, {{0, 1}}};
    
    const double * const * x = c.coordinates;
    double result = 0.0;
    // Iterate over the points:
    // Evaluate basis functions for affine mapping
    const double w0 = 1.0 - X[i][0][0] - X[i][0][1];
    const double w1 = X[i][0][0];
    const double w2 = X[i][0][1];
    
    // Compute affine mapping y = F(X)
    double y[2];
    y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];
    y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];
    
    // Evaluate function at physical points
    double values[2];
    f.evaluate(values, y, c);
    
    // Map function values using appropriate mapping
    // Affine map: Do nothing
    
    // Note that we do not map the weights (yet).
    
    // Take directional components
    for(int k = 0; k < 2; k++)
      result += values[k]*D[i][0][k];
    // Multiply by weights
    result *= W[i][0];
    
    return result;
  }

  /// Evaluate linear functionals for all dofs on the function f
  virtual void evaluate_dofs(double* values,
                             const ufc::function& f,
                             const ufc::cell& c) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Interpolate vertex values from dof values
  virtual void interpolate_vertex_values(double* vertex_values,
                                         const double* dof_values,
                                         const ufc::cell& c) const
  {
    // Evaluate at vertices and use affine mapping
    vertex_values[0] = dof_values[0];
    vertex_values[2] = dof_values[1];
    vertex_values[4] = dof_values[2];
    // Evaluate at vertices and use affine mapping
    vertex_values[1] = dof_values[3];
    vertex_values[3] = dof_values[4];
    vertex_values[5] = dof_values[5];
  }

  /// Return the number of sub elements (for a mixed element)
  virtual unsigned int num_sub_elements() const
  {
    return 2;
  }

  /// Create a new finite element for sub element i (for a mixed element)
  virtual ufc::finite_element* create_sub_element(unsigned int i) const
  {
    switch ( i )
    {
    case 0:
      return new poisson_0_finite_element_1_0();
      break;
    case 1:
      return new poisson_0_finite_element_1_1();
      break;
    }
    return 0;
  }

};

/// This class defines the interface for a finite element.

class poisson_0_finite_element_2: public ufc::finite_element
{
public:

  /// Constructor
  poisson_0_finite_element_2() : ufc::finite_element()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson_0_finite_element_2()
  {
    // Do nothing
  }

  /// Return a string identifying the finite element
  virtual const char* signature() const
  {
    return "FiniteElement('Discontinuous Lagrange', Cell('triangle', 1, Space(2)), 0)";
  }

  /// Return the cell shape
  virtual ufc::shape cell_shape() const
  {
    return ufc::triangle;
  }

  /// Return the dimension of the finite element function space
  virtual unsigned int space_dimension() const
  {
    return 1;
  }

  /// Return the rank of the value space
  virtual unsigned int value_rank() const
  {
    return 0;
  }

  /// Return the dimension of the value space for axis i
  virtual unsigned int value_dimension(unsigned int i) const
  {
    return 1;
  }

  /// Evaluate basis function i at given point in cell
  virtual void evaluate_basis(unsigned int i,
                              double* values,
                              const double* coordinates,
                              const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Reset values
    *values = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    
    // Table(s) of coefficients
    static const double coefficients0[1][1] = \
    {{1.41421356237309}};
    
    // Extract relevant coefficients
    const double coeff0_0 = coefficients0[dof][0];
    
    // Compute value(s)
    *values = coeff0_0*basisvalue0;
  }

  /// Evaluate all basis functions at given point in cell
  virtual void evaluate_basis_all(double* values,
                                  const double* coordinates,
                                  const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");
  }

  /// Evaluate order n derivatives of basis function i at given point in cell
  virtual void evaluate_basis_derivatives(unsigned int i,
                                          unsigned int n,
                                          double* values,
                                          const double* coordinates,
                                          const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Compute number of derivatives
    unsigned int num_derivatives = 1;
    
    for (unsigned int j = 0; j < n; j++)
      num_derivatives *= 2;
    
    
    // Declare pointer to two dimensional array that holds combinations of derivatives and initialise
    unsigned int **combinations = new unsigned int *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      combinations[j] = new unsigned int [n];
      for (unsigned int k = 0; k < n; k++)
        combinations[j][k] = 0;
    }
    
    // Generate combinations of derivatives
    for (unsigned int row = 1; row < num_derivatives; row++)
    {
      for (unsigned int num = 0; num < row; num++)
      {
        for (unsigned int col = n-1; col+1 > 0; col--)
        {
          if (combinations[row][col] + 1 > 1)
            combinations[row][col] = 0;
          else
          {
            combinations[row][col] += 1;
            break;
          }
        }
      }
    }
    
    // Compute inverse of Jacobian
    const double Jinv[2][2] =  {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}};
    
    // Declare transformation matrix
    // Declare pointer to two dimensional array and initialise
    double **transform = new double *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      transform[j] = new double [num_derivatives];
      for (unsigned int k = 0; k < num_derivatives; k++)
        transform[j][k] = 1;
    }
    
    // Construct transformation matrix
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        for (unsigned int k = 0; k < n; k++)
          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];
      }
    }
    
    // Reset values
    for (unsigned int j = 0; j < 1*num_derivatives; j++)
      values[j] = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    
    // Table(s) of coefficients
    static const double coefficients0[1][1] = \
    {{1.41421356237309}};
    
    // Interesting (new) part
    // Tables of derivatives of the polynomial base (transpose)
    static const double dmats0[1][1] = \
    {{0}};
    
    static const double dmats1[1][1] = \
    {{0}};
    
    // Compute reference derivatives
    // Declare pointer to array of derivatives on FIAT element
    double *derivatives = new double [num_derivatives];
    
    // Declare coefficients
    double coeff0_0 = 0;
    
    // Declare new coefficients
    double new_coeff0_0 = 0;
    
    // Loop possible derivatives
    for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)
    {
      // Get values from coefficients array
      new_coeff0_0 = coefficients0[dof][0];
    
      // Loop derivative order
      for (unsigned int j = 0; j < n; j++)
      {
        // Update old coefficients
        coeff0_0 = new_coeff0_0;
    
        if(combinations[deriv_num][j] == 0)
        {
          new_coeff0_0 = coeff0_0*dmats0[0][0];
        }
        if(combinations[deriv_num][j] == 1)
        {
          new_coeff0_0 = coeff0_0*dmats1[0][0];
        }
    
      }
      // Compute derivatives on reference element as dot product of coefficients and basisvalues
      derivatives[deriv_num] = new_coeff0_0*basisvalue0;
    }
    
    // Transform derivatives back to physical element
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        values[row] += transform[row][col]*derivatives[col];
      }
    }
    // Delete pointer to array of derivatives on FIAT element
    delete [] derivatives;
    
    // Delete pointer to array of combinations of derivatives and transform
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      delete [] combinations[row];
      delete [] transform[row];
    }
    
    delete [] combinations;
    delete [] transform;
  }

  /// Evaluate order n derivatives of all basis functions at given point in cell
  virtual void evaluate_basis_derivatives_all(unsigned int n,
                                              double* values,
                                              const double* coordinates,
                                              const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");
  }

  /// Evaluate linear functional for dof i on the function f
  virtual double evaluate_dof(unsigned int i,
                              const ufc::function& f,
                              const ufc::cell& c) const
  {
    // The reference points, direction and weights:
    static const double X[1][1][2] = {{{0.333333333333333, 0.333333333333333}}};
    static const double W[1][1] = {{1}};
    static const double D[1][1][1] = {{{1}}};
    
    const double * const * x = c.coordinates;
    double result = 0.0;
    // Iterate over the points:
    // Evaluate basis functions for affine mapping
    const double w0 = 1.0 - X[i][0][0] - X[i][0][1];
    const double w1 = X[i][0][0];
    const double w2 = X[i][0][1];
    
    // Compute affine mapping y = F(X)
    double y[2];
    y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];
    y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];
    
    // Evaluate function at physical points
    double values[1];
    f.evaluate(values, y, c);
    
    // Map function values using appropriate mapping
    // Affine map: Do nothing
    
    // Note that we do not map the weights (yet).
    
    // Take directional components
    for(int k = 0; k < 1; k++)
      result += values[k]*D[i][0][k];
    // Multiply by weights
    result *= W[i][0];
    
    return result;
  }

  /// Evaluate linear functionals for all dofs on the function f
  virtual void evaluate_dofs(double* values,
                             const ufc::function& f,
                             const ufc::cell& c) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Interpolate vertex values from dof values
  virtual void interpolate_vertex_values(double* vertex_values,
                                         const double* dof_values,
                                         const ufc::cell& c) const
  {
    // Evaluate at vertices and use affine mapping
    vertex_values[0] = dof_values[0];
    vertex_values[1] = dof_values[0];
    vertex_values[2] = dof_values[0];
  }

  /// Return the number of sub elements (for a mixed element)
  virtual unsigned int num_sub_elements() const
  {
    return 1;
  }

  /// Create a new finite element for sub element i (for a mixed element)
  virtual ufc::finite_element* create_sub_element(unsigned int i) const
  {
    return new poisson_0_finite_element_2();
  }

};

/// This class defines the interface for a finite element.

class poisson_0_finite_element_3: public ufc::finite_element
{
public:

  /// Constructor
  poisson_0_finite_element_3() : ufc::finite_element()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson_0_finite_element_3()
  {
    // Do nothing
  }

  /// Return a string identifying the finite element
  virtual const char* signature() const
  {
    return "FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)";
  }

  /// Return the cell shape
  virtual ufc::shape cell_shape() const
  {
    return ufc::triangle;
  }

  /// Return the dimension of the finite element function space
  virtual unsigned int space_dimension() const
  {
    return 3;
  }

  /// Return the rank of the value space
  virtual unsigned int value_rank() const
  {
    return 0;
  }

  /// Return the dimension of the value space for axis i
  virtual unsigned int value_dimension(unsigned int i) const
  {
    return 1;
  }

  /// Evaluate basis function i at given point in cell
  virtual void evaluate_basis(unsigned int i,
                              double* values,
                              const double* coordinates,
                              const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Reset values
    *values = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    const double psitilde_a_1 = x;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    const double psitilde_bs_0_1 = 1.5*y + 0.5;
    const double psitilde_bs_1_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
    // Table(s) of coefficients
    static const double coefficients0[3][3] = \
    {{0.471404520791032, -0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0, 0.333333333333333}};
    
    // Extract relevant coefficients
    const double coeff0_0 = coefficients0[dof][0];
    const double coeff0_1 = coefficients0[dof][1];
    const double coeff0_2 = coefficients0[dof][2];
    
    // Compute value(s)
    *values = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2;
  }

  /// Evaluate all basis functions at given point in cell
  virtual void evaluate_basis_all(double* values,
                                  const double* coordinates,
                                  const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");
  }

  /// Evaluate order n derivatives of basis function i at given point in cell
  virtual void evaluate_basis_derivatives(unsigned int i,
                                          unsigned int n,
                                          double* values,
                                          const double* coordinates,
                                          const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Compute number of derivatives
    unsigned int num_derivatives = 1;
    
    for (unsigned int j = 0; j < n; j++)
      num_derivatives *= 2;
    
    
    // Declare pointer to two dimensional array that holds combinations of derivatives and initialise
    unsigned int **combinations = new unsigned int *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      combinations[j] = new unsigned int [n];
      for (unsigned int k = 0; k < n; k++)
        combinations[j][k] = 0;
    }
    
    // Generate combinations of derivatives
    for (unsigned int row = 1; row < num_derivatives; row++)
    {
      for (unsigned int num = 0; num < row; num++)
      {
        for (unsigned int col = n-1; col+1 > 0; col--)
        {
          if (combinations[row][col] + 1 > 1)
            combinations[row][col] = 0;
          else
          {
            combinations[row][col] += 1;
            break;
          }
        }
      }
    }
    
    // Compute inverse of Jacobian
    const double Jinv[2][2] =  {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}};
    
    // Declare transformation matrix
    // Declare pointer to two dimensional array and initialise
    double **transform = new double *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      transform[j] = new double [num_derivatives];
      for (unsigned int k = 0; k < num_derivatives; k++)
        transform[j][k] = 1;
    }
    
    // Construct transformation matrix
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        for (unsigned int k = 0; k < n; k++)
          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];
      }
    }
    
    // Reset values
    for (unsigned int j = 0; j < 1*num_derivatives; j++)
      values[j] = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    const double psitilde_a_1 = x;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    const double psitilde_bs_0_1 = 1.5*y + 0.5;
    const double psitilde_bs_1_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
    // Table(s) of coefficients
    static const double coefficients0[3][3] = \
    {{0.471404520791032, -0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0, 0.333333333333333}};
    
    // Interesting (new) part
    // Tables of derivatives of the polynomial base (transpose)
    static const double dmats0[3][3] = \
    {{0, 0, 0},
    {4.89897948556636, 0, 0},
    {0, 0, 0}};
    
    static const double dmats1[3][3] = \
    {{0, 0, 0},
    {2.44948974278318, 0, 0},
    {4.24264068711928, 0, 0}};
    
    // Compute reference derivatives
    // Declare pointer to array of derivatives on FIAT element
    double *derivatives = new double [num_derivatives];
    
    // Declare coefficients
    double coeff0_0 = 0;
    double coeff0_1 = 0;
    double coeff0_2 = 0;
    
    // Declare new coefficients
    double new_coeff0_0 = 0;
    double new_coeff0_1 = 0;
    double new_coeff0_2 = 0;
    
    // Loop possible derivatives
    for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)
    {
      // Get values from coefficients array
      new_coeff0_0 = coefficients0[dof][0];
      new_coeff0_1 = coefficients0[dof][1];
      new_coeff0_2 = coefficients0[dof][2];
    
      // Loop derivative order
      for (unsigned int j = 0; j < n; j++)
      {
        // Update old coefficients
        coeff0_0 = new_coeff0_0;
        coeff0_1 = new_coeff0_1;
        coeff0_2 = new_coeff0_2;
    
        if(combinations[deriv_num][j] == 0)
        {
          new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0];
          new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1];
          new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2];
        }
        if(combinations[deriv_num][j] == 1)
        {
          new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0];
          new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1];
          new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2];
        }
    
      }
      // Compute derivatives on reference element as dot product of coefficients and basisvalues
      derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;
    }
    
    // Transform derivatives back to physical element
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        values[row] += transform[row][col]*derivatives[col];
      }
    }
    // Delete pointer to array of derivatives on FIAT element
    delete [] derivatives;
    
    // Delete pointer to array of combinations of derivatives and transform
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      delete [] combinations[row];
      delete [] transform[row];
    }
    
    delete [] combinations;
    delete [] transform;
  }

  /// Evaluate order n derivatives of all basis functions at given point in cell
  virtual void evaluate_basis_derivatives_all(unsigned int n,
                                              double* values,
                                              const double* coordinates,
                                              const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");
  }

  /// Evaluate linear functional for dof i on the function f
  virtual double evaluate_dof(unsigned int i,
                              const ufc::function& f,
                              const ufc::cell& c) const
  {
    // The reference points, direction and weights:
    static const double X[3][1][2] = {{{0, 0}}, {{1, 0}}, {{0, 1}}};
    static const double W[3][1] = {{1}, {1}, {1}};
    static const double D[3][1][1] = {{{1}}, {{1}}, {{1}}};
    
    const double * const * x = c.coordinates;
    double result = 0.0;
    // Iterate over the points:
    // Evaluate basis functions for affine mapping
    const double w0 = 1.0 - X[i][0][0] - X[i][0][1];
    const double w1 = X[i][0][0];
    const double w2 = X[i][0][1];
    
    // Compute affine mapping y = F(X)
    double y[2];
    y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];
    y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];
    
    // Evaluate function at physical points
    double values[1];
    f.evaluate(values, y, c);
    
    // Map function values using appropriate mapping
    // Affine map: Do nothing
    
    // Note that we do not map the weights (yet).
    
    // Take directional components
    for(int k = 0; k < 1; k++)
      result += values[k]*D[i][0][k];
    // Multiply by weights
    result *= W[i][0];
    
    return result;
  }

  /// Evaluate linear functionals for all dofs on the function f
  virtual void evaluate_dofs(double* values,
                             const ufc::function& f,
                             const ufc::cell& c) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Interpolate vertex values from dof values
  virtual void interpolate_vertex_values(double* vertex_values,
                                         const double* dof_values,
                                         const ufc::cell& c) const
  {
    // Evaluate at vertices and use affine mapping
    vertex_values[0] = dof_values[0];
    vertex_values[1] = dof_values[1];
    vertex_values[2] = dof_values[2];
  }

  /// Return the number of sub elements (for a mixed element)
  virtual unsigned int num_sub_elements() const
  {
    return 1;
  }

  /// Create a new finite element for sub element i (for a mixed element)
  virtual ufc::finite_element* create_sub_element(unsigned int i) const
  {
    return new poisson_0_finite_element_3();
  }

};

/// This class defines the interface for a local-to-global mapping of
/// degrees of freedom (dofs).


class poisson_0_dof_map_0_0: public ufc::dof_map 
{
private:

  unsigned int __global_dimension; 
   

public:

  /// Constructor
  poisson_0_dof_map_0_0() :ufc::dof_map()
  {
    __global_dimension = 0;
  }
  /// Destructor
  virtual ~poisson_0_dof_map_0_0()
  {
    // Do nothing
  }

  /// Return a string identifying the dof map
  virtual const char* signature() const
  {
    return "FFC dof map for FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)";
  }

  /// Return true iff mesh entities of topological dimension d are needed
  virtual bool needs_mesh_entities(unsigned int d) const
  {
    switch ( d )
    {
    case 0:
      return true;
      break;
    case 1:
      return false;
      break;
    case 2:
      return false;
      break;
    }
    return false;
  }

  /// Initialize dof map for mesh (return true iff init_cell() is needed)
  virtual bool init_mesh(const ufc::mesh& m)
  {
    __global_dimension = m.num_entities[0];
    return false;
  }

  /// Initialize dof map for given cell
  virtual void init_cell(const ufc::mesh& m,
                         const ufc::cell& c)
  {
    // Do nothing
  }

  /// Finish initialization of dof map for cells
  virtual void init_cell_finalize()
  {
    // Do nothing
  }

  /// Return the dimension of the global finite element function space
  virtual unsigned int global_dimension() const
  {
    return __global_dimension ;
  }

  /// Return the dimension of the local finite element function space for a cell
  virtual unsigned int local_dimension(const ufc::cell& c) const
  {
    return 3;
  }

  /// Return the maximum dimension of the local finite element function space
  virtual unsigned int max_local_dimension() const
  {
    return 3;
  }


  // Return the geometric dimension of the coordinates this dof map provides
  virtual unsigned int geometric_dimension() const
  {
    return 2;
  }

  /// Return the number of dofs on each cell facet
  virtual unsigned int num_facet_dofs() const
  {
    return 2;
  }

  /// Return the number of dofs associated with each cell entity of dimension d
  virtual unsigned int num_entity_dofs(unsigned int d) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the local-to-global mapping of dofs on a cell
  virtual void tabulate_dofs(unsigned int* dofs,
                             const ufc::mesh& m,
                             const ufc::cell& c) const
  {
    dofs[0] = c.entity_indices[0][0];
    dofs[1] = c.entity_indices[0][1];
    dofs[2] = c.entity_indices[0][2];
  }

  /// Tabulate the local-to-local mapping from facet dofs to cell dofs
  virtual void tabulate_facet_dofs(unsigned int* dofs,
                                   unsigned int facet) const
  {
    switch ( facet )
    {
    case 0:
      dofs[0] = 1;
      dofs[1] = 2;
      break;
    case 1:
      dofs[0] = 0;
      dofs[1] = 2;
      break;
    case 2:
      dofs[0] = 0;
      dofs[1] = 1;
      break;
    }
  }

  /// Tabulate the local-to-local mapping of dofs on entity (d, i)
  virtual void tabulate_entity_dofs(unsigned int* dofs,
                                    unsigned int d, unsigned int i) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the coordinates of all dofs on a cell
  virtual void tabulate_coordinates(double** coordinates,
                                    const ufc::cell& c) const
  {
    const double * const * x = c.coordinates;
    coordinates[0][0] = x[0][0];
    coordinates[0][1] = x[0][1];
    coordinates[1][0] = x[1][0];
    coordinates[1][1] = x[1][1];
    coordinates[2][0] = x[2][0];
    coordinates[2][1] = x[2][1];
  }

  /// Return the number of sub dof maps (for a mixed element)
  virtual unsigned int num_sub_dof_maps() const
  {
    return 1;
  }

  /// Create a new dof_map for sub dof map i (for a mixed element)
  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const
  {
    return new poisson_0_dof_map_0_0();
  }

};

/// This class defines the interface for a local-to-global mapping of
/// degrees of freedom (dofs).


class poisson_0_dof_map_0_1: public ufc::dof_map 
{
private:

  unsigned int __global_dimension; 
  const std::vector<const pum::GenericPUM*>& pums; 

public:

  /// Constructor
  poisson_0_dof_map_0_1(const std::vector<const pum::GenericPUM*>& pums) :ufc::dof_map(), pums(pums)
  {
    __global_dimension = 0;
  }
  /// Destructor
  virtual ~poisson_0_dof_map_0_1()
  {
    // Do nothing
  }

  /// Return a string identifying the dof map
  virtual const char* signature() const
  {
    return "FFC dof map for FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)";
  }

  /// Return true iff mesh entities of topological dimension d are needed
  virtual bool needs_mesh_entities(unsigned int d) const
  {
    switch ( d )
    {
    case 0:
      return true;
      break;
    case 1:
      return false;
      break;
    case 2:
      return false;
      break;
    }
    return false;
  }

  /// Initialize dof map for mesh (return true iff init_cell() is needed)
  virtual bool init_mesh(const ufc::mesh& m)
  {
    __global_dimension = 0;
    return false;
  }

  /// Initialize dof map for given cell
  virtual void init_cell(const ufc::mesh& m,
                         const ufc::cell& c)
  {
    // Do nothing
  }

  /// Finish initialization of dof map for cells
  virtual void init_cell_finalize()
  {
    // Do nothing
  }

  /// Return the dimension of the global finite element function space
  virtual unsigned int global_dimension() const
  {
    return __global_dimension + pums[0]->enriched_global_dimension();
  }

  /// Return the dimension of the local finite element function space for a cell
  virtual unsigned int local_dimension(const ufc::cell& c) const
  {
    return pums[0]->enriched_local_dimension(c);
  }

  /// Return the maximum dimension of the local finite element function space
  virtual unsigned int max_local_dimension() const
  {
    return pums[0]->enriched_max_local_dimension();
  }


  // Return the geometric dimension of the coordinates this dof map provides
  virtual unsigned int geometric_dimension() const
  {
    return 2;
  }

  /// Return the number of dofs on each cell facet
  virtual unsigned int num_facet_dofs() const
  {
    return 2;
  }

  /// Return the number of dofs associated with each cell entity of dimension d
  virtual unsigned int num_entity_dofs(unsigned int d) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the local-to-global mapping of dofs on a cell
  virtual void tabulate_dofs(unsigned int* dofs,
                             const ufc::mesh& m,
                             const ufc::cell& c) const
  {
    // Generate code for tabulating extra degrees of freedom.
    unsigned int local_offset = 0;
    unsigned int global_offset = 0;
    
    // Calculate local-to-global mapping for the enriched dofs related to the discontinuous field 0
    pums[0]->tabulate_enriched_dofs(dofs, c, local_offset, global_offset);
  }

  /// Tabulate the local-to-local mapping from facet dofs to cell dofs
  virtual void tabulate_facet_dofs(unsigned int* dofs,
                                   unsigned int facet) const
  {
    switch ( facet )
    {
    case 0:
      dofs[0] = 1;
      dofs[1] = 2;
      break;
    case 1:
      dofs[0] = 0;
      dofs[1] = 2;
      break;
    case 2:
      dofs[0] = 0;
      dofs[1] = 1;
      break;
    }
  }

  /// Tabulate the local-to-local mapping of dofs on entity (d, i)
  virtual void tabulate_entity_dofs(unsigned int* dofs,
                                    unsigned int d, unsigned int i) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the coordinates of all dofs on a cell
  virtual void tabulate_coordinates(double** coordinates,
                                    const ufc::cell& c) const
  {
    const double * const * x = c.coordinates;
    coordinates[0][0] = x[0][0];
    coordinates[0][1] = x[0][1];
    coordinates[1][0] = x[1][0];
    coordinates[1][1] = x[1][1];
    coordinates[2][0] = x[2][0];
    coordinates[2][1] = x[2][1];
  }

  /// Return the number of sub dof maps (for a mixed element)
  virtual unsigned int num_sub_dof_maps() const
  {
    return 1;
  }

  /// Create a new dof_map for sub dof map i (for a mixed element)
  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const
  {
    const std::vector<const pum::GenericPUM*>& p0 = boost::assign::list_of(pums[0]);
    
    return new poisson_0_dof_map_0_1(p0);
  }

};

/// This class defines the interface for a local-to-global mapping of
/// degrees of freedom (dofs).


class poisson_0_dof_map_0: public ufc::dof_map 
{
private:

  unsigned int __global_dimension; 
  const std::vector<const pum::GenericPUM*>& pums; 

public:

  /// Constructor
  poisson_0_dof_map_0(const std::vector<const pum::GenericPUM*>& pums) :ufc::dof_map(), pums(pums)
  {
    __global_dimension = 0;
  }
  /// Destructor
  virtual ~poisson_0_dof_map_0()
  {
    // Do nothing
  }

  /// Return a string identifying the dof map
  virtual const char* signature() const
  {
    return "FFC dof map for MixedElement(*[FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), ElementRestriction(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), Measure('surface', 0, None))], **{'value_shape': (2,) })";
  }

  /// Return true iff mesh entities of topological dimension d are needed
  virtual bool needs_mesh_entities(unsigned int d) const
  {
    switch ( d )
    {
    case 0:
      return true;
      break;
    case 1:
      return false;
      break;
    case 2:
      return false;
      break;
    }
    return false;
  }

  /// Initialize dof map for mesh (return true iff init_cell() is needed)
  virtual bool init_mesh(const ufc::mesh& m)
  {
    __global_dimension = m.num_entities[0];
    return false;
  }

  /// Initialize dof map for given cell
  virtual void init_cell(const ufc::mesh& m,
                         const ufc::cell& c)
  {
    // Do nothing
  }

  /// Finish initialization of dof map for cells
  virtual void init_cell_finalize()
  {
    // Do nothing
  }

  /// Return the dimension of the global finite element function space
  virtual unsigned int global_dimension() const
  {
    return __global_dimension + pums[0]->enriched_global_dimension();
  }

  /// Return the dimension of the local finite element function space for a cell
  virtual unsigned int local_dimension(const ufc::cell& c) const
  {
    return 3 + pums[0]->enriched_local_dimension(c);
  }

  /// Return the maximum dimension of the local finite element function space
  virtual unsigned int max_local_dimension() const
  {
    return 3 + pums[0]->enriched_max_local_dimension();
  }


  // Return the geometric dimension of the coordinates this dof map provides
  virtual unsigned int geometric_dimension() const
  {
    return 2;
  }

  /// Return the number of dofs on each cell facet
  virtual unsigned int num_facet_dofs() const
  {
    return 4;
  }

  /// Return the number of dofs associated with each cell entity of dimension d
  virtual unsigned int num_entity_dofs(unsigned int d) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the local-to-global mapping of dofs on a cell
  virtual void tabulate_dofs(unsigned int* dofs,
                             const ufc::mesh& m,
                             const ufc::cell& c) const
  {
    dofs[0] = c.entity_indices[0][0];
    dofs[1] = c.entity_indices[0][1];
    dofs[2] = c.entity_indices[0][2];\
    
    // Generate code for tabulating extra degrees of freedom.
    unsigned int local_offset = 3;
    unsigned int global_offset = m.num_entities[0];
    
    // Calculate local-to-global mapping for the enriched dofs related to the discontinuous field 0
    pums[0]->tabulate_enriched_dofs(dofs, c, local_offset, global_offset);
  }

  /// Tabulate the local-to-local mapping from facet dofs to cell dofs
  virtual void tabulate_facet_dofs(unsigned int* dofs,
                                   unsigned int facet) const
  {
    switch ( facet )
    {
    case 0:
      dofs[0] = 1;
      dofs[1] = 2;
      dofs[2] = 4;
      dofs[3] = 5;
      break;
    case 1:
      dofs[0] = 0;
      dofs[1] = 2;
      dofs[2] = 3;
      dofs[3] = 5;
      break;
    case 2:
      dofs[0] = 0;
      dofs[1] = 1;
      dofs[2] = 3;
      dofs[3] = 4;
      break;
    }
  }

  /// Tabulate the local-to-local mapping of dofs on entity (d, i)
  virtual void tabulate_entity_dofs(unsigned int* dofs,
                                    unsigned int d, unsigned int i) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the coordinates of all dofs on a cell
  virtual void tabulate_coordinates(double** coordinates,
                                    const ufc::cell& c) const
  {
    const double * const * x = c.coordinates;
    coordinates[0][0] = x[0][0];
    coordinates[0][1] = x[0][1];
    coordinates[1][0] = x[1][0];
    coordinates[1][1] = x[1][1];
    coordinates[2][0] = x[2][0];
    coordinates[2][1] = x[2][1];
    coordinates[3][0] = x[0][0];
    coordinates[3][1] = x[0][1];
    coordinates[4][0] = x[1][0];
    coordinates[4][1] = x[1][1];
    coordinates[5][0] = x[2][0];
    coordinates[5][1] = x[2][1];
  }

  /// Return the number of sub dof maps (for a mixed element)
  virtual unsigned int num_sub_dof_maps() const
  {
    return 2;
  }

  /// Create a new dof_map for sub dof map i (for a mixed element)
  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const
  {
    const std::vector<const pum::GenericPUM*>& p1 = boost::assign::list_of(pums[0]);
    
    switch ( i )
    {
    case 0:
      return new poisson_0_dof_map_0_0();
      break;
    case 1:
      return new poisson_0_dof_map_0_1(p1);
      break;
    }
    return 0;
  }

};

/// This class defines the interface for a local-to-global mapping of
/// degrees of freedom (dofs).


class poisson_0_dof_map_1_0: public ufc::dof_map 
{
private:

  unsigned int __global_dimension; 
   

public:

  /// Constructor
  poisson_0_dof_map_1_0() :ufc::dof_map()
  {
    __global_dimension = 0;
  }
  /// Destructor
  virtual ~poisson_0_dof_map_1_0()
  {
    // Do nothing
  }

  /// Return a string identifying the dof map
  virtual const char* signature() const
  {
    return "FFC dof map for FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)";
  }

  /// Return true iff mesh entities of topological dimension d are needed
  virtual bool needs_mesh_entities(unsigned int d) const
  {
    switch ( d )
    {
    case 0:
      return true;
      break;
    case 1:
      return false;
      break;
    case 2:
      return false;
      break;
    }
    return false;
  }

  /// Initialize dof map for mesh (return true iff init_cell() is needed)
  virtual bool init_mesh(const ufc::mesh& m)
  {
    __global_dimension = m.num_entities[0];
    return false;
  }

  /// Initialize dof map for given cell
  virtual void init_cell(const ufc::mesh& m,
                         const ufc::cell& c)
  {
    // Do nothing
  }

  /// Finish initialization of dof map for cells
  virtual void init_cell_finalize()
  {
    // Do nothing
  }

  /// Return the dimension of the global finite element function space
  virtual unsigned int global_dimension() const
  {
    return __global_dimension ;
  }

  /// Return the dimension of the local finite element function space for a cell
  virtual unsigned int local_dimension(const ufc::cell& c) const
  {
    return 3;
  }

  /// Return the maximum dimension of the local finite element function space
  virtual unsigned int max_local_dimension() const
  {
    return 3;
  }


  // Return the geometric dimension of the coordinates this dof map provides
  virtual unsigned int geometric_dimension() const
  {
    return 2;
  }

  /// Return the number of dofs on each cell facet
  virtual unsigned int num_facet_dofs() const
  {
    return 2;
  }

  /// Return the number of dofs associated with each cell entity of dimension d
  virtual unsigned int num_entity_dofs(unsigned int d) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the local-to-global mapping of dofs on a cell
  virtual void tabulate_dofs(unsigned int* dofs,
                             const ufc::mesh& m,
                             const ufc::cell& c) const
  {
    dofs[0] = c.entity_indices[0][0];
    dofs[1] = c.entity_indices[0][1];
    dofs[2] = c.entity_indices[0][2];
  }

  /// Tabulate the local-to-local mapping from facet dofs to cell dofs
  virtual void tabulate_facet_dofs(unsigned int* dofs,
                                   unsigned int facet) const
  {
    switch ( facet )
    {
    case 0:
      dofs[0] = 1;
      dofs[1] = 2;
      break;
    case 1:
      dofs[0] = 0;
      dofs[1] = 2;
      break;
    case 2:
      dofs[0] = 0;
      dofs[1] = 1;
      break;
    }
  }

  /// Tabulate the local-to-local mapping of dofs on entity (d, i)
  virtual void tabulate_entity_dofs(unsigned int* dofs,
                                    unsigned int d, unsigned int i) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the coordinates of all dofs on a cell
  virtual void tabulate_coordinates(double** coordinates,
                                    const ufc::cell& c) const
  {
    const double * const * x = c.coordinates;
    coordinates[0][0] = x[0][0];
    coordinates[0][1] = x[0][1];
    coordinates[1][0] = x[1][0];
    coordinates[1][1] = x[1][1];
    coordinates[2][0] = x[2][0];
    coordinates[2][1] = x[2][1];
  }

  /// Return the number of sub dof maps (for a mixed element)
  virtual unsigned int num_sub_dof_maps() const
  {
    return 1;
  }

  /// Create a new dof_map for sub dof map i (for a mixed element)
  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const
  {
    return new poisson_0_dof_map_1_0();
  }

};

/// This class defines the interface for a local-to-global mapping of
/// degrees of freedom (dofs).


class poisson_0_dof_map_1_1: public ufc::dof_map 
{
private:

  unsigned int __global_dimension; 
  const std::vector<const pum::GenericPUM*>& pums; 

public:

  /// Constructor
  poisson_0_dof_map_1_1(const std::vector<const pum::GenericPUM*>& pums) :ufc::dof_map(), pums(pums)
  {
    __global_dimension = 0;
  }
  /// Destructor
  virtual ~poisson_0_dof_map_1_1()
  {
    // Do nothing
  }

  /// Return a string identifying the dof map
  virtual const char* signature() const
  {
    return "FFC dof map for FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)";
  }

  /// Return true iff mesh entities of topological dimension d are needed
  virtual bool needs_mesh_entities(unsigned int d) const
  {
    switch ( d )
    {
    case 0:
      return true;
      break;
    case 1:
      return false;
      break;
    case 2:
      return false;
      break;
    }
    return false;
  }

  /// Initialize dof map for mesh (return true iff init_cell() is needed)
  virtual bool init_mesh(const ufc::mesh& m)
  {
    __global_dimension = 0;
    return false;
  }

  /// Initialize dof map for given cell
  virtual void init_cell(const ufc::mesh& m,
                         const ufc::cell& c)
  {
    // Do nothing
  }

  /// Finish initialization of dof map for cells
  virtual void init_cell_finalize()
  {
    // Do nothing
  }

  /// Return the dimension of the global finite element function space
  virtual unsigned int global_dimension() const
  {
    return __global_dimension + pums[0]->enriched_global_dimension();
  }

  /// Return the dimension of the local finite element function space for a cell
  virtual unsigned int local_dimension(const ufc::cell& c) const
  {
    return pums[0]->enriched_local_dimension(c);
  }

  /// Return the maximum dimension of the local finite element function space
  virtual unsigned int max_local_dimension() const
  {
    return pums[0]->enriched_max_local_dimension();
  }


  // Return the geometric dimension of the coordinates this dof map provides
  virtual unsigned int geometric_dimension() const
  {
    return 2;
  }

  /// Return the number of dofs on each cell facet
  virtual unsigned int num_facet_dofs() const
  {
    return 2;
  }

  /// Return the number of dofs associated with each cell entity of dimension d
  virtual unsigned int num_entity_dofs(unsigned int d) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the local-to-global mapping of dofs on a cell
  virtual void tabulate_dofs(unsigned int* dofs,
                             const ufc::mesh& m,
                             const ufc::cell& c) const
  {
    // Generate code for tabulating extra degrees of freedom.
    unsigned int local_offset = 0;
    unsigned int global_offset = 0;
    
    // Calculate local-to-global mapping for the enriched dofs related to the discontinuous field 0
    pums[0]->tabulate_enriched_dofs(dofs, c, local_offset, global_offset);
  }

  /// Tabulate the local-to-local mapping from facet dofs to cell dofs
  virtual void tabulate_facet_dofs(unsigned int* dofs,
                                   unsigned int facet) const
  {
    switch ( facet )
    {
    case 0:
      dofs[0] = 1;
      dofs[1] = 2;
      break;
    case 1:
      dofs[0] = 0;
      dofs[1] = 2;
      break;
    case 2:
      dofs[0] = 0;
      dofs[1] = 1;
      break;
    }
  }

  /// Tabulate the local-to-local mapping of dofs on entity (d, i)
  virtual void tabulate_entity_dofs(unsigned int* dofs,
                                    unsigned int d, unsigned int i) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the coordinates of all dofs on a cell
  virtual void tabulate_coordinates(double** coordinates,
                                    const ufc::cell& c) const
  {
    const double * const * x = c.coordinates;
    coordinates[0][0] = x[0][0];
    coordinates[0][1] = x[0][1];
    coordinates[1][0] = x[1][0];
    coordinates[1][1] = x[1][1];
    coordinates[2][0] = x[2][0];
    coordinates[2][1] = x[2][1];
  }

  /// Return the number of sub dof maps (for a mixed element)
  virtual unsigned int num_sub_dof_maps() const
  {
    return 1;
  }

  /// Create a new dof_map for sub dof map i (for a mixed element)
  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const
  {
    const std::vector<const pum::GenericPUM*>& p0 = boost::assign::list_of(pums[0]);
    
    return new poisson_0_dof_map_1_1(p0);
  }

};

/// This class defines the interface for a local-to-global mapping of
/// degrees of freedom (dofs).


class poisson_0_dof_map_1: public ufc::dof_map 
{
private:

  unsigned int __global_dimension; 
  const std::vector<const pum::GenericPUM*>& pums; 

public:

  /// Constructor
  poisson_0_dof_map_1(const std::vector<const pum::GenericPUM*>& pums) :ufc::dof_map(), pums(pums)
  {
    __global_dimension = 0;
  }
  /// Destructor
  virtual ~poisson_0_dof_map_1()
  {
    // Do nothing
  }

  /// Return a string identifying the dof map
  virtual const char* signature() const
  {
    return "FFC dof map for MixedElement(*[FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), ElementRestriction(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), Measure('surface', 0, None))], **{'value_shape': (2,) })";
  }

  /// Return true iff mesh entities of topological dimension d are needed
  virtual bool needs_mesh_entities(unsigned int d) const
  {
    switch ( d )
    {
    case 0:
      return true;
      break;
    case 1:
      return false;
      break;
    case 2:
      return false;
      break;
    }
    return false;
  }

  /// Initialize dof map for mesh (return true iff init_cell() is needed)
  virtual bool init_mesh(const ufc::mesh& m)
  {
    __global_dimension = m.num_entities[0];
    return false;
  }

  /// Initialize dof map for given cell
  virtual void init_cell(const ufc::mesh& m,
                         const ufc::cell& c)
  {
    // Do nothing
  }

  /// Finish initialization of dof map for cells
  virtual void init_cell_finalize()
  {
    // Do nothing
  }

  /// Return the dimension of the global finite element function space
  virtual unsigned int global_dimension() const
  {
    return __global_dimension + pums[0]->enriched_global_dimension();
  }

  /// Return the dimension of the local finite element function space for a cell
  virtual unsigned int local_dimension(const ufc::cell& c) const
  {
    return 3 + pums[0]->enriched_local_dimension(c);
  }

  /// Return the maximum dimension of the local finite element function space
  virtual unsigned int max_local_dimension() const
  {
    return 3 + pums[0]->enriched_max_local_dimension();
  }


  // Return the geometric dimension of the coordinates this dof map provides
  virtual unsigned int geometric_dimension() const
  {
    return 2;
  }

  /// Return the number of dofs on each cell facet
  virtual unsigned int num_facet_dofs() const
  {
    return 4;
  }

  /// Return the number of dofs associated with each cell entity of dimension d
  virtual unsigned int num_entity_dofs(unsigned int d) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the local-to-global mapping of dofs on a cell
  virtual void tabulate_dofs(unsigned int* dofs,
                             const ufc::mesh& m,
                             const ufc::cell& c) const
  {
    dofs[0] = c.entity_indices[0][0];
    dofs[1] = c.entity_indices[0][1];
    dofs[2] = c.entity_indices[0][2];\
    
    // Generate code for tabulating extra degrees of freedom.
    unsigned int local_offset = 3;
    unsigned int global_offset = m.num_entities[0];
    
    // Calculate local-to-global mapping for the enriched dofs related to the discontinuous field 0
    pums[0]->tabulate_enriched_dofs(dofs, c, local_offset, global_offset);
  }

  /// Tabulate the local-to-local mapping from facet dofs to cell dofs
  virtual void tabulate_facet_dofs(unsigned int* dofs,
                                   unsigned int facet) const
  {
    switch ( facet )
    {
    case 0:
      dofs[0] = 1;
      dofs[1] = 2;
      dofs[2] = 4;
      dofs[3] = 5;
      break;
    case 1:
      dofs[0] = 0;
      dofs[1] = 2;
      dofs[2] = 3;
      dofs[3] = 5;
      break;
    case 2:
      dofs[0] = 0;
      dofs[1] = 1;
      dofs[2] = 3;
      dofs[3] = 4;
      break;
    }
  }

  /// Tabulate the local-to-local mapping of dofs on entity (d, i)
  virtual void tabulate_entity_dofs(unsigned int* dofs,
                                    unsigned int d, unsigned int i) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the coordinates of all dofs on a cell
  virtual void tabulate_coordinates(double** coordinates,
                                    const ufc::cell& c) const
  {
    const double * const * x = c.coordinates;
    coordinates[0][0] = x[0][0];
    coordinates[0][1] = x[0][1];
    coordinates[1][0] = x[1][0];
    coordinates[1][1] = x[1][1];
    coordinates[2][0] = x[2][0];
    coordinates[2][1] = x[2][1];
    coordinates[3][0] = x[0][0];
    coordinates[3][1] = x[0][1];
    coordinates[4][0] = x[1][0];
    coordinates[4][1] = x[1][1];
    coordinates[5][0] = x[2][0];
    coordinates[5][1] = x[2][1];
  }

  /// Return the number of sub dof maps (for a mixed element)
  virtual unsigned int num_sub_dof_maps() const
  {
    return 2;
  }

  /// Create a new dof_map for sub dof map i (for a mixed element)
  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const
  {
    const std::vector<const pum::GenericPUM*>& p1 = boost::assign::list_of(pums[0]);
    
    switch ( i )
    {
    case 0:
      return new poisson_0_dof_map_1_0();
      break;
    case 1:
      return new poisson_0_dof_map_1_1(p1);
      break;
    }
    return 0;
  }

};

/// This class defines the interface for a local-to-global mapping of
/// degrees of freedom (dofs).


class poisson_0_dof_map_2: public ufc::dof_map 
{
private:

  unsigned int __global_dimension; 
   

public:

  /// Constructor
  poisson_0_dof_map_2() :ufc::dof_map()
  {
    __global_dimension = 0;
  }
  /// Destructor
  virtual ~poisson_0_dof_map_2()
  {
    // Do nothing
  }

  /// Return a string identifying the dof map
  virtual const char* signature() const
  {
    return "FFC dof map for FiniteElement('Discontinuous Lagrange', Cell('triangle', 1, Space(2)), 0)";
  }

  /// Return true iff mesh entities of topological dimension d are needed
  virtual bool needs_mesh_entities(unsigned int d) const
  {
    switch ( d )
    {
    case 0:
      return false;
      break;
    case 1:
      return false;
      break;
    case 2:
      return true;
      break;
    }
    return false;
  }

  /// Initialize dof map for mesh (return true iff init_cell() is needed)
  virtual bool init_mesh(const ufc::mesh& m)
  {
    __global_dimension = m.num_entities[2];
    return false;
  }

  /// Initialize dof map for given cell
  virtual void init_cell(const ufc::mesh& m,
                         const ufc::cell& c)
  {
    // Do nothing
  }

  /// Finish initialization of dof map for cells
  virtual void init_cell_finalize()
  {
    // Do nothing
  }

  /// Return the dimension of the global finite element function space
  virtual unsigned int global_dimension() const
  {
    return __global_dimension ;
  }

  /// Return the dimension of the local finite element function space for a cell
  virtual unsigned int local_dimension(const ufc::cell& c) const
  {
    return 1;
  }

  /// Return the maximum dimension of the local finite element function space
  virtual unsigned int max_local_dimension() const
  {
    return 1;
  }


  // Return the geometric dimension of the coordinates this dof map provides
  virtual unsigned int geometric_dimension() const
  {
    return 2;
  }

  /// Return the number of dofs on each cell facet
  virtual unsigned int num_facet_dofs() const
  {
    return 0;
  }

  /// Return the number of dofs associated with each cell entity of dimension d
  virtual unsigned int num_entity_dofs(unsigned int d) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the local-to-global mapping of dofs on a cell
  virtual void tabulate_dofs(unsigned int* dofs,
                             const ufc::mesh& m,
                             const ufc::cell& c) const
  {
    dofs[0] = c.entity_indices[2][0];
  }

  /// Tabulate the local-to-local mapping from facet dofs to cell dofs
  virtual void tabulate_facet_dofs(unsigned int* dofs,
                                   unsigned int facet) const
  {
    switch ( facet )
    {
    case 0:
      
      break;
    case 1:
      
      break;
    case 2:
      
      break;
    }
  }

  /// Tabulate the local-to-local mapping of dofs on entity (d, i)
  virtual void tabulate_entity_dofs(unsigned int* dofs,
                                    unsigned int d, unsigned int i) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the coordinates of all dofs on a cell
  virtual void tabulate_coordinates(double** coordinates,
                                    const ufc::cell& c) const
  {
    const double * const * x = c.coordinates;
    coordinates[0][0] = 0.333333333333333*x[0][0] + 0.333333333333333*x[1][0] + 0.333333333333333*x[2][0];
    coordinates[0][1] = 0.333333333333333*x[0][1] + 0.333333333333333*x[1][1] + 0.333333333333333*x[2][1];
  }

  /// Return the number of sub dof maps (for a mixed element)
  virtual unsigned int num_sub_dof_maps() const
  {
    return 1;
  }

  /// Create a new dof_map for sub dof map i (for a mixed element)
  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const
  {
    return new poisson_0_dof_map_2();
  }

};

/// This class defines the interface for a local-to-global mapping of
/// degrees of freedom (dofs).


class poisson_0_dof_map_3: public ufc::dof_map 
{
private:

  unsigned int __global_dimension; 
   

public:

  /// Constructor
  poisson_0_dof_map_3() :ufc::dof_map()
  {
    __global_dimension = 0;
  }
  /// Destructor
  virtual ~poisson_0_dof_map_3()
  {
    // Do nothing
  }

  /// Return a string identifying the dof map
  virtual const char* signature() const
  {
    return "FFC dof map for FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)";
  }

  /// Return true iff mesh entities of topological dimension d are needed
  virtual bool needs_mesh_entities(unsigned int d) const
  {
    switch ( d )
    {
    case 0:
      return true;
      break;
    case 1:
      return false;
      break;
    case 2:
      return false;
      break;
    }
    return false;
  }

  /// Initialize dof map for mesh (return true iff init_cell() is needed)
  virtual bool init_mesh(const ufc::mesh& m)
  {
    __global_dimension = m.num_entities[0];
    return false;
  }

  /// Initialize dof map for given cell
  virtual void init_cell(const ufc::mesh& m,
                         const ufc::cell& c)
  {
    // Do nothing
  }

  /// Finish initialization of dof map for cells
  virtual void init_cell_finalize()
  {
    // Do nothing
  }

  /// Return the dimension of the global finite element function space
  virtual unsigned int global_dimension() const
  {
    return __global_dimension ;
  }

  /// Return the dimension of the local finite element function space for a cell
  virtual unsigned int local_dimension(const ufc::cell& c) const
  {
    return 3;
  }

  /// Return the maximum dimension of the local finite element function space
  virtual unsigned int max_local_dimension() const
  {
    return 3;
  }


  // Return the geometric dimension of the coordinates this dof map provides
  virtual unsigned int geometric_dimension() const
  {
    return 2;
  }

  /// Return the number of dofs on each cell facet
  virtual unsigned int num_facet_dofs() const
  {
    return 2;
  }

  /// Return the number of dofs associated with each cell entity of dimension d
  virtual unsigned int num_entity_dofs(unsigned int d) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the local-to-global mapping of dofs on a cell
  virtual void tabulate_dofs(unsigned int* dofs,
                             const ufc::mesh& m,
                             const ufc::cell& c) const
  {
    dofs[0] = c.entity_indices[0][0];
    dofs[1] = c.entity_indices[0][1];
    dofs[2] = c.entity_indices[0][2];
  }

  /// Tabulate the local-to-local mapping from facet dofs to cell dofs
  virtual void tabulate_facet_dofs(unsigned int* dofs,
                                   unsigned int facet) const
  {
    switch ( facet )
    {
    case 0:
      dofs[0] = 1;
      dofs[1] = 2;
      break;
    case 1:
      dofs[0] = 0;
      dofs[1] = 2;
      break;
    case 2:
      dofs[0] = 0;
      dofs[1] = 1;
      break;
    }
  }

  /// Tabulate the local-to-local mapping of dofs on entity (d, i)
  virtual void tabulate_entity_dofs(unsigned int* dofs,
                                    unsigned int d, unsigned int i) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the coordinates of all dofs on a cell
  virtual void tabulate_coordinates(double** coordinates,
                                    const ufc::cell& c) const
  {
    const double * const * x = c.coordinates;
    coordinates[0][0] = x[0][0];
    coordinates[0][1] = x[0][1];
    coordinates[1][0] = x[1][0];
    coordinates[1][1] = x[1][1];
    coordinates[2][0] = x[2][0];
    coordinates[2][1] = x[2][1];
  }

  /// Return the number of sub dof maps (for a mixed element)
  virtual unsigned int num_sub_dof_maps() const
  {
    return 1;
  }

  /// Create a new dof_map for sub dof map i (for a mixed element)
  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const
  {
    return new poisson_0_dof_map_3();
  }

};

/// This class defines the interface for the tabulation of the cell
/// tensor corresponding to the local contribution to a form from
/// the integral over a cell.

class poisson_0_cell_integral_0_quadrature: public ufc::cell_integral
{

  const std::vector<const pum::GenericPUM*>& pums;
  mutable std::vector <double> Aa;
  mutable std::vector <double> Af;



  /// Tabulate the regular entities of tensor for the contribution from a local cell
  virtual void tabulate_regular_tensor(double* A,
                                       const double * const * w,
                                       const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * x = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = x[1][0] - x[0][0];
    const double J_01 = x[2][0] - x[0][0];
    const double J_10 = x[1][1] - x[0][1];
    const double J_11 = x[2][1] - x[0][1];
    
    // Compute determinant of Jacobian
    double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    const double Jinv_00 =  J_11 / detJ;
    const double Jinv_01 = -J_01 / detJ;
    const double Jinv_10 = -J_10 / detJ;
    const double Jinv_11 =  J_00 / detJ;
    
    // Set scale factor
    const double det = std::abs(detJ);
    
    
    // Array of quadrature weights
    static const double W1 = 0.5;
    // Quadrature points on the UFC reference element: (0.333333333333333, 0.333333333333333)
    
    // Value of basis functions at quadrature points.
    static const double FE0[1][3] = \
    {{0.333333333333333, 0.333333333333333, 0.333333333333333}};
    
    static const double FE1_C0_D01[1][6] = \
    {{-1, 0, 1, 0, 0, 0}};
    
    static const double FE1_C0_D10[1][6] = \
    {{-1, 1, 0, 0, 0, 0}};
    
    static const double FE1_C1_D01[1][6] = \
    {{0, 0, 0, -1, 0, 1}};
    
    static const double FE1_C1_D10[1][6] = \
    {{0, 0, 0, -1, 1, 0}};
    
    
    // local dimension of the current cell
    unsigned int offset = 3 + pums[0]->enriched_local_dimension(c);
    
    
    // Remove regular local dimension to obtain number of enriched dofs
    offset -= 3;
    
    // Compute element tensor using UFL quadrature representation
    // Optimisations: ('simplify expressions', False), ('ignore zero tables', False), ('non zero columns', False), ('remove zero terms', False), ('ignore ones', False)
    // Total number of operations to compute element tensor: 1266
    
    // Loop quadrature points for integral
    // Number of operations to compute element tensor for following IP loop = 1266
    // Only 1 integration point, omitting IP loop.
    
    // Function declarations
    double F0 = 0;
    
    // Total number of operations to compute function values = 6
    for (unsigned int r = 0; r < 3; r++)
    {
      F0 += FE0[0][r]*w[1][r];
    }// end loop over 'r'
    unsigned int m = 0;
    
    // Number of operations for primary indices = 1260
    for (unsigned int j = 0; j < 6; j++)
    {
      for (unsigned int k = 0; k < 6; k++)
      {
        if ((((0 <= j && j < 3)) && ((0 <= k && k < 3))))
        {
          // Number of operations to compute entry = 35
          A[m] += (((Jinv_00*FE1_C1_D10[0][j] + Jinv_10*FE1_C1_D01[0][j]) + (Jinv_00*FE1_C0_D10[0][j] + Jinv_10*FE1_C0_D01[0][j]))*((Jinv_00*FE1_C1_D10[0][k] + Jinv_10*FE1_C1_D01[0][k]) + (Jinv_00*FE1_C0_D10[0][k] + Jinv_10*FE1_C0_D01[0][k])) + ((Jinv_01*FE1_C0_D10[0][j] + Jinv_11*FE1_C0_D01[0][j]) + (Jinv_01*FE1_C1_D10[0][j] + Jinv_11*FE1_C1_D01[0][j]))*((Jinv_01*FE1_C1_D10[0][k] + Jinv_11*FE1_C1_D01[0][k]) + (Jinv_01*FE1_C0_D10[0][k] + Jinv_11*FE1_C0_D01[0][k])))*F0*W1*det;
        
          ++m;
        }
      }// end loop over 'k'
      
      // Offset the entries corresponding to enriched terms
      if ((((0 <= j && j < 3))))
        m += offset;
    }// end loop over 'j'
  }

public:

  /// Constructor
  poisson_0_cell_integral_0_quadrature(const std::vector<const pum::GenericPUM*>& pums) : ufc::cell_integral(), pums(pums)
  {
     //Do nothing
  }

  /// Destructor
  virtual ~poisson_0_cell_integral_0_quadrature()
  {
     //Do nothing
  }


  /// Tabulate the tensor for the contribution from a local cell
  virtual void tabulate_tensor(double* A,
                               const double * const * w,
                               const ufc::cell& c) const
  {
    // Tabulate regular entires of element tensor
    tabulate_regular_tensor(A, w, c);
    
    // local dimension of the current cell
    unsigned int num_entries = 3 + pums[0]->enriched_local_dimension(c);
    
    
    // Remove regular local dimension to obtain number of enriched dofs
    num_entries -= 3;
    
    if (num_entries == 0)
      return;
    
    
    // Extract vertex coordinates
    const double * const * x = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = x[1][0] - x[0][0];
    const double J_01 = x[2][0] - x[0][0];
    const double J_10 = x[1][1] - x[0][1];
    const double J_11 = x[2][1] - x[0][1];
    
    // Compute determinant of Jacobian
    double detJ = J_00*J_11 - J_01*J_10;
    
    
    // Set scale factor
    const double det = std::abs(detJ);
    
    // FIXME: It will crash for multiple discontinuities, if we don't have at least one cell which all dofs are enriched
    const unsigned int min_entries = 36;
    const unsigned int _num_entries = std::max(num_entries*num_entries, min_entries);
    
    // Resizing and reseting auxiliary tensors
    Aa.resize(_num_entries);
    std::fill(Aa.begin(), Aa.end(), 0.0);
    
    // Define an array to save current quadrature point
    double coordinate[2];
    
    // Define ufc::finite_element object(s) to evalaute shape functions or their derivatives on runtime
    poisson_0_finite_element_3  element_0;
    poisson_0_finite_element_0  element_1;
    
    // Array of quadrature weights
    static const double W1[1] = {0.5};
    
    
    // Array of quadrature points
    static const double P1[2] = \
    {0.333333333333333, 0.333333333333333};
    
    // Define vectors for quadrature points and weights(note that the sizes are determined in compile time)
    std::vector <double> Wn1;
    std::vector <double> Pn1;
    
    
    // Check whether there is any need to use modified integration scheme
    if ((pums[0]->modified_quadrature(c)))
    {
    
      const std::vector<double> weight1(W1, W1 + 1);
      const std::vector<double> point1(P1, P1 + 2);
    
      ConstQuadratureRule standard_gauss = std::make_pair(point1, weight1);
      QuadratureRule modified_gauss;    
    
      pums[0]->cell_quadrature_rule(modified_gauss, standard_gauss, c);
    
      Pn1 = modified_gauss.first;
      Wn1 = modified_gauss.second;
    
    }
    else
    {
      // Map quadrature points from the reference cell to the physical cell
      Wn1.resize(1);;
      Pn1.resize(2);;
    
    
      for (unsigned int i = 0; i < 1; i++)
      {
        Wn1[i] = W1[i];
        for (unsigned int j = 0; j < 2; j++)
          Pn1[2*i + j] = x[0][j]*(1.0 - P1[2*i] - P1[2*i + 1]) + x[1][j]*P1[2*i + 1] + x[2][j]*P1[2*i];
      }
    }
    
    
    // Return the values of enriched function at the quadrature points
    std::vector<double> enriched_values_1;
    pums[0]->tabulate_enriched_basis(enriched_values_1, Pn1, c);
    
    // Define auxilary indices: m, n
    unsigned int m = 0;
    unsigned int n = 0;
    
    
    // Loop over new quadrature points for integral
    for (unsigned int ip = 0; ip < Wn1.size(); ip++)
    {
      // Evalaute tables and entries in the element tensor, if the enhanced value at this quadrature point is non-zero
      if (enriched_values_1[ip] != 0)
      {
        // Pick up the coordinates of the current quadrature point
        coordinate[0] = Pn1[2*ip];
        coordinate[1] = Pn1[2*ip + 1];
      
      
        // Creating a table to save the values of shape functions at the current guass point for FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)
        double value_0[1];
        double table_0_D0[3][1];
        for (unsigned int j = 0; j < 3; j++)
        {
          element_0.evaluate_basis(j, value_0, coordinate, c);
          for (unsigned int k = 0; k < 1; k++)
            table_0_D0[j][k] = value_0[k];
        }
      
      
        // Creating a table to save the values of shape functions at the current guass point for MixedElement(*[FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), ElementRestriction(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), Measure('surface', 0, None))], **{'value_shape': (2,) })
        double value_1[2];
        double table_1_D0[6][2];
        for (unsigned int j = 0; j < 6; j++)
        {
          element_1.evaluate_basis(j, value_1, coordinate, c);
          for (unsigned int k = 0; k < 2; k++)
            table_1_D0[j][k] = value_1[k];
        }
      
      
        // Creating a table to save the values of derivatives order 1 at the current guass point for MixedElement(*[FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), ElementRestriction(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), Measure('surface', 0, None))], **{'value_shape': (2,) })
        double value_2[4];
        double table_1_D1[6][4];
        for (unsigned int j = 0; j < 6; j++)
        {
          element_1.evaluate_basis_derivatives(j, 1, value_2, coordinate, c);
          for (unsigned int k = 0; k < 4; k++)
            table_1_D1[j][k] = value_2[k];
        }
      
      // Function declarations
      double F0 = 0;
      
      // Total number of operations to compute function values = 6
        for (unsigned int r = 0; r < 3; r++)
        {
          F0 += table_0_D0[r][0]*w[1][r];
        }// end loop over 'r'
      
      // Number of operations for primary indices = 396
        for (unsigned int j = 0; j < 6; j++)
        {
          for (unsigned int k = 0; k < 6; k++)
          {
            if (!(((0 <= j && j < 3)) && ((0 <= k && k < 3))))
            {
              // Move the indices of discontinuous spaces to the end of mixed space
              if ((0 <= j && j < 3) && (3 <= k && k < 6))
              {
                m = j;
                n = k;
              }
              else if ((3 <= j && j < 6) && (0 <= k && k < 3))
              {
                m = j;
                n = k;
              }
              else if ((3 <= j && j < 6) && (3 <= k && k < 6))
              {
                m = j;
                n = k;
              }
              // Number of operations to compute entry = 11
              Aa[m*6 + n] += ((table_1_D1[j][0] + table_1_D1[j][2])*(table_1_D1[k][2] + table_1_D1[k][0]) + (table_1_D1[j][3] + table_1_D1[j][1])*(table_1_D1[k][3] + table_1_D1[k][1]))*F0*Wn1[ip]*det;
            }// end check for enriched entiries
          }// end loop over 'k'
        }// end loop over 'j'
      }
    }// end loop over 'ip'
    
    // Check whether the current cell is intersected by discontinuity
    if ((pums[0]->modified_quadrature(c)))
    {
      // Define ufc::finite_element object(s) to evalaute shape functions or their derivatives on runtime
      poisson_0_finite_element_2  element_0;
      poisson_0_finite_element_0  element_1;
    
    // Array of quadrature weights
    static const double W4[2] = {0.5, 0.5};
    
    
    // Array of quadrature points
    static const double P4[2] = \
    {0.211324865405187,
    0.788675134594813};
    
    // Define vectors for quadrature points and weights
    std::vector <double> Wn4(2);
    std::vector <double> Pn4(4);
    
    
      const std::vector<double> weight4(W4, W4 + 2);
      const std::vector<double> point4(P4, P4 + 2);
    
      ConstQuadratureRule standard_gauss = std::make_pair(point4, weight4);
      QuadratureRule modified_gauss;    
    
      pums[0]->surface_quadrature(modified_gauss, standard_gauss, c);
    
      Pn4 = modified_gauss.first;
      Wn4 = modified_gauss.second;
    
    
    // Define and initialize the determinant of Jacobian
    const double det = 1.0;
    
        // Loop over new quadrature points for integral
      for (unsigned int ip = 0; ip < Wn4.size(); ip++)
      {
          // Pick up the coordinates of the current quadrature point
          coordinate[0] = Pn4[2*ip];
          coordinate[1] = Pn4[2*ip + 1];
        
        
          // Creating a table to save the values of shape functions at the current guass point for MixedElement(*[FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), ElementRestriction(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), Measure('surface', 0, None))], **{'value_shape': (2,) })
          double value_0[2];
          double table_1_D0[6][2];
          for (unsigned int j = 0; j < 6; j++)
          {
            element_1.evaluate_basis(j, value_0, coordinate, c);
            for (unsigned int k = 0; k < 2; k++)
              table_1_D0[j][k] = value_0[k];
          }
        
        
          // Creating a table to save the values of shape functions at the current guass point for FiniteElement('Discontinuous Lagrange', Cell('triangle', 1, Space(2)), 0)
          double value_1[1];
          double table_0_D0[1][1];
          for (unsigned int j = 0; j < 1; j++)
          {
            element_0.evaluate_basis(j, value_1, coordinate, c);
            for (unsigned int k = 0; k < 1; k++)
              table_0_D0[j][k] = value_1[k];
          }
        
        // Number of operations for primary indices = 180
          for (unsigned int j = 0; j < 6; j++)
          {
            for (unsigned int k = 0; k < 6; k++)
            {
              if (!(((0 <= j && j < 3)) || ((0 <= k && k < 3))))
              {
                // Move the indices of discontinuous spaces to the end of mixed space
                if ((3 <= j && j < 6) && (3 <= k && k < 6))
                {
                  m = j;
                  n = k;
                }
                // Number of operations to compute entry = 5
                Aa[m*6 + n] += table_1_D0[j][1]*table_1_D0[k][1]*w[0][0]*Wn4[ip]*det;
              }// end check for enriched entiries
            }// end loop over 'k'
          }// end loop over 'j'
      }// end loop over 'ip'
    }
    
    
    // Pick up entries from the total element tensor for the nodes active in the enrichment
    
    // Determine a vector that contains the local numbering of enriched degrees of freedom in ufc::cell c for the field 0
    std::vector<unsigned int> active_dofs_0;
    pums[0]->tabulate_enriched_local_dofs(active_dofs_0, c);
    std::vector<unsigned int>::iterator it_0_0, it_0_1;
    
    
    m = 0;
    for (unsigned int j = 0; j < 6; j++)
      for (unsigned int k = 0; k < 6; k++)
        if ((0 <= j && j < 3) && (0 <= k && k < 3))
          ++m;
        else
        {
          it_0_0 = find(active_dofs_0.begin(), active_dofs_0.end(), j - 3);
          it_0_1 = find(active_dofs_0.begin(), active_dofs_0.end(), k - 3);
    
    
          // Check whether the entry is coressponding to the active enriched node
          if (it_0_0 != active_dofs_0.end() || it_0_1 != active_dofs_0.end())
            if (((0 <= j && j < 3)) || ((0 <= k && k < 3)) || (it_0_0 != active_dofs_0.end() && it_0_1 != active_dofs_0.end()))
            {
              A[m] = Aa[j*6 + k];
              ++m;
            }
        }
  }

};

/// This class defines the interface for the tabulation of the cell
/// tensor corresponding to the local contribution to a form from
/// the integral over a cell.

class poisson_0_cell_integral_0: public ufc::cell_integral
{
private:

  poisson_0_cell_integral_0_quadrature* integral_0_quadrature;


  const std::vector<const pum::GenericPUM*>& pums;
  mutable std::vector <double> Aa;
  mutable std::vector <double> Af;



  /// Tabulate the regular entities of tensor for the contribution from a local cell
  virtual void tabulate_regular_tensor(double* A,
                                       const double * const * w,
                                       const ufc::cell& c) const
  {
    // Do nothing
  }

public:

  /// Constructor
  poisson_0_cell_integral_0(const std::vector<const pum::GenericPUM*>& pums) : ufc::cell_integral(), pums(pums)
  {
      integral_0_quadrature = new poisson_0_cell_integral_0_quadrature(pums);
  }

  /// Destructor
  virtual ~poisson_0_cell_integral_0()
  {
      delete integral_0_quadrature;
  }


  /// Tabulate the tensor for the contribution from a local cell
  virtual void tabulate_tensor(double* A,
                               const double * const * w,
                               const ufc::cell& c) const
  {
    const unsigned int num_entries = (3 + pums[0]->enriched_local_dimension(c))*(3 + pums[0]->enriched_local_dimension(c));
    
    for (unsigned int j = 0; j < num_entries; j++)
      A[j] = 0;
    
    // Add all contributions to element tensor
    integral_0_quadrature->tabulate_tensor(A, w, c);
  }

};

/// This class defines the interface for the assembly of the global
/// tensor corresponding to a form with r + n arguments, that is, a
/// mapping
///
///     a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R
///
/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r
/// global tensor A is defined by
///
///     A = a(V1, V2, ..., Vr, w1, w2, ..., wn),
///
/// where each argument Vj represents the application to the
/// sequence of basis functions of Vj and w1, w2, ..., wn are given
/// fixed functions (coefficients).

class poisson_form_0: public ufc::form
{
  const std::vector<const pum::GenericPUM*>& pums;
public:

  /// Constructor
  poisson_form_0(const std::vector<const pum::GenericPUM*>& pums) : ufc::form(), pums(pums)
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson_form_0()
  {
    // Do nothing
  }

  /// Return a string identifying the form
  virtual const char* signature() const
  {
    return "Form([Integral(Product(Function(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), 1), IndexSum(Product(Indexed(ComponentTensor(Sum(Indexed(SpatialDerivative(BasisFunction(MixedElement(*[FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), ElementRestriction(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), Measure('surface', 0, None))], **{'value_shape': (2,) }), 0), MultiIndex((Index(0),), {Index(0): 2})), MultiIndex((FixedIndex(0),), {})), Indexed(SpatialDerivative(BasisFunction(MixedElement(*[FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), ElementRestriction(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), Measure('surface', 0, None))], **{'value_shape': (2,) }), 0), MultiIndex((Index(0),), {Index(0): 2})), MultiIndex((FixedIndex(1),), {}))), MultiIndex((Index(0),), {Index(0): 2})), MultiIndex((Index(1),), {Index(1): 2})), Indexed(ComponentTensor(Sum(Indexed(SpatialDerivative(BasisFunction(MixedElement(*[FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), ElementRestriction(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), Measure('surface', 0, None))], **{'value_shape': (2,) }), 1), MultiIndex((Index(2),), {Index(2): 2})), MultiIndex((FixedIndex(0),), {})), Indexed(SpatialDerivative(BasisFunction(MixedElement(*[FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), ElementRestriction(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), Measure('surface', 0, None))], **{'value_shape': (2,) }), 1), MultiIndex((Index(2),), {Index(2): 2})), MultiIndex((FixedIndex(1),), {}))), MultiIndex((Index(2),), {Index(2): 2})), MultiIndex((Index(1),), {Index(1): 2}))), MultiIndex((Index(1),), {Index(1): 2}))), Measure('cell', 0, None)), Integral(Product(Constant(Cell('triangle', 1, Space(2)), 0), Product(Indexed(BasisFunction(MixedElement(*[FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), ElementRestriction(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), Measure('surface', 0, None))], **{'value_shape': (2,) }), 0), MultiIndex((FixedIndex(1),), {FixedIndex(1): 2})), Indexed(BasisFunction(MixedElement(*[FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), ElementRestriction(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), Measure('surface', 0, None))], **{'value_shape': (2,) }), 1), MultiIndex((FixedIndex(1),), {FixedIndex(1): 2})))), Measure('surface', 0, None))])";
  }

  /// Return the rank of the global tensor (r)
  virtual unsigned int rank() const
  {
    return 2;
  }

  /// Return the number of coefficients (n)
  virtual unsigned int num_coefficients() const
  {
    return 2;
  }

  /// Return the number of cell integrals
  virtual unsigned int num_cell_integrals() const
  {
    return 1;
  }
  
  /// Return the number of exterior facet integrals
  virtual unsigned int num_exterior_facet_integrals() const
  {
    return 0;
  }
  
  /// Return the number of interior facet integrals
  virtual unsigned int num_interior_facet_integrals() const
  {
    return 0;
  }
    
  /// Create a new finite element for argument function i
  virtual ufc::finite_element* create_finite_element(unsigned int i) const
  {
    switch ( i )
    {
    case 0:
      return new poisson_0_finite_element_0();
      break;
    case 1:
      return new poisson_0_finite_element_1();
      break;
    case 2:
      return new poisson_0_finite_element_2();
      break;
    case 3:
      return new poisson_0_finite_element_3();
      break;
    }
    return 0;
  }
  
  /// Create a new dof map for argument function i
  virtual ufc::dof_map* create_dof_map(unsigned int i) const
  {
    switch ( i )
    {
    case 0:
      return new poisson_0_dof_map_0(pums);
      break;
    case 1:
      return new poisson_0_dof_map_1(pums);
      break;
    case 2:
      return new poisson_0_dof_map_2();
      break;
    case 3:
      return new poisson_0_dof_map_3();
      break;
    }
    return 0;
  }

  /// Create a new cell integral on sub domain i
  virtual ufc::cell_integral* create_cell_integral(unsigned int i) const
  {
    return new poisson_0_cell_integral_0(pums);
  }

  /// Create a new exterior facet integral on sub domain i
  virtual ufc::exterior_facet_integral* create_exterior_facet_integral(unsigned int i) const
  {
    return 0;
  }

  /// Create a new interior facet integral on sub domain i
  virtual ufc::interior_facet_integral* create_interior_facet_integral(unsigned int i) const
  {
    return 0;
  }

};

/// This class defines the interface for a finite element.

class poisson_auxiliary_0_finite_element_0: public ufc::finite_element
{
public:

  /// Constructor
  poisson_auxiliary_0_finite_element_0() : ufc::finite_element()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson_auxiliary_0_finite_element_0()
  {
    // Do nothing
  }

  /// Return a string identifying the finite element
  virtual const char* signature() const
  {
    return "FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)";
  }

  /// Return the cell shape
  virtual ufc::shape cell_shape() const
  {
    return ufc::triangle;
  }

  /// Return the dimension of the finite element function space
  virtual unsigned int space_dimension() const
  {
    return 3;
  }

  /// Return the rank of the value space
  virtual unsigned int value_rank() const
  {
    return 0;
  }

  /// Return the dimension of the value space for axis i
  virtual unsigned int value_dimension(unsigned int i) const
  {
    return 1;
  }

  /// Evaluate basis function i at given point in cell
  virtual void evaluate_basis(unsigned int i,
                              double* values,
                              const double* coordinates,
                              const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Reset values
    *values = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    const double psitilde_a_1 = x;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    const double psitilde_bs_0_1 = 1.5*y + 0.5;
    const double psitilde_bs_1_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
    // Table(s) of coefficients
    static const double coefficients0[3][3] = \
    {{0.471404520791032, -0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0, 0.333333333333333}};
    
    // Extract relevant coefficients
    const double coeff0_0 = coefficients0[dof][0];
    const double coeff0_1 = coefficients0[dof][1];
    const double coeff0_2 = coefficients0[dof][2];
    
    // Compute value(s)
    *values = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2;
  }

  /// Evaluate all basis functions at given point in cell
  virtual void evaluate_basis_all(double* values,
                                  const double* coordinates,
                                  const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");
  }

  /// Evaluate order n derivatives of basis function i at given point in cell
  virtual void evaluate_basis_derivatives(unsigned int i,
                                          unsigned int n,
                                          double* values,
                                          const double* coordinates,
                                          const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Compute number of derivatives
    unsigned int num_derivatives = 1;
    
    for (unsigned int j = 0; j < n; j++)
      num_derivatives *= 2;
    
    
    // Declare pointer to two dimensional array that holds combinations of derivatives and initialise
    unsigned int **combinations = new unsigned int *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      combinations[j] = new unsigned int [n];
      for (unsigned int k = 0; k < n; k++)
        combinations[j][k] = 0;
    }
    
    // Generate combinations of derivatives
    for (unsigned int row = 1; row < num_derivatives; row++)
    {
      for (unsigned int num = 0; num < row; num++)
      {
        for (unsigned int col = n-1; col+1 > 0; col--)
        {
          if (combinations[row][col] + 1 > 1)
            combinations[row][col] = 0;
          else
          {
            combinations[row][col] += 1;
            break;
          }
        }
      }
    }
    
    // Compute inverse of Jacobian
    const double Jinv[2][2] =  {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}};
    
    // Declare transformation matrix
    // Declare pointer to two dimensional array and initialise
    double **transform = new double *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      transform[j] = new double [num_derivatives];
      for (unsigned int k = 0; k < num_derivatives; k++)
        transform[j][k] = 1;
    }
    
    // Construct transformation matrix
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        for (unsigned int k = 0; k < n; k++)
          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];
      }
    }
    
    // Reset values
    for (unsigned int j = 0; j < 1*num_derivatives; j++)
      values[j] = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    const double psitilde_a_1 = x;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    const double psitilde_bs_0_1 = 1.5*y + 0.5;
    const double psitilde_bs_1_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
    // Table(s) of coefficients
    static const double coefficients0[3][3] = \
    {{0.471404520791032, -0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0, 0.333333333333333}};
    
    // Interesting (new) part
    // Tables of derivatives of the polynomial base (transpose)
    static const double dmats0[3][3] = \
    {{0, 0, 0},
    {4.89897948556636, 0, 0},
    {0, 0, 0}};
    
    static const double dmats1[3][3] = \
    {{0, 0, 0},
    {2.44948974278318, 0, 0},
    {4.24264068711928, 0, 0}};
    
    // Compute reference derivatives
    // Declare pointer to array of derivatives on FIAT element
    double *derivatives = new double [num_derivatives];
    
    // Declare coefficients
    double coeff0_0 = 0;
    double coeff0_1 = 0;
    double coeff0_2 = 0;
    
    // Declare new coefficients
    double new_coeff0_0 = 0;
    double new_coeff0_1 = 0;
    double new_coeff0_2 = 0;
    
    // Loop possible derivatives
    for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)
    {
      // Get values from coefficients array
      new_coeff0_0 = coefficients0[dof][0];
      new_coeff0_1 = coefficients0[dof][1];
      new_coeff0_2 = coefficients0[dof][2];
    
      // Loop derivative order
      for (unsigned int j = 0; j < n; j++)
      {
        // Update old coefficients
        coeff0_0 = new_coeff0_0;
        coeff0_1 = new_coeff0_1;
        coeff0_2 = new_coeff0_2;
    
        if(combinations[deriv_num][j] == 0)
        {
          new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0];
          new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1];
          new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2];
        }
        if(combinations[deriv_num][j] == 1)
        {
          new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0];
          new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1];
          new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2];
        }
    
      }
      // Compute derivatives on reference element as dot product of coefficients and basisvalues
      derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;
    }
    
    // Transform derivatives back to physical element
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        values[row] += transform[row][col]*derivatives[col];
      }
    }
    // Delete pointer to array of derivatives on FIAT element
    delete [] derivatives;
    
    // Delete pointer to array of combinations of derivatives and transform
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      delete [] combinations[row];
      delete [] transform[row];
    }
    
    delete [] combinations;
    delete [] transform;
  }

  /// Evaluate order n derivatives of all basis functions at given point in cell
  virtual void evaluate_basis_derivatives_all(unsigned int n,
                                              double* values,
                                              const double* coordinates,
                                              const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");
  }

  /// Evaluate linear functional for dof i on the function f
  virtual double evaluate_dof(unsigned int i,
                              const ufc::function& f,
                              const ufc::cell& c) const
  {
    // The reference points, direction and weights:
    static const double X[3][1][2] = {{{0, 0}}, {{1, 0}}, {{0, 1}}};
    static const double W[3][1] = {{1}, {1}, {1}};
    static const double D[3][1][1] = {{{1}}, {{1}}, {{1}}};
    
    const double * const * x = c.coordinates;
    double result = 0.0;
    // Iterate over the points:
    // Evaluate basis functions for affine mapping
    const double w0 = 1.0 - X[i][0][0] - X[i][0][1];
    const double w1 = X[i][0][0];
    const double w2 = X[i][0][1];
    
    // Compute affine mapping y = F(X)
    double y[2];
    y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];
    y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];
    
    // Evaluate function at physical points
    double values[1];
    f.evaluate(values, y, c);
    
    // Map function values using appropriate mapping
    // Affine map: Do nothing
    
    // Note that we do not map the weights (yet).
    
    // Take directional components
    for(int k = 0; k < 1; k++)
      result += values[k]*D[i][0][k];
    // Multiply by weights
    result *= W[i][0];
    
    return result;
  }

  /// Evaluate linear functionals for all dofs on the function f
  virtual void evaluate_dofs(double* values,
                             const ufc::function& f,
                             const ufc::cell& c) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Interpolate vertex values from dof values
  virtual void interpolate_vertex_values(double* vertex_values,
                                         const double* dof_values,
                                         const ufc::cell& c) const
  {
    // Evaluate at vertices and use affine mapping
    vertex_values[0] = dof_values[0];
    vertex_values[1] = dof_values[1];
    vertex_values[2] = dof_values[2];
  }

  /// Return the number of sub elements (for a mixed element)
  virtual unsigned int num_sub_elements() const
  {
    return 1;
  }

  /// Create a new finite element for sub element i (for a mixed element)
  virtual ufc::finite_element* create_sub_element(unsigned int i) const
  {
    return new poisson_auxiliary_0_finite_element_0();
  }

};

/// This class defines the interface for a local-to-global mapping of
/// degrees of freedom (dofs).


class poisson_auxiliary_0_dof_map_0: public ufc::dof_map 
{
private:

  unsigned int __global_dimension; 
   

public:

  /// Constructor
  poisson_auxiliary_0_dof_map_0() :ufc::dof_map()
  {
    __global_dimension = 0;
  }
  /// Destructor
  virtual ~poisson_auxiliary_0_dof_map_0()
  {
    // Do nothing
  }

  /// Return a string identifying the dof map
  virtual const char* signature() const
  {
    return "FFC dof map for FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)";
  }

  /// Return true iff mesh entities of topological dimension d are needed
  virtual bool needs_mesh_entities(unsigned int d) const
  {
    switch ( d )
    {
    case 0:
      return true;
      break;
    case 1:
      return false;
      break;
    case 2:
      return false;
      break;
    }
    return false;
  }

  /// Initialize dof map for mesh (return true iff init_cell() is needed)
  virtual bool init_mesh(const ufc::mesh& m)
  {
    __global_dimension = m.num_entities[0];
    return false;
  }

  /// Initialize dof map for given cell
  virtual void init_cell(const ufc::mesh& m,
                         const ufc::cell& c)
  {
    // Do nothing
  }

  /// Finish initialization of dof map for cells
  virtual void init_cell_finalize()
  {
    // Do nothing
  }

  /// Return the dimension of the global finite element function space
  virtual unsigned int global_dimension() const
  {
    return __global_dimension ;
  }

  /// Return the dimension of the local finite element function space for a cell
  virtual unsigned int local_dimension(const ufc::cell& c) const
  {
    return 3;
  }

  /// Return the maximum dimension of the local finite element function space
  virtual unsigned int max_local_dimension() const
  {
    return 3;
  }


  // Return the geometric dimension of the coordinates this dof map provides
  virtual unsigned int geometric_dimension() const
  {
    return 2;
  }

  /// Return the number of dofs on each cell facet
  virtual unsigned int num_facet_dofs() const
  {
    return 2;
  }

  /// Return the number of dofs associated with each cell entity of dimension d
  virtual unsigned int num_entity_dofs(unsigned int d) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the local-to-global mapping of dofs on a cell
  virtual void tabulate_dofs(unsigned int* dofs,
                             const ufc::mesh& m,
                             const ufc::cell& c) const
  {
    dofs[0] = c.entity_indices[0][0];
    dofs[1] = c.entity_indices[0][1];
    dofs[2] = c.entity_indices[0][2];
  }

  /// Tabulate the local-to-local mapping from facet dofs to cell dofs
  virtual void tabulate_facet_dofs(unsigned int* dofs,
                                   unsigned int facet) const
  {
    switch ( facet )
    {
    case 0:
      dofs[0] = 1;
      dofs[1] = 2;
      break;
    case 1:
      dofs[0] = 0;
      dofs[1] = 2;
      break;
    case 2:
      dofs[0] = 0;
      dofs[1] = 1;
      break;
    }
  }

  /// Tabulate the local-to-local mapping of dofs on entity (d, i)
  virtual void tabulate_entity_dofs(unsigned int* dofs,
                                    unsigned int d, unsigned int i) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the coordinates of all dofs on a cell
  virtual void tabulate_coordinates(double** coordinates,
                                    const ufc::cell& c) const
  {
    const double * const * x = c.coordinates;
    coordinates[0][0] = x[0][0];
    coordinates[0][1] = x[0][1];
    coordinates[1][0] = x[1][0];
    coordinates[1][1] = x[1][1];
    coordinates[2][0] = x[2][0];
    coordinates[2][1] = x[2][1];
  }

  /// Return the number of sub dof maps (for a mixed element)
  virtual unsigned int num_sub_dof_maps() const
  {
    return 1;
  }

  /// Create a new dof_map for sub dof map i (for a mixed element)
  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const
  {
    return new poisson_auxiliary_0_dof_map_0();
  }

};

/// This class defines the interface for the assembly of the global
/// tensor corresponding to a form with r + n arguments, that is, a
/// mapping
///
///     a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R
///
/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r
/// global tensor A is defined by
///
///     A = a(V1, V2, ..., Vr, w1, w2, ..., wn),
///
/// where each argument Vj represents the application to the
/// sequence of basis functions of Vj and w1, w2, ..., wn are given
/// fixed functions (coefficients).

class poisson_auxiliary_form_0: public ufc::form
{
public:

  /// Constructor
  poisson_auxiliary_form_0() : ufc::form()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson_auxiliary_form_0()
  {
    // Do nothing
  }

  /// Return a string identifying the form
  virtual const char* signature() const
  {
    return "Auxiliary ufc::form to initialize standard functions, apply boundary conditions and obtain ufc::dof_map objects for continuous space(required for PUM objects) for a form containing discontinuous spaces.";
  }

  /// Return the rank of the global tensor (r)
  virtual unsigned int rank() const
  {
    return 2;
  }

  /// Return the number of coefficients (n)
  virtual unsigned int num_coefficients() const
  {
    return 0;
  }

  /// Return the number of cell integrals
  virtual unsigned int num_cell_integrals() const
  {
    return 0;
  }

  /// Return the number of exterior facet integrals
  virtual unsigned int num_exterior_facet_integrals() const
  {
    return 0;
  }

  /// Return the number of interior facet integrals
  virtual unsigned int num_interior_facet_integrals() const
  {
    return 0;
  }

  /// Create a new finite element for argument function i
  virtual ufc::finite_element* create_finite_element(unsigned int i) const
  {
    switch ( i )
    {
    case 0:
      return new poisson_auxiliary_0_finite_element_0();
      break;
    case 1:
      return new poisson_auxiliary_0_finite_element_0();
      break;
    }
    return 0;
  }

  /// Create a new dof map for argument function i
  virtual ufc::dof_map* create_dof_map(unsigned int i) const
  {
    switch ( i )
    {
    case 0:
      return new poisson_auxiliary_0_dof_map_0();
      break;
    case 1:
      return new poisson_auxiliary_0_dof_map_0();
      break;
    }
    return 0;
  }

  /// Create a new cell integral on sub domain i
  virtual ufc::cell_integral* create_cell_integral(unsigned int i) const
  {
    return 0;
  }

  /// Create a new exterior facet integral on sub domain i
  virtual ufc::exterior_facet_integral* create_exterior_facet_integral(unsigned int i) const
  {
    return 0;
  }

  /// Create a new interior facet integral on sub domain i
  virtual ufc::interior_facet_integral* create_interior_facet_integral(unsigned int i) const
  {
    return 0;
  }

};

/// This class defines the interface for a finite element.

class poisson_1_finite_element_0_0: public ufc::finite_element
{
public:

  /// Constructor
  poisson_1_finite_element_0_0() : ufc::finite_element()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson_1_finite_element_0_0()
  {
    // Do nothing
  }

  /// Return a string identifying the finite element
  virtual const char* signature() const
  {
    return "FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)";
  }

  /// Return the cell shape
  virtual ufc::shape cell_shape() const
  {
    return ufc::triangle;
  }

  /// Return the dimension of the finite element function space
  virtual unsigned int space_dimension() const
  {
    return 3;
  }

  /// Return the rank of the value space
  virtual unsigned int value_rank() const
  {
    return 0;
  }

  /// Return the dimension of the value space for axis i
  virtual unsigned int value_dimension(unsigned int i) const
  {
    return 1;
  }

  /// Evaluate basis function i at given point in cell
  virtual void evaluate_basis(unsigned int i,
                              double* values,
                              const double* coordinates,
                              const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Reset values
    *values = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    const double psitilde_a_1 = x;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    const double psitilde_bs_0_1 = 1.5*y + 0.5;
    const double psitilde_bs_1_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
    // Table(s) of coefficients
    static const double coefficients0[3][3] = \
    {{0.471404520791032, -0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0, 0.333333333333333}};
    
    // Extract relevant coefficients
    const double coeff0_0 = coefficients0[dof][0];
    const double coeff0_1 = coefficients0[dof][1];
    const double coeff0_2 = coefficients0[dof][2];
    
    // Compute value(s)
    *values = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2;
  }

  /// Evaluate all basis functions at given point in cell
  virtual void evaluate_basis_all(double* values,
                                  const double* coordinates,
                                  const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");
  }

  /// Evaluate order n derivatives of basis function i at given point in cell
  virtual void evaluate_basis_derivatives(unsigned int i,
                                          unsigned int n,
                                          double* values,
                                          const double* coordinates,
                                          const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Compute number of derivatives
    unsigned int num_derivatives = 1;
    
    for (unsigned int j = 0; j < n; j++)
      num_derivatives *= 2;
    
    
    // Declare pointer to two dimensional array that holds combinations of derivatives and initialise
    unsigned int **combinations = new unsigned int *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      combinations[j] = new unsigned int [n];
      for (unsigned int k = 0; k < n; k++)
        combinations[j][k] = 0;
    }
    
    // Generate combinations of derivatives
    for (unsigned int row = 1; row < num_derivatives; row++)
    {
      for (unsigned int num = 0; num < row; num++)
      {
        for (unsigned int col = n-1; col+1 > 0; col--)
        {
          if (combinations[row][col] + 1 > 1)
            combinations[row][col] = 0;
          else
          {
            combinations[row][col] += 1;
            break;
          }
        }
      }
    }
    
    // Compute inverse of Jacobian
    const double Jinv[2][2] =  {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}};
    
    // Declare transformation matrix
    // Declare pointer to two dimensional array and initialise
    double **transform = new double *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      transform[j] = new double [num_derivatives];
      for (unsigned int k = 0; k < num_derivatives; k++)
        transform[j][k] = 1;
    }
    
    // Construct transformation matrix
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        for (unsigned int k = 0; k < n; k++)
          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];
      }
    }
    
    // Reset values
    for (unsigned int j = 0; j < 1*num_derivatives; j++)
      values[j] = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    const double psitilde_a_1 = x;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    const double psitilde_bs_0_1 = 1.5*y + 0.5;
    const double psitilde_bs_1_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
    // Table(s) of coefficients
    static const double coefficients0[3][3] = \
    {{0.471404520791032, -0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0, 0.333333333333333}};
    
    // Interesting (new) part
    // Tables of derivatives of the polynomial base (transpose)
    static const double dmats0[3][3] = \
    {{0, 0, 0},
    {4.89897948556636, 0, 0},
    {0, 0, 0}};
    
    static const double dmats1[3][3] = \
    {{0, 0, 0},
    {2.44948974278318, 0, 0},
    {4.24264068711928, 0, 0}};
    
    // Compute reference derivatives
    // Declare pointer to array of derivatives on FIAT element
    double *derivatives = new double [num_derivatives];
    
    // Declare coefficients
    double coeff0_0 = 0;
    double coeff0_1 = 0;
    double coeff0_2 = 0;
    
    // Declare new coefficients
    double new_coeff0_0 = 0;
    double new_coeff0_1 = 0;
    double new_coeff0_2 = 0;
    
    // Loop possible derivatives
    for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)
    {
      // Get values from coefficients array
      new_coeff0_0 = coefficients0[dof][0];
      new_coeff0_1 = coefficients0[dof][1];
      new_coeff0_2 = coefficients0[dof][2];
    
      // Loop derivative order
      for (unsigned int j = 0; j < n; j++)
      {
        // Update old coefficients
        coeff0_0 = new_coeff0_0;
        coeff0_1 = new_coeff0_1;
        coeff0_2 = new_coeff0_2;
    
        if(combinations[deriv_num][j] == 0)
        {
          new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0];
          new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1];
          new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2];
        }
        if(combinations[deriv_num][j] == 1)
        {
          new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0];
          new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1];
          new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2];
        }
    
      }
      // Compute derivatives on reference element as dot product of coefficients and basisvalues
      derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;
    }
    
    // Transform derivatives back to physical element
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        values[row] += transform[row][col]*derivatives[col];
      }
    }
    // Delete pointer to array of derivatives on FIAT element
    delete [] derivatives;
    
    // Delete pointer to array of combinations of derivatives and transform
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      delete [] combinations[row];
      delete [] transform[row];
    }
    
    delete [] combinations;
    delete [] transform;
  }

  /// Evaluate order n derivatives of all basis functions at given point in cell
  virtual void evaluate_basis_derivatives_all(unsigned int n,
                                              double* values,
                                              const double* coordinates,
                                              const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");
  }

  /// Evaluate linear functional for dof i on the function f
  virtual double evaluate_dof(unsigned int i,
                              const ufc::function& f,
                              const ufc::cell& c) const
  {
    // The reference points, direction and weights:
    static const double X[3][1][2] = {{{0, 0}}, {{1, 0}}, {{0, 1}}};
    static const double W[3][1] = {{1}, {1}, {1}};
    static const double D[3][1][1] = {{{1}}, {{1}}, {{1}}};
    
    const double * const * x = c.coordinates;
    double result = 0.0;
    // Iterate over the points:
    // Evaluate basis functions for affine mapping
    const double w0 = 1.0 - X[i][0][0] - X[i][0][1];
    const double w1 = X[i][0][0];
    const double w2 = X[i][0][1];
    
    // Compute affine mapping y = F(X)
    double y[2];
    y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];
    y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];
    
    // Evaluate function at physical points
    double values[1];
    f.evaluate(values, y, c);
    
    // Map function values using appropriate mapping
    // Affine map: Do nothing
    
    // Note that we do not map the weights (yet).
    
    // Take directional components
    for(int k = 0; k < 1; k++)
      result += values[k]*D[i][0][k];
    // Multiply by weights
    result *= W[i][0];
    
    return result;
  }

  /// Evaluate linear functionals for all dofs on the function f
  virtual void evaluate_dofs(double* values,
                             const ufc::function& f,
                             const ufc::cell& c) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Interpolate vertex values from dof values
  virtual void interpolate_vertex_values(double* vertex_values,
                                         const double* dof_values,
                                         const ufc::cell& c) const
  {
    // Evaluate at vertices and use affine mapping
    vertex_values[0] = dof_values[0];
    vertex_values[1] = dof_values[1];
    vertex_values[2] = dof_values[2];
  }

  /// Return the number of sub elements (for a mixed element)
  virtual unsigned int num_sub_elements() const
  {
    return 1;
  }

  /// Create a new finite element for sub element i (for a mixed element)
  virtual ufc::finite_element* create_sub_element(unsigned int i) const
  {
    return new poisson_1_finite_element_0_0();
  }

};

/// This class defines the interface for a finite element.

class poisson_1_finite_element_0_1: public ufc::finite_element
{
public:

  /// Constructor
  poisson_1_finite_element_0_1() : ufc::finite_element()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson_1_finite_element_0_1()
  {
    // Do nothing
  }

  /// Return a string identifying the finite element
  virtual const char* signature() const
  {
    return "FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)";
  }

  /// Return the cell shape
  virtual ufc::shape cell_shape() const
  {
    return ufc::triangle;
  }

  /// Return the dimension of the finite element function space
  virtual unsigned int space_dimension() const
  {
    return 3;
  }

  /// Return the rank of the value space
  virtual unsigned int value_rank() const
  {
    return 0;
  }

  /// Return the dimension of the value space for axis i
  virtual unsigned int value_dimension(unsigned int i) const
  {
    return 1;
  }

  /// Evaluate basis function i at given point in cell
  virtual void evaluate_basis(unsigned int i,
                              double* values,
                              const double* coordinates,
                              const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Reset values
    *values = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    const double psitilde_a_1 = x;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    const double psitilde_bs_0_1 = 1.5*y + 0.5;
    const double psitilde_bs_1_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
    // Table(s) of coefficients
    static const double coefficients0[3][3] = \
    {{0.471404520791032, -0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0, 0.333333333333333}};
    
    // Extract relevant coefficients
    const double coeff0_0 = coefficients0[dof][0];
    const double coeff0_1 = coefficients0[dof][1];
    const double coeff0_2 = coefficients0[dof][2];
    
    // Compute value(s)
    *values = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2;
  }

  /// Evaluate all basis functions at given point in cell
  virtual void evaluate_basis_all(double* values,
                                  const double* coordinates,
                                  const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");
  }

  /// Evaluate order n derivatives of basis function i at given point in cell
  virtual void evaluate_basis_derivatives(unsigned int i,
                                          unsigned int n,
                                          double* values,
                                          const double* coordinates,
                                          const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Compute number of derivatives
    unsigned int num_derivatives = 1;
    
    for (unsigned int j = 0; j < n; j++)
      num_derivatives *= 2;
    
    
    // Declare pointer to two dimensional array that holds combinations of derivatives and initialise
    unsigned int **combinations = new unsigned int *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      combinations[j] = new unsigned int [n];
      for (unsigned int k = 0; k < n; k++)
        combinations[j][k] = 0;
    }
    
    // Generate combinations of derivatives
    for (unsigned int row = 1; row < num_derivatives; row++)
    {
      for (unsigned int num = 0; num < row; num++)
      {
        for (unsigned int col = n-1; col+1 > 0; col--)
        {
          if (combinations[row][col] + 1 > 1)
            combinations[row][col] = 0;
          else
          {
            combinations[row][col] += 1;
            break;
          }
        }
      }
    }
    
    // Compute inverse of Jacobian
    const double Jinv[2][2] =  {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}};
    
    // Declare transformation matrix
    // Declare pointer to two dimensional array and initialise
    double **transform = new double *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      transform[j] = new double [num_derivatives];
      for (unsigned int k = 0; k < num_derivatives; k++)
        transform[j][k] = 1;
    }
    
    // Construct transformation matrix
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        for (unsigned int k = 0; k < n; k++)
          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];
      }
    }
    
    // Reset values
    for (unsigned int j = 0; j < 1*num_derivatives; j++)
      values[j] = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    const double psitilde_a_1 = x;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    const double psitilde_bs_0_1 = 1.5*y + 0.5;
    const double psitilde_bs_1_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
    // Table(s) of coefficients
    static const double coefficients0[3][3] = \
    {{0.471404520791032, -0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0, 0.333333333333333}};
    
    // Interesting (new) part
    // Tables of derivatives of the polynomial base (transpose)
    static const double dmats0[3][3] = \
    {{0, 0, 0},
    {4.89897948556636, 0, 0},
    {0, 0, 0}};
    
    static const double dmats1[3][3] = \
    {{0, 0, 0},
    {2.44948974278318, 0, 0},
    {4.24264068711928, 0, 0}};
    
    // Compute reference derivatives
    // Declare pointer to array of derivatives on FIAT element
    double *derivatives = new double [num_derivatives];
    
    // Declare coefficients
    double coeff0_0 = 0;
    double coeff0_1 = 0;
    double coeff0_2 = 0;
    
    // Declare new coefficients
    double new_coeff0_0 = 0;
    double new_coeff0_1 = 0;
    double new_coeff0_2 = 0;
    
    // Loop possible derivatives
    for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)
    {
      // Get values from coefficients array
      new_coeff0_0 = coefficients0[dof][0];
      new_coeff0_1 = coefficients0[dof][1];
      new_coeff0_2 = coefficients0[dof][2];
    
      // Loop derivative order
      for (unsigned int j = 0; j < n; j++)
      {
        // Update old coefficients
        coeff0_0 = new_coeff0_0;
        coeff0_1 = new_coeff0_1;
        coeff0_2 = new_coeff0_2;
    
        if(combinations[deriv_num][j] == 0)
        {
          new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0];
          new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1];
          new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2];
        }
        if(combinations[deriv_num][j] == 1)
        {
          new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0];
          new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1];
          new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2];
        }
    
      }
      // Compute derivatives on reference element as dot product of coefficients and basisvalues
      derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;
    }
    
    // Transform derivatives back to physical element
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        values[row] += transform[row][col]*derivatives[col];
      }
    }
    // Delete pointer to array of derivatives on FIAT element
    delete [] derivatives;
    
    // Delete pointer to array of combinations of derivatives and transform
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      delete [] combinations[row];
      delete [] transform[row];
    }
    
    delete [] combinations;
    delete [] transform;
  }

  /// Evaluate order n derivatives of all basis functions at given point in cell
  virtual void evaluate_basis_derivatives_all(unsigned int n,
                                              double* values,
                                              const double* coordinates,
                                              const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");
  }

  /// Evaluate linear functional for dof i on the function f
  virtual double evaluate_dof(unsigned int i,
                              const ufc::function& f,
                              const ufc::cell& c) const
  {
    // The reference points, direction and weights:
    static const double X[3][1][2] = {{{0, 0}}, {{1, 0}}, {{0, 1}}};
    static const double W[3][1] = {{1}, {1}, {1}};
    static const double D[3][1][1] = {{{1}}, {{1}}, {{1}}};
    
    const double * const * x = c.coordinates;
    double result = 0.0;
    // Iterate over the points:
    // Evaluate basis functions for affine mapping
    const double w0 = 1.0 - X[i][0][0] - X[i][0][1];
    const double w1 = X[i][0][0];
    const double w2 = X[i][0][1];
    
    // Compute affine mapping y = F(X)
    double y[2];
    y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];
    y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];
    
    // Evaluate function at physical points
    double values[1];
    f.evaluate(values, y, c);
    
    // Map function values using appropriate mapping
    // Affine map: Do nothing
    
    // Note that we do not map the weights (yet).
    
    // Take directional components
    for(int k = 0; k < 1; k++)
      result += values[k]*D[i][0][k];
    // Multiply by weights
    result *= W[i][0];
    
    return result;
  }

  /// Evaluate linear functionals for all dofs on the function f
  virtual void evaluate_dofs(double* values,
                             const ufc::function& f,
                             const ufc::cell& c) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Interpolate vertex values from dof values
  virtual void interpolate_vertex_values(double* vertex_values,
                                         const double* dof_values,
                                         const ufc::cell& c) const
  {
    // Evaluate at vertices and use affine mapping
    vertex_values[0] = dof_values[0];
    vertex_values[1] = dof_values[1];
    vertex_values[2] = dof_values[2];
  }

  /// Return the number of sub elements (for a mixed element)
  virtual unsigned int num_sub_elements() const
  {
    return 1;
  }

  /// Create a new finite element for sub element i (for a mixed element)
  virtual ufc::finite_element* create_sub_element(unsigned int i) const
  {
    return new poisson_1_finite_element_0_1();
  }

};

/// This class defines the interface for a finite element.

class poisson_1_finite_element_0: public ufc::finite_element
{
public:

  /// Constructor
  poisson_1_finite_element_0() : ufc::finite_element()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson_1_finite_element_0()
  {
    // Do nothing
  }

  /// Return a string identifying the finite element
  virtual const char* signature() const
  {
    return "MixedElement(*[FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), ElementRestriction(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), Measure('surface', 0, None))], **{'value_shape': (2,) })";
  }

  /// Return the cell shape
  virtual ufc::shape cell_shape() const
  {
    return ufc::triangle;
  }

  /// Return the dimension of the finite element function space
  virtual unsigned int space_dimension() const
  {
    return 6;
  }

  /// Return the rank of the value space
  virtual unsigned int value_rank() const
  {
    return 1;
  }

  /// Return the dimension of the value space for axis i
  virtual unsigned int value_dimension(unsigned int i) const
  {
    return 2;
  }

  /// Evaluate basis function i at given point in cell
  virtual void evaluate_basis(unsigned int i,
                              double* values,
                              const double* coordinates,
                              const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Reset values
    values[0] = 0;
    values[1] = 0;
    
    if (0 <= i && i <= 2)
    {
      // Map degree of freedom to element degree of freedom
      const unsigned int dof = i;
    
      // Generate scalings
      const double scalings_y_0 = 1;
      const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
      // Compute psitilde_a
      const double psitilde_a_0 = 1;
      const double psitilde_a_1 = x;
    
      // Compute psitilde_bs
      const double psitilde_bs_0_0 = 1;
      const double psitilde_bs_0_1 = 1.5*y + 0.5;
      const double psitilde_bs_1_0 = 1;
    
      // Compute basisvalues
      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
      const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
      const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
      // Table(s) of coefficients
      static const double coefficients0[3][3] =   \
      {{0.471404520791032, -0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0, 0.333333333333333}};
    
      // Extract relevant coefficients
      const double coeff0_0 =   coefficients0[dof][0];
      const double coeff0_1 =   coefficients0[dof][1];
      const double coeff0_2 =   coefficients0[dof][2];
    
      // Compute value(s)
      values[0] = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2;
    }
    
    if (3 <= i && i <= 5)
    {
      // Map degree of freedom to element degree of freedom
      const unsigned int dof = i - 3;
    
      // Generate scalings
      const double scalings_y_0 = 1;
      const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
      // Compute psitilde_a
      const double psitilde_a_0 = 1;
      const double psitilde_a_1 = x;
    
      // Compute psitilde_bs
      const double psitilde_bs_0_0 = 1;
      const double psitilde_bs_0_1 = 1.5*y + 0.5;
      const double psitilde_bs_1_0 = 1;
    
      // Compute basisvalues
      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
      const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
      const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
      // Table(s) of coefficients
      static const double coefficients0[3][3] =   \
      {{0.471404520791032, -0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0, 0.333333333333333}};
    
      // Extract relevant coefficients
      const double coeff0_0 =   coefficients0[dof][0];
      const double coeff0_1 =   coefficients0[dof][1];
      const double coeff0_2 =   coefficients0[dof][2];
    
      // Compute value(s)
      values[1] = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2;
    }
    
  }

  /// Evaluate all basis functions at given point in cell
  virtual void evaluate_basis_all(double* values,
                                  const double* coordinates,
                                  const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");
  }

  /// Evaluate order n derivatives of basis function i at given point in cell
  virtual void evaluate_basis_derivatives(unsigned int i,
                                          unsigned int n,
                                          double* values,
                                          const double* coordinates,
                                          const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Compute number of derivatives
    unsigned int num_derivatives = 1;
    
    for (unsigned int j = 0; j < n; j++)
      num_derivatives *= 2;
    
    
    // Declare pointer to two dimensional array that holds combinations of derivatives and initialise
    unsigned int **combinations = new unsigned int *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      combinations[j] = new unsigned int [n];
      for (unsigned int k = 0; k < n; k++)
        combinations[j][k] = 0;
    }
    
    // Generate combinations of derivatives
    for (unsigned int row = 1; row < num_derivatives; row++)
    {
      for (unsigned int num = 0; num < row; num++)
      {
        for (unsigned int col = n-1; col+1 > 0; col--)
        {
          if (combinations[row][col] + 1 > 1)
            combinations[row][col] = 0;
          else
          {
            combinations[row][col] += 1;
            break;
          }
        }
      }
    }
    
    // Compute inverse of Jacobian
    const double Jinv[2][2] =  {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}};
    
    // Declare transformation matrix
    // Declare pointer to two dimensional array and initialise
    double **transform = new double *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      transform[j] = new double [num_derivatives];
      for (unsigned int k = 0; k < num_derivatives; k++)
        transform[j][k] = 1;
    }
    
    // Construct transformation matrix
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        for (unsigned int k = 0; k < n; k++)
          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];
      }
    }
    
    // Reset values
    for (unsigned int j = 0; j < 2*num_derivatives; j++)
      values[j] = 0;
    
    if (0 <= i && i <= 2)
    {
      // Map degree of freedom to element degree of freedom
      const unsigned int dof = i;
    
      // Generate scalings
      const double scalings_y_0 = 1;
      const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
      // Compute psitilde_a
      const double psitilde_a_0 = 1;
      const double psitilde_a_1 = x;
    
      // Compute psitilde_bs
      const double psitilde_bs_0_0 = 1;
      const double psitilde_bs_0_1 = 1.5*y + 0.5;
      const double psitilde_bs_1_0 = 1;
    
      // Compute basisvalues
      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
      const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
      const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
      // Table(s) of coefficients
      static const double coefficients0[3][3] =   \
      {{0.471404520791032, -0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0, 0.333333333333333}};
    
      // Interesting (new) part
      // Tables of derivatives of the polynomial base (transpose)
      static const double dmats0[3][3] =   \
      {{0, 0, 0},
      {4.89897948556636, 0, 0},
      {0, 0, 0}};
    
      static const double dmats1[3][3] =   \
      {{0, 0, 0},
      {2.44948974278318, 0, 0},
      {4.24264068711928, 0, 0}};
    
      // Compute reference derivatives
      // Declare pointer to array of derivatives on FIAT element
      double *derivatives = new double [num_derivatives];
    
      // Declare coefficients
      double coeff0_0 = 0;
      double coeff0_1 = 0;
      double coeff0_2 = 0;
    
      // Declare new coefficients
      double new_coeff0_0 = 0;
      double new_coeff0_1 = 0;
      double new_coeff0_2 = 0;
    
      // Loop possible derivatives
      for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)
      {
        // Get values from coefficients array
        new_coeff0_0 = coefficients0[dof][0];
        new_coeff0_1 = coefficients0[dof][1];
        new_coeff0_2 = coefficients0[dof][2];
    
        // Loop derivative order
        for (unsigned int j = 0; j < n; j++)
        {
          // Update old coefficients
          coeff0_0 = new_coeff0_0;
          coeff0_1 = new_coeff0_1;
          coeff0_2 = new_coeff0_2;
    
          if(combinations[deriv_num][j] == 0)
          {
            new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0];
            new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1];
            new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2];
          }
          if(combinations[deriv_num][j] == 1)
          {
            new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0];
            new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1];
            new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2];
          }
    
        }
        // Compute derivatives on reference element as dot product of coefficients and basisvalues
        derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;
      }
    
      // Transform derivatives back to physical element
      for (unsigned int row = 0; row < num_derivatives; row++)
      {
        for (unsigned int col = 0; col < num_derivatives; col++)
        {
          values[row] += transform[row][col]*derivatives[col];
        }
      }
      // Delete pointer to array of derivatives on FIAT element
      delete [] derivatives;
    
      // Delete pointer to array of combinations of derivatives and transform
      for (unsigned int row = 0; row < num_derivatives; row++)
      {
        delete [] combinations[row];
        delete [] transform[row];
      }
    
      delete [] combinations;
      delete [] transform;
    }
    
    if (3 <= i && i <= 5)
    {
      // Map degree of freedom to element degree of freedom
      const unsigned int dof = i - 3;
    
      // Generate scalings
      const double scalings_y_0 = 1;
      const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
      // Compute psitilde_a
      const double psitilde_a_0 = 1;
      const double psitilde_a_1 = x;
    
      // Compute psitilde_bs
      const double psitilde_bs_0_0 = 1;
      const double psitilde_bs_0_1 = 1.5*y + 0.5;
      const double psitilde_bs_1_0 = 1;
    
      // Compute basisvalues
      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
      const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
      const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
      // Table(s) of coefficients
      static const double coefficients0[3][3] =   \
      {{0.471404520791032, -0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0.288675134594813, -0.166666666666667},
      {0.471404520791032, 0, 0.333333333333333}};
    
      // Interesting (new) part
      // Tables of derivatives of the polynomial base (transpose)
      static const double dmats0[3][3] =   \
      {{0, 0, 0},
      {4.89897948556636, 0, 0},
      {0, 0, 0}};
    
      static const double dmats1[3][3] =   \
      {{0, 0, 0},
      {2.44948974278318, 0, 0},
      {4.24264068711928, 0, 0}};
    
      // Compute reference derivatives
      // Declare pointer to array of derivatives on FIAT element
      double *derivatives = new double [num_derivatives];
    
      // Declare coefficients
      double coeff0_0 = 0;
      double coeff0_1 = 0;
      double coeff0_2 = 0;
    
      // Declare new coefficients
      double new_coeff0_0 = 0;
      double new_coeff0_1 = 0;
      double new_coeff0_2 = 0;
    
      // Loop possible derivatives
      for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)
      {
        // Get values from coefficients array
        new_coeff0_0 = coefficients0[dof][0];
        new_coeff0_1 = coefficients0[dof][1];
        new_coeff0_2 = coefficients0[dof][2];
    
        // Loop derivative order
        for (unsigned int j = 0; j < n; j++)
        {
          // Update old coefficients
          coeff0_0 = new_coeff0_0;
          coeff0_1 = new_coeff0_1;
          coeff0_2 = new_coeff0_2;
    
          if(combinations[deriv_num][j] == 0)
          {
            new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0];
            new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1];
            new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2];
          }
          if(combinations[deriv_num][j] == 1)
          {
            new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0];
            new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1];
            new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2];
          }
    
        }
        // Compute derivatives on reference element as dot product of coefficients and basisvalues
        derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;
      }
    
      // Transform derivatives back to physical element
      for (unsigned int row = 0; row < num_derivatives; row++)
      {
        for (unsigned int col = 0; col < num_derivatives; col++)
        {
          values[num_derivatives + row] += transform[row][col]*derivatives[col];
        }
      }
      // Delete pointer to array of derivatives on FIAT element
      delete [] derivatives;
    
      // Delete pointer to array of combinations of derivatives and transform
      for (unsigned int row = 0; row < num_derivatives; row++)
      {
        delete [] combinations[row];
        delete [] transform[row];
      }
    
      delete [] combinations;
      delete [] transform;
    }
    
  }

  /// Evaluate order n derivatives of all basis functions at given point in cell
  virtual void evaluate_basis_derivatives_all(unsigned int n,
                                              double* values,
                                              const double* coordinates,
                                              const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");
  }

  /// Evaluate linear functional for dof i on the function f
  virtual double evaluate_dof(unsigned int i,
                              const ufc::function& f,
                              const ufc::cell& c) const
  {
    // The reference points, direction and weights:
    static const double X[6][1][2] = {{{0, 0}}, {{1, 0}}, {{0, 1}}, {{0, 0}}, {{1, 0}}, {{0, 1}}};
    static const double W[6][1] = {{1}, {1}, {1}, {1}, {1}, {1}};
    static const double D[6][1][2] = {{{1, 0}}, {{1, 0}}, {{1, 0}}, {{0, 1}}, {{0, 1}}, {{0, 1}}};
    
    const double * const * x = c.coordinates;
    double result = 0.0;
    // Iterate over the points:
    // Evaluate basis functions for affine mapping
    const double w0 = 1.0 - X[i][0][0] - X[i][0][1];
    const double w1 = X[i][0][0];
    const double w2 = X[i][0][1];
    
    // Compute affine mapping y = F(X)
    double y[2];
    y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];
    y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];
    
    // Evaluate function at physical points
    double values[2];
    f.evaluate(values, y, c);
    
    // Map function values using appropriate mapping
    // Affine map: Do nothing
    
    // Note that we do not map the weights (yet).
    
    // Take directional components
    for(int k = 0; k < 2; k++)
      result += values[k]*D[i][0][k];
    // Multiply by weights
    result *= W[i][0];
    
    return result;
  }

  /// Evaluate linear functionals for all dofs on the function f
  virtual void evaluate_dofs(double* values,
                             const ufc::function& f,
                             const ufc::cell& c) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Interpolate vertex values from dof values
  virtual void interpolate_vertex_values(double* vertex_values,
                                         const double* dof_values,
                                         const ufc::cell& c) const
  {
    // Evaluate at vertices and use affine mapping
    vertex_values[0] = dof_values[0];
    vertex_values[2] = dof_values[1];
    vertex_values[4] = dof_values[2];
    // Evaluate at vertices and use affine mapping
    vertex_values[1] = dof_values[3];
    vertex_values[3] = dof_values[4];
    vertex_values[5] = dof_values[5];
  }

  /// Return the number of sub elements (for a mixed element)
  virtual unsigned int num_sub_elements() const
  {
    return 2;
  }

  /// Create a new finite element for sub element i (for a mixed element)
  virtual ufc::finite_element* create_sub_element(unsigned int i) const
  {
    switch ( i )
    {
    case 0:
      return new poisson_1_finite_element_0_0();
      break;
    case 1:
      return new poisson_1_finite_element_0_1();
      break;
    }
    return 0;
  }

};

/// This class defines the interface for a finite element.

class poisson_1_finite_element_1: public ufc::finite_element
{
public:

  /// Constructor
  poisson_1_finite_element_1() : ufc::finite_element()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson_1_finite_element_1()
  {
    // Do nothing
  }

  /// Return a string identifying the finite element
  virtual const char* signature() const
  {
    return "FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)";
  }

  /// Return the cell shape
  virtual ufc::shape cell_shape() const
  {
    return ufc::triangle;
  }

  /// Return the dimension of the finite element function space
  virtual unsigned int space_dimension() const
  {
    return 3;
  }

  /// Return the rank of the value space
  virtual unsigned int value_rank() const
  {
    return 0;
  }

  /// Return the dimension of the value space for axis i
  virtual unsigned int value_dimension(unsigned int i) const
  {
    return 1;
  }

  /// Evaluate basis function i at given point in cell
  virtual void evaluate_basis(unsigned int i,
                              double* values,
                              const double* coordinates,
                              const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Reset values
    *values = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    const double psitilde_a_1 = x;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    const double psitilde_bs_0_1 = 1.5*y + 0.5;
    const double psitilde_bs_1_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
    // Table(s) of coefficients
    static const double coefficients0[3][3] = \
    {{0.471404520791032, -0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0, 0.333333333333333}};
    
    // Extract relevant coefficients
    const double coeff0_0 = coefficients0[dof][0];
    const double coeff0_1 = coefficients0[dof][1];
    const double coeff0_2 = coefficients0[dof][2];
    
    // Compute value(s)
    *values = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2;
  }

  /// Evaluate all basis functions at given point in cell
  virtual void evaluate_basis_all(double* values,
                                  const double* coordinates,
                                  const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");
  }

  /// Evaluate order n derivatives of basis function i at given point in cell
  virtual void evaluate_basis_derivatives(unsigned int i,
                                          unsigned int n,
                                          double* values,
                                          const double* coordinates,
                                          const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Compute number of derivatives
    unsigned int num_derivatives = 1;
    
    for (unsigned int j = 0; j < n; j++)
      num_derivatives *= 2;
    
    
    // Declare pointer to two dimensional array that holds combinations of derivatives and initialise
    unsigned int **combinations = new unsigned int *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      combinations[j] = new unsigned int [n];
      for (unsigned int k = 0; k < n; k++)
        combinations[j][k] = 0;
    }
    
    // Generate combinations of derivatives
    for (unsigned int row = 1; row < num_derivatives; row++)
    {
      for (unsigned int num = 0; num < row; num++)
      {
        for (unsigned int col = n-1; col+1 > 0; col--)
        {
          if (combinations[row][col] + 1 > 1)
            combinations[row][col] = 0;
          else
          {
            combinations[row][col] += 1;
            break;
          }
        }
      }
    }
    
    // Compute inverse of Jacobian
    const double Jinv[2][2] =  {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}};
    
    // Declare transformation matrix
    // Declare pointer to two dimensional array and initialise
    double **transform = new double *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      transform[j] = new double [num_derivatives];
      for (unsigned int k = 0; k < num_derivatives; k++)
        transform[j][k] = 1;
    }
    
    // Construct transformation matrix
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        for (unsigned int k = 0; k < n; k++)
          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];
      }
    }
    
    // Reset values
    for (unsigned int j = 0; j < 1*num_derivatives; j++)
      values[j] = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    const double psitilde_a_1 = x;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    const double psitilde_bs_0_1 = 1.5*y + 0.5;
    const double psitilde_bs_1_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
    // Table(s) of coefficients
    static const double coefficients0[3][3] = \
    {{0.471404520791032, -0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0, 0.333333333333333}};
    
    // Interesting (new) part
    // Tables of derivatives of the polynomial base (transpose)
    static const double dmats0[3][3] = \
    {{0, 0, 0},
    {4.89897948556636, 0, 0},
    {0, 0, 0}};
    
    static const double dmats1[3][3] = \
    {{0, 0, 0},
    {2.44948974278318, 0, 0},
    {4.24264068711928, 0, 0}};
    
    // Compute reference derivatives
    // Declare pointer to array of derivatives on FIAT element
    double *derivatives = new double [num_derivatives];
    
    // Declare coefficients
    double coeff0_0 = 0;
    double coeff0_1 = 0;
    double coeff0_2 = 0;
    
    // Declare new coefficients
    double new_coeff0_0 = 0;
    double new_coeff0_1 = 0;
    double new_coeff0_2 = 0;
    
    // Loop possible derivatives
    for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)
    {
      // Get values from coefficients array
      new_coeff0_0 = coefficients0[dof][0];
      new_coeff0_1 = coefficients0[dof][1];
      new_coeff0_2 = coefficients0[dof][2];
    
      // Loop derivative order
      for (unsigned int j = 0; j < n; j++)
      {
        // Update old coefficients
        coeff0_0 = new_coeff0_0;
        coeff0_1 = new_coeff0_1;
        coeff0_2 = new_coeff0_2;
    
        if(combinations[deriv_num][j] == 0)
        {
          new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0];
          new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1];
          new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2];
        }
        if(combinations[deriv_num][j] == 1)
        {
          new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0];
          new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1];
          new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2];
        }
    
      }
      // Compute derivatives on reference element as dot product of coefficients and basisvalues
      derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;
    }
    
    // Transform derivatives back to physical element
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        values[row] += transform[row][col]*derivatives[col];
      }
    }
    // Delete pointer to array of derivatives on FIAT element
    delete [] derivatives;
    
    // Delete pointer to array of combinations of derivatives and transform
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      delete [] combinations[row];
      delete [] transform[row];
    }
    
    delete [] combinations;
    delete [] transform;
  }

  /// Evaluate order n derivatives of all basis functions at given point in cell
  virtual void evaluate_basis_derivatives_all(unsigned int n,
                                              double* values,
                                              const double* coordinates,
                                              const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");
  }

  /// Evaluate linear functional for dof i on the function f
  virtual double evaluate_dof(unsigned int i,
                              const ufc::function& f,
                              const ufc::cell& c) const
  {
    // The reference points, direction and weights:
    static const double X[3][1][2] = {{{0, 0}}, {{1, 0}}, {{0, 1}}};
    static const double W[3][1] = {{1}, {1}, {1}};
    static const double D[3][1][1] = {{{1}}, {{1}}, {{1}}};
    
    const double * const * x = c.coordinates;
    double result = 0.0;
    // Iterate over the points:
    // Evaluate basis functions for affine mapping
    const double w0 = 1.0 - X[i][0][0] - X[i][0][1];
    const double w1 = X[i][0][0];
    const double w2 = X[i][0][1];
    
    // Compute affine mapping y = F(X)
    double y[2];
    y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];
    y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];
    
    // Evaluate function at physical points
    double values[1];
    f.evaluate(values, y, c);
    
    // Map function values using appropriate mapping
    // Affine map: Do nothing
    
    // Note that we do not map the weights (yet).
    
    // Take directional components
    for(int k = 0; k < 1; k++)
      result += values[k]*D[i][0][k];
    // Multiply by weights
    result *= W[i][0];
    
    return result;
  }

  /// Evaluate linear functionals for all dofs on the function f
  virtual void evaluate_dofs(double* values,
                             const ufc::function& f,
                             const ufc::cell& c) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Interpolate vertex values from dof values
  virtual void interpolate_vertex_values(double* vertex_values,
                                         const double* dof_values,
                                         const ufc::cell& c) const
  {
    // Evaluate at vertices and use affine mapping
    vertex_values[0] = dof_values[0];
    vertex_values[1] = dof_values[1];
    vertex_values[2] = dof_values[2];
  }

  /// Return the number of sub elements (for a mixed element)
  virtual unsigned int num_sub_elements() const
  {
    return 1;
  }

  /// Create a new finite element for sub element i (for a mixed element)
  virtual ufc::finite_element* create_sub_element(unsigned int i) const
  {
    return new poisson_1_finite_element_1();
  }

};

/// This class defines the interface for a finite element.

class poisson_1_finite_element_2: public ufc::finite_element
{
public:

  /// Constructor
  poisson_1_finite_element_2() : ufc::finite_element()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson_1_finite_element_2()
  {
    // Do nothing
  }

  /// Return a string identifying the finite element
  virtual const char* signature() const
  {
    return "FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)";
  }

  /// Return the cell shape
  virtual ufc::shape cell_shape() const
  {
    return ufc::triangle;
  }

  /// Return the dimension of the finite element function space
  virtual unsigned int space_dimension() const
  {
    return 3;
  }

  /// Return the rank of the value space
  virtual unsigned int value_rank() const
  {
    return 0;
  }

  /// Return the dimension of the value space for axis i
  virtual unsigned int value_dimension(unsigned int i) const
  {
    return 1;
  }

  /// Evaluate basis function i at given point in cell
  virtual void evaluate_basis(unsigned int i,
                              double* values,
                              const double* coordinates,
                              const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Reset values
    *values = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    const double psitilde_a_1 = x;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    const double psitilde_bs_0_1 = 1.5*y + 0.5;
    const double psitilde_bs_1_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
    // Table(s) of coefficients
    static const double coefficients0[3][3] = \
    {{0.471404520791032, -0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0, 0.333333333333333}};
    
    // Extract relevant coefficients
    const double coeff0_0 = coefficients0[dof][0];
    const double coeff0_1 = coefficients0[dof][1];
    const double coeff0_2 = coefficients0[dof][2];
    
    // Compute value(s)
    *values = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2;
  }

  /// Evaluate all basis functions at given point in cell
  virtual void evaluate_basis_all(double* values,
                                  const double* coordinates,
                                  const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");
  }

  /// Evaluate order n derivatives of basis function i at given point in cell
  virtual void evaluate_basis_derivatives(unsigned int i,
                                          unsigned int n,
                                          double* values,
                                          const double* coordinates,
                                          const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Compute number of derivatives
    unsigned int num_derivatives = 1;
    
    for (unsigned int j = 0; j < n; j++)
      num_derivatives *= 2;
    
    
    // Declare pointer to two dimensional array that holds combinations of derivatives and initialise
    unsigned int **combinations = new unsigned int *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      combinations[j] = new unsigned int [n];
      for (unsigned int k = 0; k < n; k++)
        combinations[j][k] = 0;
    }
    
    // Generate combinations of derivatives
    for (unsigned int row = 1; row < num_derivatives; row++)
    {
      for (unsigned int num = 0; num < row; num++)
      {
        for (unsigned int col = n-1; col+1 > 0; col--)
        {
          if (combinations[row][col] + 1 > 1)
            combinations[row][col] = 0;
          else
          {
            combinations[row][col] += 1;
            break;
          }
        }
      }
    }
    
    // Compute inverse of Jacobian
    const double Jinv[2][2] =  {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}};
    
    // Declare transformation matrix
    // Declare pointer to two dimensional array and initialise
    double **transform = new double *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      transform[j] = new double [num_derivatives];
      for (unsigned int k = 0; k < num_derivatives; k++)
        transform[j][k] = 1;
    }
    
    // Construct transformation matrix
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        for (unsigned int k = 0; k < n; k++)
          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];
      }
    }
    
    // Reset values
    for (unsigned int j = 0; j < 1*num_derivatives; j++)
      values[j] = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    const double psitilde_a_1 = x;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    const double psitilde_bs_0_1 = 1.5*y + 0.5;
    const double psitilde_bs_1_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
    // Table(s) of coefficients
    static const double coefficients0[3][3] = \
    {{0.471404520791032, -0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0, 0.333333333333333}};
    
    // Interesting (new) part
    // Tables of derivatives of the polynomial base (transpose)
    static const double dmats0[3][3] = \
    {{0, 0, 0},
    {4.89897948556636, 0, 0},
    {0, 0, 0}};
    
    static const double dmats1[3][3] = \
    {{0, 0, 0},
    {2.44948974278318, 0, 0},
    {4.24264068711928, 0, 0}};
    
    // Compute reference derivatives
    // Declare pointer to array of derivatives on FIAT element
    double *derivatives = new double [num_derivatives];
    
    // Declare coefficients
    double coeff0_0 = 0;
    double coeff0_1 = 0;
    double coeff0_2 = 0;
    
    // Declare new coefficients
    double new_coeff0_0 = 0;
    double new_coeff0_1 = 0;
    double new_coeff0_2 = 0;
    
    // Loop possible derivatives
    for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)
    {
      // Get values from coefficients array
      new_coeff0_0 = coefficients0[dof][0];
      new_coeff0_1 = coefficients0[dof][1];
      new_coeff0_2 = coefficients0[dof][2];
    
      // Loop derivative order
      for (unsigned int j = 0; j < n; j++)
      {
        // Update old coefficients
        coeff0_0 = new_coeff0_0;
        coeff0_1 = new_coeff0_1;
        coeff0_2 = new_coeff0_2;
    
        if(combinations[deriv_num][j] == 0)
        {
          new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0];
          new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1];
          new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2];
        }
        if(combinations[deriv_num][j] == 1)
        {
          new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0];
          new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1];
          new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2];
        }
    
      }
      // Compute derivatives on reference element as dot product of coefficients and basisvalues
      derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;
    }
    
    // Transform derivatives back to physical element
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        values[row] += transform[row][col]*derivatives[col];
      }
    }
    // Delete pointer to array of derivatives on FIAT element
    delete [] derivatives;
    
    // Delete pointer to array of combinations of derivatives and transform
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      delete [] combinations[row];
      delete [] transform[row];
    }
    
    delete [] combinations;
    delete [] transform;
  }

  /// Evaluate order n derivatives of all basis functions at given point in cell
  virtual void evaluate_basis_derivatives_all(unsigned int n,
                                              double* values,
                                              const double* coordinates,
                                              const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");
  }

  /// Evaluate linear functional for dof i on the function f
  virtual double evaluate_dof(unsigned int i,
                              const ufc::function& f,
                              const ufc::cell& c) const
  {
    // The reference points, direction and weights:
    static const double X[3][1][2] = {{{0, 0}}, {{1, 0}}, {{0, 1}}};
    static const double W[3][1] = {{1}, {1}, {1}};
    static const double D[3][1][1] = {{{1}}, {{1}}, {{1}}};
    
    const double * const * x = c.coordinates;
    double result = 0.0;
    // Iterate over the points:
    // Evaluate basis functions for affine mapping
    const double w0 = 1.0 - X[i][0][0] - X[i][0][1];
    const double w1 = X[i][0][0];
    const double w2 = X[i][0][1];
    
    // Compute affine mapping y = F(X)
    double y[2];
    y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];
    y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];
    
    // Evaluate function at physical points
    double values[1];
    f.evaluate(values, y, c);
    
    // Map function values using appropriate mapping
    // Affine map: Do nothing
    
    // Note that we do not map the weights (yet).
    
    // Take directional components
    for(int k = 0; k < 1; k++)
      result += values[k]*D[i][0][k];
    // Multiply by weights
    result *= W[i][0];
    
    return result;
  }

  /// Evaluate linear functionals for all dofs on the function f
  virtual void evaluate_dofs(double* values,
                             const ufc::function& f,
                             const ufc::cell& c) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Interpolate vertex values from dof values
  virtual void interpolate_vertex_values(double* vertex_values,
                                         const double* dof_values,
                                         const ufc::cell& c) const
  {
    // Evaluate at vertices and use affine mapping
    vertex_values[0] = dof_values[0];
    vertex_values[1] = dof_values[1];
    vertex_values[2] = dof_values[2];
  }

  /// Return the number of sub elements (for a mixed element)
  virtual unsigned int num_sub_elements() const
  {
    return 1;
  }

  /// Create a new finite element for sub element i (for a mixed element)
  virtual ufc::finite_element* create_sub_element(unsigned int i) const
  {
    return new poisson_1_finite_element_2();
  }

};

/// This class defines the interface for a local-to-global mapping of
/// degrees of freedom (dofs).


class poisson_1_dof_map_0_0: public ufc::dof_map 
{
private:

  unsigned int __global_dimension; 
   

public:

  /// Constructor
  poisson_1_dof_map_0_0() :ufc::dof_map()
  {
    __global_dimension = 0;
  }
  /// Destructor
  virtual ~poisson_1_dof_map_0_0()
  {
    // Do nothing
  }

  /// Return a string identifying the dof map
  virtual const char* signature() const
  {
    return "FFC dof map for FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)";
  }

  /// Return true iff mesh entities of topological dimension d are needed
  virtual bool needs_mesh_entities(unsigned int d) const
  {
    switch ( d )
    {
    case 0:
      return true;
      break;
    case 1:
      return false;
      break;
    case 2:
      return false;
      break;
    }
    return false;
  }

  /// Initialize dof map for mesh (return true iff init_cell() is needed)
  virtual bool init_mesh(const ufc::mesh& m)
  {
    __global_dimension = m.num_entities[0];
    return false;
  }

  /// Initialize dof map for given cell
  virtual void init_cell(const ufc::mesh& m,
                         const ufc::cell& c)
  {
    // Do nothing
  }

  /// Finish initialization of dof map for cells
  virtual void init_cell_finalize()
  {
    // Do nothing
  }

  /// Return the dimension of the global finite element function space
  virtual unsigned int global_dimension() const
  {
    return __global_dimension ;
  }

  /// Return the dimension of the local finite element function space for a cell
  virtual unsigned int local_dimension(const ufc::cell& c) const
  {
    return 3;
  }

  /// Return the maximum dimension of the local finite element function space
  virtual unsigned int max_local_dimension() const
  {
    return 3;
  }


  // Return the geometric dimension of the coordinates this dof map provides
  virtual unsigned int geometric_dimension() const
  {
    return 2;
  }

  /// Return the number of dofs on each cell facet
  virtual unsigned int num_facet_dofs() const
  {
    return 2;
  }

  /// Return the number of dofs associated with each cell entity of dimension d
  virtual unsigned int num_entity_dofs(unsigned int d) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the local-to-global mapping of dofs on a cell
  virtual void tabulate_dofs(unsigned int* dofs,
                             const ufc::mesh& m,
                             const ufc::cell& c) const
  {
    dofs[0] = c.entity_indices[0][0];
    dofs[1] = c.entity_indices[0][1];
    dofs[2] = c.entity_indices[0][2];
  }

  /// Tabulate the local-to-local mapping from facet dofs to cell dofs
  virtual void tabulate_facet_dofs(unsigned int* dofs,
                                   unsigned int facet) const
  {
    switch ( facet )
    {
    case 0:
      dofs[0] = 1;
      dofs[1] = 2;
      break;
    case 1:
      dofs[0] = 0;
      dofs[1] = 2;
      break;
    case 2:
      dofs[0] = 0;
      dofs[1] = 1;
      break;
    }
  }

  /// Tabulate the local-to-local mapping of dofs on entity (d, i)
  virtual void tabulate_entity_dofs(unsigned int* dofs,
                                    unsigned int d, unsigned int i) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the coordinates of all dofs on a cell
  virtual void tabulate_coordinates(double** coordinates,
                                    const ufc::cell& c) const
  {
    const double * const * x = c.coordinates;
    coordinates[0][0] = x[0][0];
    coordinates[0][1] = x[0][1];
    coordinates[1][0] = x[1][0];
    coordinates[1][1] = x[1][1];
    coordinates[2][0] = x[2][0];
    coordinates[2][1] = x[2][1];
  }

  /// Return the number of sub dof maps (for a mixed element)
  virtual unsigned int num_sub_dof_maps() const
  {
    return 1;
  }

  /// Create a new dof_map for sub dof map i (for a mixed element)
  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const
  {
    return new poisson_1_dof_map_0_0();
  }

};

/// This class defines the interface for a local-to-global mapping of
/// degrees of freedom (dofs).


class poisson_1_dof_map_0_1: public ufc::dof_map 
{
private:

  unsigned int __global_dimension; 
  const std::vector<const pum::GenericPUM*>& pums; 

public:

  /// Constructor
  poisson_1_dof_map_0_1(const std::vector<const pum::GenericPUM*>& pums) :ufc::dof_map(), pums(pums)
  {
    __global_dimension = 0;
  }
  /// Destructor
  virtual ~poisson_1_dof_map_0_1()
  {
    // Do nothing
  }

  /// Return a string identifying the dof map
  virtual const char* signature() const
  {
    return "FFC dof map for FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)";
  }

  /// Return true iff mesh entities of topological dimension d are needed
  virtual bool needs_mesh_entities(unsigned int d) const
  {
    switch ( d )
    {
    case 0:
      return true;
      break;
    case 1:
      return false;
      break;
    case 2:
      return false;
      break;
    }
    return false;
  }

  /// Initialize dof map for mesh (return true iff init_cell() is needed)
  virtual bool init_mesh(const ufc::mesh& m)
  {
    __global_dimension = 0;
    return false;
  }

  /// Initialize dof map for given cell
  virtual void init_cell(const ufc::mesh& m,
                         const ufc::cell& c)
  {
    // Do nothing
  }

  /// Finish initialization of dof map for cells
  virtual void init_cell_finalize()
  {
    // Do nothing
  }

  /// Return the dimension of the global finite element function space
  virtual unsigned int global_dimension() const
  {
    return __global_dimension + pums[0]->enriched_global_dimension();
  }

  /// Return the dimension of the local finite element function space for a cell
  virtual unsigned int local_dimension(const ufc::cell& c) const
  {
    return pums[0]->enriched_local_dimension(c);
  }

  /// Return the maximum dimension of the local finite element function space
  virtual unsigned int max_local_dimension() const
  {
    return pums[0]->enriched_max_local_dimension();
  }


  // Return the geometric dimension of the coordinates this dof map provides
  virtual unsigned int geometric_dimension() const
  {
    return 2;
  }

  /// Return the number of dofs on each cell facet
  virtual unsigned int num_facet_dofs() const
  {
    return 2;
  }

  /// Return the number of dofs associated with each cell entity of dimension d
  virtual unsigned int num_entity_dofs(unsigned int d) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the local-to-global mapping of dofs on a cell
  virtual void tabulate_dofs(unsigned int* dofs,
                             const ufc::mesh& m,
                             const ufc::cell& c) const
  {
    // Generate code for tabulating extra degrees of freedom.
    unsigned int local_offset = 0;
    unsigned int global_offset = 0;
    
    // Calculate local-to-global mapping for the enriched dofs related to the discontinuous field 0
    pums[0]->tabulate_enriched_dofs(dofs, c, local_offset, global_offset);
  }

  /// Tabulate the local-to-local mapping from facet dofs to cell dofs
  virtual void tabulate_facet_dofs(unsigned int* dofs,
                                   unsigned int facet) const
  {
    switch ( facet )
    {
    case 0:
      dofs[0] = 1;
      dofs[1] = 2;
      break;
    case 1:
      dofs[0] = 0;
      dofs[1] = 2;
      break;
    case 2:
      dofs[0] = 0;
      dofs[1] = 1;
      break;
    }
  }

  /// Tabulate the local-to-local mapping of dofs on entity (d, i)
  virtual void tabulate_entity_dofs(unsigned int* dofs,
                                    unsigned int d, unsigned int i) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the coordinates of all dofs on a cell
  virtual void tabulate_coordinates(double** coordinates,
                                    const ufc::cell& c) const
  {
    const double * const * x = c.coordinates;
    coordinates[0][0] = x[0][0];
    coordinates[0][1] = x[0][1];
    coordinates[1][0] = x[1][0];
    coordinates[1][1] = x[1][1];
    coordinates[2][0] = x[2][0];
    coordinates[2][1] = x[2][1];
  }

  /// Return the number of sub dof maps (for a mixed element)
  virtual unsigned int num_sub_dof_maps() const
  {
    return 1;
  }

  /// Create a new dof_map for sub dof map i (for a mixed element)
  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const
  {
    const std::vector<const pum::GenericPUM*>& p0 = boost::assign::list_of(pums[0]);
    
    return new poisson_1_dof_map_0_1(p0);
  }

};

/// This class defines the interface for a local-to-global mapping of
/// degrees of freedom (dofs).


class poisson_1_dof_map_0: public ufc::dof_map 
{
private:

  unsigned int __global_dimension; 
  const std::vector<const pum::GenericPUM*>& pums; 

public:

  /// Constructor
  poisson_1_dof_map_0(const std::vector<const pum::GenericPUM*>& pums) :ufc::dof_map(), pums(pums)
  {
    __global_dimension = 0;
  }
  /// Destructor
  virtual ~poisson_1_dof_map_0()
  {
    // Do nothing
  }

  /// Return a string identifying the dof map
  virtual const char* signature() const
  {
    return "FFC dof map for MixedElement(*[FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), ElementRestriction(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), Measure('surface', 0, None))], **{'value_shape': (2,) })";
  }

  /// Return true iff mesh entities of topological dimension d are needed
  virtual bool needs_mesh_entities(unsigned int d) const
  {
    switch ( d )
    {
    case 0:
      return true;
      break;
    case 1:
      return false;
      break;
    case 2:
      return false;
      break;
    }
    return false;
  }

  /// Initialize dof map for mesh (return true iff init_cell() is needed)
  virtual bool init_mesh(const ufc::mesh& m)
  {
    __global_dimension = m.num_entities[0];
    return false;
  }

  /// Initialize dof map for given cell
  virtual void init_cell(const ufc::mesh& m,
                         const ufc::cell& c)
  {
    // Do nothing
  }

  /// Finish initialization of dof map for cells
  virtual void init_cell_finalize()
  {
    // Do nothing
  }

  /// Return the dimension of the global finite element function space
  virtual unsigned int global_dimension() const
  {
    return __global_dimension + pums[0]->enriched_global_dimension();
  }

  /// Return the dimension of the local finite element function space for a cell
  virtual unsigned int local_dimension(const ufc::cell& c) const
  {
    return 3 + pums[0]->enriched_local_dimension(c);
  }

  /// Return the maximum dimension of the local finite element function space
  virtual unsigned int max_local_dimension() const
  {
    return 3 + pums[0]->enriched_max_local_dimension();
  }


  // Return the geometric dimension of the coordinates this dof map provides
  virtual unsigned int geometric_dimension() const
  {
    return 2;
  }

  /// Return the number of dofs on each cell facet
  virtual unsigned int num_facet_dofs() const
  {
    return 4;
  }

  /// Return the number of dofs associated with each cell entity of dimension d
  virtual unsigned int num_entity_dofs(unsigned int d) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the local-to-global mapping of dofs on a cell
  virtual void tabulate_dofs(unsigned int* dofs,
                             const ufc::mesh& m,
                             const ufc::cell& c) const
  {
    dofs[0] = c.entity_indices[0][0];
    dofs[1] = c.entity_indices[0][1];
    dofs[2] = c.entity_indices[0][2];\
    
    // Generate code for tabulating extra degrees of freedom.
    unsigned int local_offset = 3;
    unsigned int global_offset = m.num_entities[0];
    
    // Calculate local-to-global mapping for the enriched dofs related to the discontinuous field 0
    pums[0]->tabulate_enriched_dofs(dofs, c, local_offset, global_offset);
  }

  /// Tabulate the local-to-local mapping from facet dofs to cell dofs
  virtual void tabulate_facet_dofs(unsigned int* dofs,
                                   unsigned int facet) const
  {
    switch ( facet )
    {
    case 0:
      dofs[0] = 1;
      dofs[1] = 2;
      dofs[2] = 4;
      dofs[3] = 5;
      break;
    case 1:
      dofs[0] = 0;
      dofs[1] = 2;
      dofs[2] = 3;
      dofs[3] = 5;
      break;
    case 2:
      dofs[0] = 0;
      dofs[1] = 1;
      dofs[2] = 3;
      dofs[3] = 4;
      break;
    }
  }

  /// Tabulate the local-to-local mapping of dofs on entity (d, i)
  virtual void tabulate_entity_dofs(unsigned int* dofs,
                                    unsigned int d, unsigned int i) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the coordinates of all dofs on a cell
  virtual void tabulate_coordinates(double** coordinates,
                                    const ufc::cell& c) const
  {
    const double * const * x = c.coordinates;
    coordinates[0][0] = x[0][0];
    coordinates[0][1] = x[0][1];
    coordinates[1][0] = x[1][0];
    coordinates[1][1] = x[1][1];
    coordinates[2][0] = x[2][0];
    coordinates[2][1] = x[2][1];
    coordinates[3][0] = x[0][0];
    coordinates[3][1] = x[0][1];
    coordinates[4][0] = x[1][0];
    coordinates[4][1] = x[1][1];
    coordinates[5][0] = x[2][0];
    coordinates[5][1] = x[2][1];
  }

  /// Return the number of sub dof maps (for a mixed element)
  virtual unsigned int num_sub_dof_maps() const
  {
    return 2;
  }

  /// Create a new dof_map for sub dof map i (for a mixed element)
  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const
  {
    const std::vector<const pum::GenericPUM*>& p1 = boost::assign::list_of(pums[0]);
    
    switch ( i )
    {
    case 0:
      return new poisson_1_dof_map_0_0();
      break;
    case 1:
      return new poisson_1_dof_map_0_1(p1);
      break;
    }
    return 0;
  }

};

/// This class defines the interface for a local-to-global mapping of
/// degrees of freedom (dofs).


class poisson_1_dof_map_1: public ufc::dof_map 
{
private:

  unsigned int __global_dimension; 
   

public:

  /// Constructor
  poisson_1_dof_map_1() :ufc::dof_map()
  {
    __global_dimension = 0;
  }
  /// Destructor
  virtual ~poisson_1_dof_map_1()
  {
    // Do nothing
  }

  /// Return a string identifying the dof map
  virtual const char* signature() const
  {
    return "FFC dof map for FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)";
  }

  /// Return true iff mesh entities of topological dimension d are needed
  virtual bool needs_mesh_entities(unsigned int d) const
  {
    switch ( d )
    {
    case 0:
      return true;
      break;
    case 1:
      return false;
      break;
    case 2:
      return false;
      break;
    }
    return false;
  }

  /// Initialize dof map for mesh (return true iff init_cell() is needed)
  virtual bool init_mesh(const ufc::mesh& m)
  {
    __global_dimension = m.num_entities[0];
    return false;
  }

  /// Initialize dof map for given cell
  virtual void init_cell(const ufc::mesh& m,
                         const ufc::cell& c)
  {
    // Do nothing
  }

  /// Finish initialization of dof map for cells
  virtual void init_cell_finalize()
  {
    // Do nothing
  }

  /// Return the dimension of the global finite element function space
  virtual unsigned int global_dimension() const
  {
    return __global_dimension ;
  }

  /// Return the dimension of the local finite element function space for a cell
  virtual unsigned int local_dimension(const ufc::cell& c) const
  {
    return 3;
  }

  /// Return the maximum dimension of the local finite element function space
  virtual unsigned int max_local_dimension() const
  {
    return 3;
  }


  // Return the geometric dimension of the coordinates this dof map provides
  virtual unsigned int geometric_dimension() const
  {
    return 2;
  }

  /// Return the number of dofs on each cell facet
  virtual unsigned int num_facet_dofs() const
  {
    return 2;
  }

  /// Return the number of dofs associated with each cell entity of dimension d
  virtual unsigned int num_entity_dofs(unsigned int d) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the local-to-global mapping of dofs on a cell
  virtual void tabulate_dofs(unsigned int* dofs,
                             const ufc::mesh& m,
                             const ufc::cell& c) const
  {
    dofs[0] = c.entity_indices[0][0];
    dofs[1] = c.entity_indices[0][1];
    dofs[2] = c.entity_indices[0][2];
  }

  /// Tabulate the local-to-local mapping from facet dofs to cell dofs
  virtual void tabulate_facet_dofs(unsigned int* dofs,
                                   unsigned int facet) const
  {
    switch ( facet )
    {
    case 0:
      dofs[0] = 1;
      dofs[1] = 2;
      break;
    case 1:
      dofs[0] = 0;
      dofs[1] = 2;
      break;
    case 2:
      dofs[0] = 0;
      dofs[1] = 1;
      break;
    }
  }

  /// Tabulate the local-to-local mapping of dofs on entity (d, i)
  virtual void tabulate_entity_dofs(unsigned int* dofs,
                                    unsigned int d, unsigned int i) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the coordinates of all dofs on a cell
  virtual void tabulate_coordinates(double** coordinates,
                                    const ufc::cell& c) const
  {
    const double * const * x = c.coordinates;
    coordinates[0][0] = x[0][0];
    coordinates[0][1] = x[0][1];
    coordinates[1][0] = x[1][0];
    coordinates[1][1] = x[1][1];
    coordinates[2][0] = x[2][0];
    coordinates[2][1] = x[2][1];
  }

  /// Return the number of sub dof maps (for a mixed element)
  virtual unsigned int num_sub_dof_maps() const
  {
    return 1;
  }

  /// Create a new dof_map for sub dof map i (for a mixed element)
  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const
  {
    return new poisson_1_dof_map_1();
  }

};

/// This class defines the interface for a local-to-global mapping of
/// degrees of freedom (dofs).


class poisson_1_dof_map_2: public ufc::dof_map 
{
private:

  unsigned int __global_dimension; 
   

public:

  /// Constructor
  poisson_1_dof_map_2() :ufc::dof_map()
  {
    __global_dimension = 0;
  }
  /// Destructor
  virtual ~poisson_1_dof_map_2()
  {
    // Do nothing
  }

  /// Return a string identifying the dof map
  virtual const char* signature() const
  {
    return "FFC dof map for FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)";
  }

  /// Return true iff mesh entities of topological dimension d are needed
  virtual bool needs_mesh_entities(unsigned int d) const
  {
    switch ( d )
    {
    case 0:
      return true;
      break;
    case 1:
      return false;
      break;
    case 2:
      return false;
      break;
    }
    return false;
  }

  /// Initialize dof map for mesh (return true iff init_cell() is needed)
  virtual bool init_mesh(const ufc::mesh& m)
  {
    __global_dimension = m.num_entities[0];
    return false;
  }

  /// Initialize dof map for given cell
  virtual void init_cell(const ufc::mesh& m,
                         const ufc::cell& c)
  {
    // Do nothing
  }

  /// Finish initialization of dof map for cells
  virtual void init_cell_finalize()
  {
    // Do nothing
  }

  /// Return the dimension of the global finite element function space
  virtual unsigned int global_dimension() const
  {
    return __global_dimension ;
  }

  /// Return the dimension of the local finite element function space for a cell
  virtual unsigned int local_dimension(const ufc::cell& c) const
  {
    return 3;
  }

  /// Return the maximum dimension of the local finite element function space
  virtual unsigned int max_local_dimension() const
  {
    return 3;
  }


  // Return the geometric dimension of the coordinates this dof map provides
  virtual unsigned int geometric_dimension() const
  {
    return 2;
  }

  /// Return the number of dofs on each cell facet
  virtual unsigned int num_facet_dofs() const
  {
    return 2;
  }

  /// Return the number of dofs associated with each cell entity of dimension d
  virtual unsigned int num_entity_dofs(unsigned int d) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the local-to-global mapping of dofs on a cell
  virtual void tabulate_dofs(unsigned int* dofs,
                             const ufc::mesh& m,
                             const ufc::cell& c) const
  {
    dofs[0] = c.entity_indices[0][0];
    dofs[1] = c.entity_indices[0][1];
    dofs[2] = c.entity_indices[0][2];
  }

  /// Tabulate the local-to-local mapping from facet dofs to cell dofs
  virtual void tabulate_facet_dofs(unsigned int* dofs,
                                   unsigned int facet) const
  {
    switch ( facet )
    {
    case 0:
      dofs[0] = 1;
      dofs[1] = 2;
      break;
    case 1:
      dofs[0] = 0;
      dofs[1] = 2;
      break;
    case 2:
      dofs[0] = 0;
      dofs[1] = 1;
      break;
    }
  }

  /// Tabulate the local-to-local mapping of dofs on entity (d, i)
  virtual void tabulate_entity_dofs(unsigned int* dofs,
                                    unsigned int d, unsigned int i) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the coordinates of all dofs on a cell
  virtual void tabulate_coordinates(double** coordinates,
                                    const ufc::cell& c) const
  {
    const double * const * x = c.coordinates;
    coordinates[0][0] = x[0][0];
    coordinates[0][1] = x[0][1];
    coordinates[1][0] = x[1][0];
    coordinates[1][1] = x[1][1];
    coordinates[2][0] = x[2][0];
    coordinates[2][1] = x[2][1];
  }

  /// Return the number of sub dof maps (for a mixed element)
  virtual unsigned int num_sub_dof_maps() const
  {
    return 1;
  }

  /// Create a new dof_map for sub dof map i (for a mixed element)
  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const
  {
    return new poisson_1_dof_map_2();
  }

};

/// This class defines the interface for the tabulation of the cell
/// tensor corresponding to the local contribution to a form from
/// the integral over a cell.

class poisson_1_cell_integral_0_quadrature: public ufc::cell_integral
{

  const std::vector<const pum::GenericPUM*>& pums;
  mutable std::vector <double> Aa;
  mutable std::vector <double> Af;



  /// Tabulate the regular entities of tensor for the contribution from a local cell
  virtual void tabulate_regular_tensor(double* A,
                                       const double * const * w,
                                       const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * x = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = x[1][0] - x[0][0];
    const double J_01 = x[2][0] - x[0][0];
    const double J_10 = x[1][1] - x[0][1];
    const double J_11 = x[2][1] - x[0][1];
    
    // Compute determinant of Jacobian
    double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Set scale factor
    const double det = std::abs(detJ);
    
    
    // Array of quadrature weights
    static const double W4[4] = {0.159020690871988, 0.0909793091280112, 0.159020690871988, 0.0909793091280112};
    // Quadrature points on the UFC reference element: (0.178558728263616, 0.155051025721682), (0.0750311102226081, 0.644948974278318), (0.666390246014701, 0.155051025721682), (0.280019915499074, 0.644948974278318)
    
    // Value of basis functions at quadrature points.
    static const double FE0[4][3] = \
    {{0.666390246014701, 0.178558728263616, 0.155051025721682},
    {0.280019915499074, 0.0750311102226081, 0.644948974278318},
    {0.178558728263616, 0.666390246014701, 0.155051025721682},
    {0.0750311102226081, 0.280019915499074, 0.644948974278318}};
    
    static const double FE1_C0[4][6] = \
    {{0.666390246014701, 0.178558728263616, 0.155051025721682, 0, 0, 0},
    {0.280019915499074, 0.0750311102226081, 0.644948974278318, 0, 0, 0},
    {0.178558728263616, 0.666390246014701, 0.155051025721682, 0, 0, 0},
    {0.0750311102226081, 0.280019915499074, 0.644948974278318, 0, 0, 0}};
    
    static const double FE1_C1[4][6] = \
    {{0, 0, 0, 0.666390246014701, 0.178558728263616, 0.155051025721682},
    {0, 0, 0, 0.280019915499074, 0.0750311102226081, 0.644948974278318},
    {0, 0, 0, 0.178558728263616, 0.666390246014701, 0.155051025721682},
    {0, 0, 0, 0.0750311102226081, 0.280019915499074, 0.644948974278318}};
    
    
    // local dimension of the current cell
    unsigned int offset = 3 + pums[0]->enriched_local_dimension(c);
    
    
    // Remove regular local dimension to obtain number of enriched dofs
    offset -= 3;
    
    // Compute element tensor using UFL quadrature representation
    // Optimisations: ('simplify expressions', False), ('ignore zero tables', False), ('non zero columns', False), ('remove zero terms', False), ('ignore ones', False)
    // Total number of operations to compute element tensor: 144
    
    // Loop quadrature points for integral
    // Number of operations to compute element tensor for following IP loop = 144
    for (unsigned int ip = 0; ip < 4; ip++)
    {
      
      // Function declarations
      double F0 = 0;
      
      // Total number of operations to compute function values = 6
      for (unsigned int r = 0; r < 3; r++)
      {
        F0 += FE0[ip][r]*w[0][r];
      }// end loop over 'r'
      unsigned int m = 0;
      
      // Number of operations for primary indices = 30
      for (unsigned int j = 0; j < 6; j++)
      {
        if ((((0 <= j && j < 3))))
        {
          // Number of operations to compute entry = 5
          A[m] += (FE1_C0[ip][j] + FE1_C1[ip][j])*F0*W4[ip]*det;
        
          ++m;
        }
      }// end loop over 'j'
    }// end loop over 'ip'
  }

public:

  /// Constructor
  poisson_1_cell_integral_0_quadrature(const std::vector<const pum::GenericPUM*>& pums) : ufc::cell_integral(), pums(pums)
  {
     //Do nothing
  }

  /// Destructor
  virtual ~poisson_1_cell_integral_0_quadrature()
  {
     //Do nothing
  }


  /// Tabulate the tensor for the contribution from a local cell
  virtual void tabulate_tensor(double* A,
                               const double * const * w,
                               const ufc::cell& c) const
  {
    // Tabulate regular entires of element tensor
    tabulate_regular_tensor(A, w, c);
    
    // local dimension of the current cell
    unsigned int num_entries = 3 + pums[0]->enriched_local_dimension(c);
    
    
    // Remove regular local dimension to obtain number of enriched dofs
    num_entries -= 3;
    
    if (num_entries == 0)
      return;
    
    
    // Extract vertex coordinates
    const double * const * x = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = x[1][0] - x[0][0];
    const double J_01 = x[2][0] - x[0][0];
    const double J_10 = x[1][1] - x[0][1];
    const double J_11 = x[2][1] - x[0][1];
    
    // Compute determinant of Jacobian
    double detJ = J_00*J_11 - J_01*J_10;
    
    
    // Set scale factor
    const double det = std::abs(detJ);
    
    // FIXME: It will crash for multiple discontinuities, if we don't have at least one cell which all dofs are enriched
    const unsigned int min_entries = 6;
    const unsigned int _num_entries = std::max(num_entries, min_entries);
    
    // Resizing and reseting auxiliary tensors
    Aa.resize(_num_entries);
    std::fill(Aa.begin(), Aa.end(), 0.0);
    
    // Define an array to save current quadrature point
    double coordinate[2];
    
    // Define ufc::finite_element object(s) to evalaute shape functions or their derivatives on runtime
    poisson_1_finite_element_1  element_0;
    poisson_1_finite_element_0  element_1;
    
    // Array of quadrature weights
    static const double W4[4] = {0.159020690871988, 0.0909793091280112, 0.159020690871988, 0.0909793091280112};
    
    
    // Array of quadrature points
    static const double P4[8] = \
    {0.178558728263616, 0.155051025721682,
    0.0750311102226081, 0.644948974278318,
    0.666390246014701, 0.155051025721682,
    0.280019915499074, 0.644948974278318};
    
    // Define vectors for quadrature points and weights(note that the sizes are determined in compile time)
    std::vector <double> Wn4;
    std::vector <double> Pn4;
    
    
    // Check whether there is any need to use modified integration scheme
    if ((pums[0]->modified_quadrature(c)))
    {
    
      const std::vector<double> weight4(W4, W4 + 4);
      const std::vector<double> point4(P4, P4 + 8);
    
      ConstQuadratureRule standard_gauss = std::make_pair(point4, weight4);
      QuadratureRule modified_gauss;    
    
      pums[0]->cell_quadrature_rule(modified_gauss, standard_gauss, c);
    
      Pn4 = modified_gauss.first;
      Wn4 = modified_gauss.second;
    
    }
    else
    {
      // Map quadrature points from the reference cell to the physical cell
      Wn4.resize(4);;
      Pn4.resize(8);;
    
    
      for (unsigned int i = 0; i < 4; i++)
      {
        Wn4[i] = W4[i];
        for (unsigned int j = 0; j < 2; j++)
          Pn4[2*i + j] = x[0][j]*(1.0 - P4[2*i] - P4[2*i + 1]) + x[1][j]*P4[2*i + 1] + x[2][j]*P4[2*i];
      }
    }
    
    
    // Return the values of enriched function at the quadrature points
    std::vector<double> enriched_values_4;
    pums[0]->tabulate_enriched_basis(enriched_values_4, Pn4, c);
    
    // Define an auxilary index: m
    unsigned int m = 0;
    
    
    // Loop over new quadrature points for integral
    for (unsigned int ip = 0; ip < Wn4.size(); ip++)
    {
      // Evalaute tables and entries in the element tensor, if the enhanced value at this quadrature point is non-zero
      if (enriched_values_4[ip] != 0)
      {
        // Pick up the coordinates of the current quadrature point
        coordinate[0] = Pn4[2*ip];
        coordinate[1] = Pn4[2*ip + 1];
      
      
        // Creating a table to save the values of shape functions at the current guass point for FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)
        double value_0[1];
        double table_0_D0[3][1];
        for (unsigned int j = 0; j < 3; j++)
        {
          element_0.evaluate_basis(j, value_0, coordinate, c);
          for (unsigned int k = 0; k < 1; k++)
            table_0_D0[j][k] = value_0[k];
        }
      
      
        // Creating a table to save the values of shape functions at the current guass point for MixedElement(*[FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), ElementRestriction(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), Measure('surface', 0, None))], **{'value_shape': (2,) })
        double value_1[2];
        double table_1_D0[6][2];
        for (unsigned int j = 0; j < 6; j++)
        {
          element_1.evaluate_basis(j, value_1, coordinate, c);
          for (unsigned int k = 0; k < 2; k++)
            table_1_D0[j][k] = value_1[k];
        }
      
      // Function declarations
      double F0 = 0;
      
      // Total number of operations to compute function values = 6
        for (unsigned int r = 0; r < 3; r++)
        {
          F0 += table_0_D0[r][0]*w[0][r];
        }// end loop over 'r'
      
      // Number of operations for primary indices = 30
        for (unsigned int j = 0; j < 6; j++)
        {
          if (!(((0 <= j && j < 3))))
          {
            // Move the indices of discontinuous spaces to the end of mixed space
            if ((3 <= j && j < 6))
            {
              m = j;
            }
            // Number of operations to compute entry = 5
            Aa[m] += (table_1_D0[j][0] + table_1_D0[j][1])*F0*Wn4[ip]*det;
          }// end check for enriched entiries
        }// end loop over 'j'
      }
    }// end loop over 'ip'
    
    
    // Pick up entries from the total element tensor for the nodes active in the enrichment
    
    // Determine a vector that contains the local numbering of enriched degrees of freedom in ufc::cell c for the field 0
    std::vector<unsigned int> active_dofs_0;
    pums[0]->tabulate_enriched_local_dofs(active_dofs_0, c);
    std::vector<unsigned int>::iterator it_0_0;
    
    
    m = 0;
    for (unsigned int j = 0; j < 6; j++)
      if ((0 <= j && j < 3))
        ++m;
      else
      {
        it_0_0 = find(active_dofs_0.begin(), active_dofs_0.end(), j - 3);
    
    
        // Check whether the entry is coressponding to the active enriched node
        if (it_0_0 != active_dofs_0.end())
        {
          A[m] = Aa[j];
          ++m;
        }
      }
  }

};

/// This class defines the interface for the tabulation of the cell
/// tensor corresponding to the local contribution to a form from
/// the integral over a cell.

class poisson_1_cell_integral_0: public ufc::cell_integral
{
private:

  poisson_1_cell_integral_0_quadrature* integral_0_quadrature;


  const std::vector<const pum::GenericPUM*>& pums;
  mutable std::vector <double> Aa;
  mutable std::vector <double> Af;



  /// Tabulate the regular entities of tensor for the contribution from a local cell
  virtual void tabulate_regular_tensor(double* A,
                                       const double * const * w,
                                       const ufc::cell& c) const
  {
    // Do nothing
  }

public:

  /// Constructor
  poisson_1_cell_integral_0(const std::vector<const pum::GenericPUM*>& pums) : ufc::cell_integral(), pums(pums)
  {
      integral_0_quadrature = new poisson_1_cell_integral_0_quadrature(pums);
  }

  /// Destructor
  virtual ~poisson_1_cell_integral_0()
  {
      delete integral_0_quadrature;
  }


  /// Tabulate the tensor for the contribution from a local cell
  virtual void tabulate_tensor(double* A,
                               const double * const * w,
                               const ufc::cell& c) const
  {
    const unsigned int num_entries = (3 + pums[0]->enriched_local_dimension(c));
    
    for (unsigned int j = 0; j < num_entries; j++)
      A[j] = 0;
    
    // Add all contributions to element tensor
    integral_0_quadrature->tabulate_tensor(A, w, c);
  }

};

/// This class defines the interface for the tabulation of the
/// exterior facet tensor corresponding to the local contribution to
/// a form from the integral over an exterior facet.

class poisson_1_exterior_facet_integral_0_quadrature: public ufc::exterior_facet_integral
{

  const std::vector<const pum::GenericPUM*>& pums;
  mutable std::vector <double> Aa;
  mutable std::vector <double> Af;



  /// Tabulate the regular entities of the tensor for the contribution from a local exterior facet
  virtual void tabulate_regular_tensor(double* A,
                                       const double * const * w,
                                       const ufc::cell& c,
                                       unsigned int facet) const
  {
    // Extract vertex coordinates
    const double * const * x = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    
    // Compute determinant of Jacobian
    
    // Compute inverse of Jacobian
    
    // Vertices on edges
    static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}};
    
    // Get vertices
    const unsigned int v0 = edge_vertices[facet][0];
    const unsigned int v1 = edge_vertices[facet][1];
    
    // Compute scale factor (length of edge scaled by length of reference interval)
    const double dx0 = x[v1][0] - x[v0][0];
    const double dx1 = x[v1][1] - x[v0][1];
    const double det = std::sqrt(dx0*dx0 + dx1*dx1);
    
    
    // Compute facet normals from the facet scale factor constants
    
    
    // Array of quadrature weights
    static const double W2[2] = {0.5, 0.5};
    // Quadrature points on the UFC reference element: (0.211324865405187), (0.788675134594813)
    
    // Value of basis functions at quadrature points.
    static const double FE0_f0[2][3] = \
    {{0, 0.788675134594813, 0.211324865405187},
    {0, 0.211324865405187, 0.788675134594813}};
    
    static const double FE0_f1[2][3] = \
    {{0.788675134594813, 0, 0.211324865405187},
    {0.211324865405187, 0, 0.788675134594813}};
    
    static const double FE0_f2[2][3] = \
    {{0.788675134594813, 0.211324865405187, 0},
    {0.211324865405187, 0.788675134594813, 0}};
    
    static const double FE1_f0_C0[2][6] = \
    {{0, 0.788675134594813, 0.211324865405187, 0, 0, 0},
    {0, 0.211324865405187, 0.788675134594813, 0, 0, 0}};
    
    static const double FE1_f0_C1[2][6] = \
    {{0, 0, 0, 0, 0.788675134594813, 0.211324865405187},
    {0, 0, 0, 0, 0.211324865405187, 0.788675134594813}};
    
    static const double FE1_f1_C0[2][6] = \
    {{0.788675134594813, 0, 0.211324865405187, 0, 0, 0},
    {0.211324865405187, 0, 0.788675134594813, 0, 0, 0}};
    
    static const double FE1_f1_C1[2][6] = \
    {{0, 0, 0, 0.788675134594813, 0, 0.211324865405187},
    {0, 0, 0, 0.211324865405187, 0, 0.788675134594813}};
    
    static const double FE1_f2_C0[2][6] = \
    {{0.788675134594813, 0.211324865405187, 0, 0, 0, 0},
    {0.211324865405187, 0.788675134594813, 0, 0, 0, 0}};
    
    static const double FE1_f2_C1[2][6] = \
    {{0, 0, 0, 0.788675134594813, 0.211324865405187, 0},
    {0, 0, 0, 0.211324865405187, 0.788675134594813, 0}};
    
    
    // local dimension of the current cell
    unsigned int offset = 3 + pums[0]->enriched_local_dimension(c);
    
    
    // Remove regular local dimension to obtain number of enriched dofs
    offset -= 3;
    
    // Compute element tensor using UFL quadrature representation
    // Optimisations: ('simplify expressions', False), ('ignore zero tables', False), ('non zero columns', False), ('remove zero terms', False), ('ignore ones', False)
    switch ( facet )
    {
    case 0:
      {
      // Total number of operations to compute element tensor (from this point): 84
      
      // Loop quadrature points for integral
      // Number of operations to compute element tensor for following IP loop = 84
      for (unsigned int ip = 0; ip < 2; ip++)
      {
        
        // Function declarations
        double F0 = 0;
        
        // Total number of operations to compute function values = 6
        for (unsigned int r = 0; r < 3; r++)
        {
          F0 += FE0_f0[ip][r]*w[1][r];
        }// end loop over 'r'
        unsigned int m = 0;
        
        // Number of operations for primary indices = 36
        for (unsigned int j = 0; j < 6; j++)
        {
          if ((((0 <= j && j < 3))))
          {
            // Number of operations to compute entry = 6
            A[m] += (FE1_f0_C0[ip][j] + FE1_f0_C1[ip][j])*F0*-1*W2[ip]*det;
          
            ++m;
          }
        }// end loop over 'j'
      }// end loop over 'ip'
      }
      break;
    case 1:
      {
      // Total number of operations to compute element tensor (from this point): 84
      
      // Loop quadrature points for integral
      // Number of operations to compute element tensor for following IP loop = 84
      for (unsigned int ip = 0; ip < 2; ip++)
      {
        
        // Function declarations
        double F0 = 0;
        
        // Total number of operations to compute function values = 6
        for (unsigned int r = 0; r < 3; r++)
        {
          F0 += FE0_f1[ip][r]*w[1][r];
        }// end loop over 'r'
        unsigned int m = 0;
        
        // Number of operations for primary indices = 36
        for (unsigned int j = 0; j < 6; j++)
        {
          if ((((0 <= j && j < 3))))
          {
            // Number of operations to compute entry = 6
            A[m] += (FE1_f1_C0[ip][j] + FE1_f1_C1[ip][j])*F0*-1*W2[ip]*det;
          
            ++m;
          }
        }// end loop over 'j'
      }// end loop over 'ip'
      }
      break;
    case 2:
      {
      // Total number of operations to compute element tensor (from this point): 84
      
      // Loop quadrature points for integral
      // Number of operations to compute element tensor for following IP loop = 84
      for (unsigned int ip = 0; ip < 2; ip++)
      {
        
        // Function declarations
        double F0 = 0;
        
        // Total number of operations to compute function values = 6
        for (unsigned int r = 0; r < 3; r++)
        {
          F0 += FE0_f2[ip][r]*w[1][r];
        }// end loop over 'r'
        unsigned int m = 0;
        
        // Number of operations for primary indices = 36
        for (unsigned int j = 0; j < 6; j++)
        {
          if ((((0 <= j && j < 3))))
          {
            // Number of operations to compute entry = 6
            A[m] += (FE1_f2_C1[ip][j] + FE1_f2_C0[ip][j])*F0*-1*W2[ip]*det;
          
            ++m;
          }
        }// end loop over 'j'
      }// end loop over 'ip'
      }
      break;
    }
  }

public:

  /// Constructor
  poisson_1_exterior_facet_integral_0_quadrature(const std::vector<const pum::GenericPUM*>& pums) : ufc::exterior_facet_integral(), pums(pums)
  {
     //Do nothing
  }

  /// Destructor
  virtual ~poisson_1_exterior_facet_integral_0_quadrature()
  {
     //Do nothing
  }

  /// Tabulate the tensor for the contribution from a local exterior facet
  virtual void tabulate_tensor(double* A,
                               const double * const * w,
                               const ufc::cell& c,
                               unsigned int facet) const
  {
    // Tabulate regular entires of element tensor
    tabulate_regular_tensor(A, w, c, facet);
    
    // local dimension of the current cell
    unsigned int num_entries = 3 + pums[0]->enriched_local_dimension(c);
    
    
    // Remove regular local dimension to obtain number of enriched dofs
    num_entries -= 3;
    
    if (num_entries == 0)
      return;
    
    
    // Extract vertex coordinates
    const double * const * x = c.coordinates;
    
    // Vertices on edges
    static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}};
    
    // Get vertices
    const unsigned int v0 = edge_vertices[facet][0];
    const unsigned int v1 = edge_vertices[facet][1];
    
    // Compute scale factor (length of edge scaled by length of reference interval)
    const double dx0 = x[v1][0] - x[v0][0];
    const double dx1 = x[v1][1] - x[v0][1];
    const double det = std::sqrt(dx0*dx0 + dx1*dx1);
    
    
    // Compute facet normals from the facet scale factor constants
    
    // FIXME: It will crash for multiple discontinuities, if we don't have at least one cell which all dofs are enriched
    const unsigned int min_entries = 6;
    const unsigned int _num_entries = std::max(num_entries, min_entries);
    
    // Resizing and reseting auxiliary tensors
    Aa.resize(_num_entries);
    std::fill(Aa.begin(), Aa.end(), 0.0);
    
    // Define an array to save current quadrature point
    double coordinate[2];
    
    // Define ufc::finite_element object(s) to evalaute shape functions or their derivatives on runtime
    poisson_1_finite_element_1  element_0;
    poisson_1_finite_element_0  element_1;
    
    // Array of quadrature weights
    static const double W2[2] = {0.5, 0.5};
    
    
    // Array of quadrature points
    static const double P2[2] = \
    {0.211324865405187,
    0.788675134594813};
    
    // Define vectors for quadrature points and weights(note that the sizes are determined in compile time)
    std::vector <double> Wn2;
    std::vector <double> Pn2;
    
    
    // Check whether there is any need to use modified integration scheme
    if ((pums[0]->modified_quadrature(c, facet)))
    {
    
      const std::vector<double> weight2(W2, W2 + 2);
      const std::vector<double> point2(P2, P2 + 2);
    
      ConstQuadratureRule standard_gauss = std::make_pair(point2, weight2);
      QuadratureRule modified_gauss;    
    
      pums[0]->facet_quadrature_rule(modified_gauss, standard_gauss, c, facet);
    
      Pn2 = modified_gauss.first;
      Wn2 = modified_gauss.second;
    
    }
    else
    {
      // Map quadrature points from the reference cell to the physical cell
      Wn2.resize(2);;
      Pn2.resize(4);;
    
    
      for (unsigned int i = 0; i < 2; i++)
      {
        Wn2[i] = W2[i];
        for (unsigned int j = 0; j < 2; j++)
          Pn2[2*i + j] = x[v0][j]*(1.0 - P2[i]) + x[v1][j]*P2[i];
      }
    }
    
    
    // Return the values of enriched function at the quadrature points
    std::vector<double> enriched_values_2;
    pums[0]->tabulate_enriched_basis(enriched_values_2, Pn2, c);
    
    // Define an auxilary index: m
    unsigned int m = 0;
    
    
    // Loop over new quadrature points for integral
    for (unsigned int ip = 0; ip < Wn2.size(); ip++)
    {
      // Evalaute tables and entries in the element tensor, if the enhanced value at this quadrature point is non-zero
      if (enriched_values_2[ip] != 0)
      {
        // Pick up the coordinates of the current quadrature point
        coordinate[0] = Pn2[2*ip];
        coordinate[1] = Pn2[2*ip + 1];
      
      
        // Creating a table to save the values of shape functions at the current guass point for FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)
        double value_0[1];
        double table_0_D0[3][1];
        for (unsigned int j = 0; j < 3; j++)
        {
          element_0.evaluate_basis(j, value_0, coordinate, c);
          for (unsigned int k = 0; k < 1; k++)
            table_0_D0[j][k] = value_0[k];
        }
      
      
        // Creating a table to save the values of shape functions at the current guass point for MixedElement(*[FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), ElementRestriction(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), Measure('surface', 0, None))], **{'value_shape': (2,) })
        double value_1[2];
        double table_1_D0[6][2];
        for (unsigned int j = 0; j < 6; j++)
        {
          element_1.evaluate_basis(j, value_1, coordinate, c);
          for (unsigned int k = 0; k < 2; k++)
            table_1_D0[j][k] = value_1[k];
        }
      
      // Function declarations
      double F0 = 0;
      
      // Total number of operations to compute function values = 6
        for (unsigned int r = 0; r < 3; r++)
        {
          F0 += table_0_D0[r][0]*w[1][r];
        }// end loop over 'r'
      
      // Number of operations for primary indices = 36
        for (unsigned int j = 0; j < 6; j++)
        {
          if (!(((0 <= j && j < 3))))
          {
            // Move the indices of discontinuous spaces to the end of mixed space
            if ((3 <= j && j < 6))
            {
              m = j;
            }
            // Number of operations to compute entry = 6
            Aa[m] += (table_1_D0[j][0] + table_1_D0[j][1])*F0*-1*Wn2[ip]*det;
          }// end check for enriched entiries
        }// end loop over 'j'
      }
    }// end loop over 'ip'
    
    
    // Pick up entries from the total element tensor for the nodes active in the enrichment
    
    // Determine a vector that contains the local numbering of enriched degrees of freedom in ufc::cell c for the field 0
    std::vector<unsigned int> active_dofs_0;
    pums[0]->tabulate_enriched_local_dofs(active_dofs_0, c);
    std::vector<unsigned int>::iterator it_0_0;
    
    
    m = 0;
    for (unsigned int j = 0; j < 6; j++)
      if ((0 <= j && j < 3))
        ++m;
      else
      {
        it_0_0 = find(active_dofs_0.begin(), active_dofs_0.end(), j - 3);
    
    
        // Check whether the entry is coressponding to the active enriched node
        if (it_0_0 != active_dofs_0.end())
        {
          A[m] = Aa[j];
          ++m;
        }
      }
  }

};

/// This class defines the interface for the tabulation of the
/// exterior facet tensor corresponding to the local contribution to
/// a form from the integral over an exterior facet.

class poisson_1_exterior_facet_integral_0: public ufc::exterior_facet_integral
{
private:

  poisson_1_exterior_facet_integral_0_quadrature* integral_0_quadrature;


  const std::vector<const pum::GenericPUM*>& pums;
  mutable std::vector <double> Aa;
  mutable std::vector <double> Af;



  /// Tabulate the regular entities of the tensor for the contribution from a local exterior facet
  virtual void tabulate_regular_tensor(double* A,
                                       const double * const * w,
                                       const ufc::cell& c,
                                       unsigned int facet) const
  {
    // Do nothing
  }

public:

  /// Constructor
  poisson_1_exterior_facet_integral_0(const std::vector<const pum::GenericPUM*>& pums) : ufc::exterior_facet_integral(), pums(pums)
  {
      integral_0_quadrature = new poisson_1_exterior_facet_integral_0_quadrature(pums);
  }

  /// Destructor
  virtual ~poisson_1_exterior_facet_integral_0()
  {
      delete integral_0_quadrature;
  }

  /// Tabulate the tensor for the contribution from a local exterior facet
  virtual void tabulate_tensor(double* A,
                               const double * const * w,
                               const ufc::cell& c,
                               unsigned int facet) const
  {
    const unsigned int num_entries = (3 + pums[0]->enriched_local_dimension(c));
    
    for (unsigned int j = 0; j < num_entries; j++)
      A[j] = 0;
    
    // Add all contributions to element tensor
    integral_0_quadrature->tabulate_tensor(A, w, c, facet);
  }

};

/// This class defines the interface for the assembly of the global
/// tensor corresponding to a form with r + n arguments, that is, a
/// mapping
///
///     a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R
///
/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r
/// global tensor A is defined by
///
///     A = a(V1, V2, ..., Vr, w1, w2, ..., wn),
///
/// where each argument Vj represents the application to the
/// sequence of basis functions of Vj and w1, w2, ..., wn are given
/// fixed functions (coefficients).

class poisson_form_1: public ufc::form
{
  const std::vector<const pum::GenericPUM*>& pums;
public:

  /// Constructor
  poisson_form_1(const std::vector<const pum::GenericPUM*>& pums) : ufc::form(), pums(pums)
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson_form_1()
  {
    // Do nothing
  }

  /// Return a string identifying the form
  virtual const char* signature() const
  {
    return "Form([Integral(Product(Function(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), 0), Sum(Indexed(BasisFunction(MixedElement(*[FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), ElementRestriction(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), Measure('surface', 0, None))], **{'value_shape': (2,) }), 0), MultiIndex((FixedIndex(0),), {FixedIndex(0): 2})), Indexed(BasisFunction(MixedElement(*[FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), ElementRestriction(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), Measure('surface', 0, None))], **{'value_shape': (2,) }), 0), MultiIndex((FixedIndex(1),), {FixedIndex(1): 2})))), Measure('cell', 0, None)), Integral(Product(IntValue(-1, (), (), {}), Product(Function(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), 1), Sum(Indexed(BasisFunction(MixedElement(*[FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), ElementRestriction(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), Measure('surface', 0, None))], **{'value_shape': (2,) }), 0), MultiIndex((FixedIndex(0),), {FixedIndex(0): 2})), Indexed(BasisFunction(MixedElement(*[FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), ElementRestriction(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), Measure('surface', 0, None))], **{'value_shape': (2,) }), 0), MultiIndex((FixedIndex(1),), {FixedIndex(1): 2}))))), Measure('exterior_facet', 0, None))])";
  }

  /// Return the rank of the global tensor (r)
  virtual unsigned int rank() const
  {
    return 1;
  }

  /// Return the number of coefficients (n)
  virtual unsigned int num_coefficients() const
  {
    return 2;
  }

  /// Return the number of cell integrals
  virtual unsigned int num_cell_integrals() const
  {
    return 1;
  }
  
  /// Return the number of exterior facet integrals
  virtual unsigned int num_exterior_facet_integrals() const
  {
    return 1;
  }
  
  /// Return the number of interior facet integrals
  virtual unsigned int num_interior_facet_integrals() const
  {
    return 0;
  }
    
  /// Create a new finite element for argument function i
  virtual ufc::finite_element* create_finite_element(unsigned int i) const
  {
    switch ( i )
    {
    case 0:
      return new poisson_1_finite_element_0();
      break;
    case 1:
      return new poisson_1_finite_element_1();
      break;
    case 2:
      return new poisson_1_finite_element_2();
      break;
    }
    return 0;
  }
  
  /// Create a new dof map for argument function i
  virtual ufc::dof_map* create_dof_map(unsigned int i) const
  {
    switch ( i )
    {
    case 0:
      return new poisson_1_dof_map_0(pums);
      break;
    case 1:
      return new poisson_1_dof_map_1();
      break;
    case 2:
      return new poisson_1_dof_map_2();
      break;
    }
    return 0;
  }

  /// Create a new cell integral on sub domain i
  virtual ufc::cell_integral* create_cell_integral(unsigned int i) const
  {
    return new poisson_1_cell_integral_0(pums);
  }

  /// Create a new exterior facet integral on sub domain i
  virtual ufc::exterior_facet_integral* create_exterior_facet_integral(unsigned int i) const
  {
    return new poisson_1_exterior_facet_integral_0(pums);
  }

  /// Create a new interior facet integral on sub domain i
  virtual ufc::interior_facet_integral* create_interior_facet_integral(unsigned int i) const
  {
    return 0;
  }

};

/// This class defines the interface for a finite element.

class poisson_auxiliary_1_finite_element_0: public ufc::finite_element
{
public:

  /// Constructor
  poisson_auxiliary_1_finite_element_0() : ufc::finite_element()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson_auxiliary_1_finite_element_0()
  {
    // Do nothing
  }

  /// Return a string identifying the finite element
  virtual const char* signature() const
  {
    return "FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)";
  }

  /// Return the cell shape
  virtual ufc::shape cell_shape() const
  {
    return ufc::triangle;
  }

  /// Return the dimension of the finite element function space
  virtual unsigned int space_dimension() const
  {
    return 3;
  }

  /// Return the rank of the value space
  virtual unsigned int value_rank() const
  {
    return 0;
  }

  /// Return the dimension of the value space for axis i
  virtual unsigned int value_dimension(unsigned int i) const
  {
    return 1;
  }

  /// Evaluate basis function i at given point in cell
  virtual void evaluate_basis(unsigned int i,
                              double* values,
                              const double* coordinates,
                              const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Reset values
    *values = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    const double psitilde_a_1 = x;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    const double psitilde_bs_0_1 = 1.5*y + 0.5;
    const double psitilde_bs_1_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
    // Table(s) of coefficients
    static const double coefficients0[3][3] = \
    {{0.471404520791032, -0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0, 0.333333333333333}};
    
    // Extract relevant coefficients
    const double coeff0_0 = coefficients0[dof][0];
    const double coeff0_1 = coefficients0[dof][1];
    const double coeff0_2 = coefficients0[dof][2];
    
    // Compute value(s)
    *values = coeff0_0*basisvalue0 + coeff0_1*basisvalue1 + coeff0_2*basisvalue2;
  }

  /// Evaluate all basis functions at given point in cell
  virtual void evaluate_basis_all(double* values,
                                  const double* coordinates,
                                  const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis() is not yet implemented.");
  }

  /// Evaluate order n derivatives of basis function i at given point in cell
  virtual void evaluate_basis_derivatives(unsigned int i,
                                          unsigned int n,
                                          double* values,
                                          const double* coordinates,
                                          const ufc::cell& c) const
  {
    // Extract vertex coordinates
    const double * const * element_coordinates = c.coordinates;
    
    // Compute Jacobian of affine map from reference cell
    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];
    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];
    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];
    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
    
    // Compute determinant of Jacobian
    const double detJ = J_00*J_11 - J_01*J_10;
    
    // Compute inverse of Jacobian
    
    // Get coordinates and map to the reference (UFC) element
    double x = (element_coordinates[0][1]*element_coordinates[2][0] -\
                element_coordinates[0][0]*element_coordinates[2][1] +\
                J_11*coordinates[0] - J_01*coordinates[1]) / detJ;
    double y = (element_coordinates[1][1]*element_coordinates[0][0] -\
                element_coordinates[1][0]*element_coordinates[0][1] -\
                J_10*coordinates[0] + J_00*coordinates[1]) / detJ;
    
    // Map coordinates to the reference square
    if (std::abs(y - 1.0) < 1e-14)
      x = -1.0;
    else
      x = 2.0 *x/(1.0 - y) - 1.0;
    y = 2.0*y - 1.0;
    
    // Compute number of derivatives
    unsigned int num_derivatives = 1;
    
    for (unsigned int j = 0; j < n; j++)
      num_derivatives *= 2;
    
    
    // Declare pointer to two dimensional array that holds combinations of derivatives and initialise
    unsigned int **combinations = new unsigned int *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      combinations[j] = new unsigned int [n];
      for (unsigned int k = 0; k < n; k++)
        combinations[j][k] = 0;
    }
    
    // Generate combinations of derivatives
    for (unsigned int row = 1; row < num_derivatives; row++)
    {
      for (unsigned int num = 0; num < row; num++)
      {
        for (unsigned int col = n-1; col+1 > 0; col--)
        {
          if (combinations[row][col] + 1 > 1)
            combinations[row][col] = 0;
          else
          {
            combinations[row][col] += 1;
            break;
          }
        }
      }
    }
    
    // Compute inverse of Jacobian
    const double Jinv[2][2] =  {{J_11 / detJ, -J_01 / detJ}, {-J_10 / detJ, J_00 / detJ}};
    
    // Declare transformation matrix
    // Declare pointer to two dimensional array and initialise
    double **transform = new double *[num_derivatives];
    
    for (unsigned int j = 0; j < num_derivatives; j++)
    {
      transform[j] = new double [num_derivatives];
      for (unsigned int k = 0; k < num_derivatives; k++)
        transform[j][k] = 1;
    }
    
    // Construct transformation matrix
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        for (unsigned int k = 0; k < n; k++)
          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];
      }
    }
    
    // Reset values
    for (unsigned int j = 0; j < 1*num_derivatives; j++)
      values[j] = 0;
    
    // Map degree of freedom to element degree of freedom
    const unsigned int dof = i;
    
    // Generate scalings
    const double scalings_y_0 = 1;
    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);
    
    // Compute psitilde_a
    const double psitilde_a_0 = 1;
    const double psitilde_a_1 = x;
    
    // Compute psitilde_bs
    const double psitilde_bs_0_0 = 1;
    const double psitilde_bs_0_1 = 1.5*y + 0.5;
    const double psitilde_bs_1_0 = 1;
    
    // Compute basisvalues
    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;
    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;
    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;
    
    // Table(s) of coefficients
    static const double coefficients0[3][3] = \
    {{0.471404520791032, -0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0.288675134594813, -0.166666666666667},
    {0.471404520791032, 0, 0.333333333333333}};
    
    // Interesting (new) part
    // Tables of derivatives of the polynomial base (transpose)
    static const double dmats0[3][3] = \
    {{0, 0, 0},
    {4.89897948556636, 0, 0},
    {0, 0, 0}};
    
    static const double dmats1[3][3] = \
    {{0, 0, 0},
    {2.44948974278318, 0, 0},
    {4.24264068711928, 0, 0}};
    
    // Compute reference derivatives
    // Declare pointer to array of derivatives on FIAT element
    double *derivatives = new double [num_derivatives];
    
    // Declare coefficients
    double coeff0_0 = 0;
    double coeff0_1 = 0;
    double coeff0_2 = 0;
    
    // Declare new coefficients
    double new_coeff0_0 = 0;
    double new_coeff0_1 = 0;
    double new_coeff0_2 = 0;
    
    // Loop possible derivatives
    for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)
    {
      // Get values from coefficients array
      new_coeff0_0 = coefficients0[dof][0];
      new_coeff0_1 = coefficients0[dof][1];
      new_coeff0_2 = coefficients0[dof][2];
    
      // Loop derivative order
      for (unsigned int j = 0; j < n; j++)
      {
        // Update old coefficients
        coeff0_0 = new_coeff0_0;
        coeff0_1 = new_coeff0_1;
        coeff0_2 = new_coeff0_2;
    
        if(combinations[deriv_num][j] == 0)
        {
          new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0];
          new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1];
          new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2];
        }
        if(combinations[deriv_num][j] == 1)
        {
          new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0];
          new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1];
          new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2];
        }
    
      }
      // Compute derivatives on reference element as dot product of coefficients and basisvalues
      derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;
    }
    
    // Transform derivatives back to physical element
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      for (unsigned int col = 0; col < num_derivatives; col++)
      {
        values[row] += transform[row][col]*derivatives[col];
      }
    }
    // Delete pointer to array of derivatives on FIAT element
    delete [] derivatives;
    
    // Delete pointer to array of combinations of derivatives and transform
    for (unsigned int row = 0; row < num_derivatives; row++)
    {
      delete [] combinations[row];
      delete [] transform[row];
    }
    
    delete [] combinations;
    delete [] transform;
  }

  /// Evaluate order n derivatives of all basis functions at given point in cell
  virtual void evaluate_basis_derivatives_all(unsigned int n,
                                              double* values,
                                              const double* coordinates,
                                              const ufc::cell& c) const
  {
    throw std::runtime_error("The vectorised version of evaluate_basis_derivatives() is not yet implemented.");
  }

  /// Evaluate linear functional for dof i on the function f
  virtual double evaluate_dof(unsigned int i,
                              const ufc::function& f,
                              const ufc::cell& c) const
  {
    // The reference points, direction and weights:
    static const double X[3][1][2] = {{{0, 0}}, {{1, 0}}, {{0, 1}}};
    static const double W[3][1] = {{1}, {1}, {1}};
    static const double D[3][1][1] = {{{1}}, {{1}}, {{1}}};
    
    const double * const * x = c.coordinates;
    double result = 0.0;
    // Iterate over the points:
    // Evaluate basis functions for affine mapping
    const double w0 = 1.0 - X[i][0][0] - X[i][0][1];
    const double w1 = X[i][0][0];
    const double w2 = X[i][0][1];
    
    // Compute affine mapping y = F(X)
    double y[2];
    y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];
    y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];
    
    // Evaluate function at physical points
    double values[1];
    f.evaluate(values, y, c);
    
    // Map function values using appropriate mapping
    // Affine map: Do nothing
    
    // Note that we do not map the weights (yet).
    
    // Take directional components
    for(int k = 0; k < 1; k++)
      result += values[k]*D[i][0][k];
    // Multiply by weights
    result *= W[i][0];
    
    return result;
  }

  /// Evaluate linear functionals for all dofs on the function f
  virtual void evaluate_dofs(double* values,
                             const ufc::function& f,
                             const ufc::cell& c) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Interpolate vertex values from dof values
  virtual void interpolate_vertex_values(double* vertex_values,
                                         const double* dof_values,
                                         const ufc::cell& c) const
  {
    // Evaluate at vertices and use affine mapping
    vertex_values[0] = dof_values[0];
    vertex_values[1] = dof_values[1];
    vertex_values[2] = dof_values[2];
  }

  /// Return the number of sub elements (for a mixed element)
  virtual unsigned int num_sub_elements() const
  {
    return 1;
  }

  /// Create a new finite element for sub element i (for a mixed element)
  virtual ufc::finite_element* create_sub_element(unsigned int i) const
  {
    return new poisson_auxiliary_1_finite_element_0();
  }

};

/// This class defines the interface for a local-to-global mapping of
/// degrees of freedom (dofs).


class poisson_auxiliary_1_dof_map_0: public ufc::dof_map 
{
private:

  unsigned int __global_dimension; 
   

public:

  /// Constructor
  poisson_auxiliary_1_dof_map_0() :ufc::dof_map()
  {
    __global_dimension = 0;
  }
  /// Destructor
  virtual ~poisson_auxiliary_1_dof_map_0()
  {
    // Do nothing
  }

  /// Return a string identifying the dof map
  virtual const char* signature() const
  {
    return "FFC dof map for FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1)";
  }

  /// Return true iff mesh entities of topological dimension d are needed
  virtual bool needs_mesh_entities(unsigned int d) const
  {
    switch ( d )
    {
    case 0:
      return true;
      break;
    case 1:
      return false;
      break;
    case 2:
      return false;
      break;
    }
    return false;
  }

  /// Initialize dof map for mesh (return true iff init_cell() is needed)
  virtual bool init_mesh(const ufc::mesh& m)
  {
    __global_dimension = m.num_entities[0];
    return false;
  }

  /// Initialize dof map for given cell
  virtual void init_cell(const ufc::mesh& m,
                         const ufc::cell& c)
  {
    // Do nothing
  }

  /// Finish initialization of dof map for cells
  virtual void init_cell_finalize()
  {
    // Do nothing
  }

  /// Return the dimension of the global finite element function space
  virtual unsigned int global_dimension() const
  {
    return __global_dimension ;
  }

  /// Return the dimension of the local finite element function space for a cell
  virtual unsigned int local_dimension(const ufc::cell& c) const
  {
    return 3;
  }

  /// Return the maximum dimension of the local finite element function space
  virtual unsigned int max_local_dimension() const
  {
    return 3;
  }


  // Return the geometric dimension of the coordinates this dof map provides
  virtual unsigned int geometric_dimension() const
  {
    return 2;
  }

  /// Return the number of dofs on each cell facet
  virtual unsigned int num_facet_dofs() const
  {
    return 2;
  }

  /// Return the number of dofs associated with each cell entity of dimension d
  virtual unsigned int num_entity_dofs(unsigned int d) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the local-to-global mapping of dofs on a cell
  virtual void tabulate_dofs(unsigned int* dofs,
                             const ufc::mesh& m,
                             const ufc::cell& c) const
  {
    dofs[0] = c.entity_indices[0][0];
    dofs[1] = c.entity_indices[0][1];
    dofs[2] = c.entity_indices[0][2];
  }

  /// Tabulate the local-to-local mapping from facet dofs to cell dofs
  virtual void tabulate_facet_dofs(unsigned int* dofs,
                                   unsigned int facet) const
  {
    switch ( facet )
    {
    case 0:
      dofs[0] = 1;
      dofs[1] = 2;
      break;
    case 1:
      dofs[0] = 0;
      dofs[1] = 2;
      break;
    case 2:
      dofs[0] = 0;
      dofs[1] = 1;
      break;
    }
  }

  /// Tabulate the local-to-local mapping of dofs on entity (d, i)
  virtual void tabulate_entity_dofs(unsigned int* dofs,
                                    unsigned int d, unsigned int i) const
  {
    throw std::runtime_error("Not implemented (introduced in UFC v1.1).");
  }

  /// Tabulate the coordinates of all dofs on a cell
  virtual void tabulate_coordinates(double** coordinates,
                                    const ufc::cell& c) const
  {
    const double * const * x = c.coordinates;
    coordinates[0][0] = x[0][0];
    coordinates[0][1] = x[0][1];
    coordinates[1][0] = x[1][0];
    coordinates[1][1] = x[1][1];
    coordinates[2][0] = x[2][0];
    coordinates[2][1] = x[2][1];
  }

  /// Return the number of sub dof maps (for a mixed element)
  virtual unsigned int num_sub_dof_maps() const
  {
    return 1;
  }

  /// Create a new dof_map for sub dof map i (for a mixed element)
  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const
  {
    return new poisson_auxiliary_1_dof_map_0();
  }

};

/// This class defines the interface for the assembly of the global
/// tensor corresponding to a form with r + n arguments, that is, a
/// mapping
///
///     a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R
///
/// with arguments v1, v2, ..., vr, w1, w2, ..., wn. The rank r
/// global tensor A is defined by
///
///     A = a(V1, V2, ..., Vr, w1, w2, ..., wn),
///
/// where each argument Vj represents the application to the
/// sequence of basis functions of Vj and w1, w2, ..., wn are given
/// fixed functions (coefficients).

class poisson_auxiliary_form_1: public ufc::form
{
public:

  /// Constructor
  poisson_auxiliary_form_1() : ufc::form()
  {
    // Do nothing
  }

  /// Destructor
  virtual ~poisson_auxiliary_form_1()
  {
    // Do nothing
  }

  /// Return a string identifying the form
  virtual const char* signature() const
  {
    return "Auxiliary ufc::form to initialize standard functions, apply boundary conditions and obtain ufc::dof_map objects for continuous space(required for PUM objects) for a form containing discontinuous spaces.";
  }

  /// Return the rank of the global tensor (r)
  virtual unsigned int rank() const
  {
    return 1;
  }

  /// Return the number of coefficients (n)
  virtual unsigned int num_coefficients() const
  {
    return 0;
  }

  /// Return the number of cell integrals
  virtual unsigned int num_cell_integrals() const
  {
    return 0;
  }

  /// Return the number of exterior facet integrals
  virtual unsigned int num_exterior_facet_integrals() const
  {
    return 0;
  }

  /// Return the number of interior facet integrals
  virtual unsigned int num_interior_facet_integrals() const
  {
    return 0;
  }

  /// Create a new finite element for argument function i
  virtual ufc::finite_element* create_finite_element(unsigned int i) const
  {
    switch ( i )
    {
    case 0:
      return new poisson_auxiliary_1_finite_element_0();
      break;
    case 1:
      return new poisson_auxiliary_1_finite_element_0();
      break;
    }
    return 0;
  }

  /// Create a new dof map for argument function i
  virtual ufc::dof_map* create_dof_map(unsigned int i) const
  {
    switch ( i )
    {
    case 0:
      return new poisson_auxiliary_1_dof_map_0();
      break;
    case 1:
      return new poisson_auxiliary_1_dof_map_0();
      break;
    }
    return 0;
  }

  /// Create a new cell integral on sub domain i
  virtual ufc::cell_integral* create_cell_integral(unsigned int i) const
  {
    return 0;
  }

  /// Create a new exterior facet integral on sub domain i
  virtual ufc::exterior_facet_integral* create_exterior_facet_integral(unsigned int i) const
  {
    return 0;
  }

  /// Create a new interior facet integral on sub domain i
  virtual ufc::interior_facet_integral* create_interior_facet_integral(unsigned int i) const
  {
    return 0;
  }

};

/// This class defines the interface for post-processing on vector x
/// to obtain x0, u and j where,
///
/// - x is the solution vector containing standard and enriched degrees of freedom
/// defined on continuous/discontinuous space
/// - u is the standard part of solution vector defined on continuous space
/// - j is the enriched part pf solution vector defined on continuous space
/// - x0 is the result vector, equall to u + j, defined on continuous space 
/// by considering enrichement function
//

// Dolfin includes
#include <dolfin/common/NoDeleter.h>
#include <dolfin/mesh/Mesh.h>
#include <dolfin/fem/DofMap.h>
#include <dolfin/la/GenericVector.h>

// PartitionOfUnity includes
#include <pum/PostProcess.h>
#include <pum/FunctionSpace.h>

namespace     Poisson
{
  class PostProcess:  public pum::PostProcess
  {
    dolfin::Mesh& mesh;
    std::vector<const pum::GenericPUM*>& pums;

  public:

    /// Constructor
    PostProcess(dolfin::Mesh& mesh, std::vector<const pum::GenericPUM*>& pums): pum::PostProcess(mesh), mesh(mesh), pums(pums)
    {
      // Do nothing
    }

    /// Destructor
    ~PostProcess()
    {
      // Do nothing
    }

    /// Return a string identifying the underling element
    const char* signature() const
    {
      return "Interpolating results to the continuous space of MixedElement(*[FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), ElementRestriction(FiniteElement('Lagrange', Cell('triangle', 1, Space(2)), 1), Measure('surface', 0, None))], **{'value_shape': (2,) })";
    }

    /// Obtain result vector 'x0' from solution vector 'x'  
    void interpolate(const dolfin::GenericVector& x, dolfin::GenericVector& x0) const
    {
      
      //poisson_1_dof_map_0_0 ufc_dof_map_0;
      //dolfin::DofMap dof_map_0(ufc_dof_map_0, mesh);
      //dolfin::DofMap dof_map_0(boost::shared_ptr<ufc::dof_map>(new poisson_1_dof_map_0_0()), dolfin::reference_to_no_delete_pointer(mesh));
      dolfin::DofMap dof_map_0(boost::shared_ptr<ufc::dof_map>(new poisson_1_dof_map_0_0()), mesh);
      unsigned int num_standard_dofs_0 = dof_map_0.global_dimension();
    
      double value, h;
    
      /// selecting standard degrees of freedom related to field 0 from the solution vector  
    
      double* values_0 = new double[num_standard_dofs_0];
      unsigned int* positions_0 = new unsigned int [num_standard_dofs_0];
    
      for (unsigned int i = 0; i < num_standard_dofs_0; ++i)
        positions_0[i] = i;
    
      x.get(values_0, num_standard_dofs_0, positions_0);
      x0.set(values_0, num_standard_dofs_0, positions_0);
    
    
    
      /// selecting enriched degrees of freedom related to field 0 from the solution vector  
      std::vector <std::vector<unsigned int> > enhanced_dof_maps_0;
      enhanced_dof_maps_0.resize(num_standard_dofs_0);   
    
      std::vector<unsigned int> enhanced_dof_values_0;
      enhanced_dof_values_0.resize(num_standard_dofs_0);   
    
      compute_enhanced_dof_maps(*pums[0], dof_map_0, enhanced_dof_maps_0);
      compute_enhanced_dof_values(*pums[0], dof_map_0, enhanced_dof_values_0);
    
    
      for (unsigned int i = 0; i != num_standard_dofs_0; ++i)
      {
        unsigned int pos = i;
    
        for (std::vector<unsigned int>::const_iterator it = enhanced_dof_maps_0[i].begin(); 
                           it != enhanced_dof_maps_0[i].end(); ++it)
        { 
          //h = pums[0]->enhanced_node_value(*it);
          h = enhanced_dof_values_0[i];
          unsigned int pos_n = *it + num_standard_dofs_0;
    
          x.get(&value, 1, &pos_n);
          value *= h; 
          x0.add(&value, 1, &pos);
        }
      }
    
    
    // memory clean up
    
      delete[] values_0;
      delete[] positions_0;
    
      x0.apply();
    }

    /// Obtain continuous u and discontinuous j parts of solution vector 'x'  
    void interpolate(const dolfin::GenericVector& x, dolfin::GenericVector& u, dolfin::GenericVector& j) const
    {
      
      //poisson_1_dof_map_0_0 ufc_dof_map_0;
      //dolfin::DofMap dof_map_0(ufc_dof_map_0, mesh);
      //dolfin::DofMap dof_map_0(boost::shared_ptr<ufc::dof_map>(new poisson_1_dof_map_0_0()), dolfin::reference_to_no_delete_pointer(mesh));
      dolfin::DofMap dof_map_0(boost::shared_ptr<ufc::dof_map>(new poisson_1_dof_map_0_0()), mesh);
      unsigned int num_standard_dofs_0 = dof_map_0.global_dimension();
    
      double value;
    
      /// selecting standard degrees of freedom related to field 0 from the solution vector  
      double* values_0 = new double[num_standard_dofs_0];
      unsigned int* positions_0 = new unsigned int [num_standard_dofs_0];
    
      for (unsigned int i = 0; i < num_standard_dofs_0; ++i)
        positions_0[i] = i;
    
      x.get(values_0, num_standard_dofs_0, positions_0);
      u.set(values_0, num_standard_dofs_0, positions_0);
    
    
    
      /// selecting enriched degrees of freedom related to field 0 from the solution vector 
      std::vector <std::vector<unsigned int> > enhanced_dof_maps_0;
      enhanced_dof_maps_0.resize(num_standard_dofs_0);   
    
      compute_enhanced_dof_maps(*pums[0], dof_map_0, enhanced_dof_maps_0);
    
      for (unsigned int i = 0; i != num_standard_dofs_0; ++i)
      { 
        unsigned int pos = i ;
    
        for (std::vector<unsigned int>::const_iterator it = enhanced_dof_maps_0[i].begin(); 
                           it != enhanced_dof_maps_0[i].end(); ++it)
        { 
          unsigned int pos_n = *it + num_standard_dofs_0;
    
          x.get(&value, 1, &pos_n);
          j.set(&value, 1, &pos);
       }
      }
    
    
    // memory clean up
    
      delete[] values_0;
      delete[] positions_0;
    
      u.apply();
      j.apply();
    }

  };
}

// DOLFIN wrappers

// Standard library includes
#include <string>

// DOLFIN includes
#include <dolfin/common/NoDeleter.h>
#include <dolfin/fem/FiniteElement.h>
#include <dolfin/fem/DofMap.h>
#include <dolfin/fem/Form.h>
#include <dolfin/function/FunctionSpace.h>
#include <dolfin/function/Function.h>
#include <dolfin/function/GenericFunction.h>
#include <dolfin/function/CoefficientAssigner.h>

namespace Poisson
{

class CoefficientSpace_f: public dolfin::FunctionSpace
{
public:


  CoefficientSpace_f(const dolfin::Mesh & mesh):
      dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement
                            (boost::shared_ptr<ufc::finite_element>(new poisson_1_finite_element_1()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>
                            (new poisson_1_dof_map_1()), mesh)))
  {
    // Do nothing
  }

  CoefficientSpace_f(dolfin::Mesh & mesh):
    dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                          boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_1_finite_element_1()))),
                          boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_1_dof_map_1()), mesh)))
  {
    // Do nothing
  }

  CoefficientSpace_f(boost::shared_ptr<dolfin::Mesh> mesh):
      dolfin::FunctionSpace(mesh,
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_1_finite_element_1()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_1_dof_map_1()), *mesh)))
  {
      // Do nothing
  }

  CoefficientSpace_f(boost::shared_ptr<const dolfin::Mesh> mesh):
      dolfin::FunctionSpace(mesh,
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_1_finite_element_1()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_1_dof_map_1()), *mesh)))
  {
      // Do nothing
  }
 

  ~CoefficientSpace_f()
  {
  }
  
};

class CoefficientSpace_g: public dolfin::FunctionSpace
{
public:


  CoefficientSpace_g(const dolfin::Mesh & mesh):
      dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement
                            (boost::shared_ptr<ufc::finite_element>(new poisson_1_finite_element_2()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>
                            (new poisson_1_dof_map_2()), mesh)))
  {
    // Do nothing
  }

  CoefficientSpace_g(dolfin::Mesh & mesh):
    dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                          boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_1_finite_element_2()))),
                          boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_1_dof_map_2()), mesh)))
  {
    // Do nothing
  }

  CoefficientSpace_g(boost::shared_ptr<dolfin::Mesh> mesh):
      dolfin::FunctionSpace(mesh,
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_1_finite_element_2()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_1_dof_map_2()), *mesh)))
  {
      // Do nothing
  }

  CoefficientSpace_g(boost::shared_ptr<const dolfin::Mesh> mesh):
      dolfin::FunctionSpace(mesh,
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_1_finite_element_2()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_1_dof_map_2()), *mesh)))
  {
      // Do nothing
  }
 

  ~CoefficientSpace_g()
  {
  }
  
};

class CoefficientSpace_k: public dolfin::FunctionSpace
{
public:


  CoefficientSpace_k(const dolfin::Mesh & mesh):
      dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement
                            (boost::shared_ptr<ufc::finite_element>(new poisson_0_finite_element_2()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>
                            (new poisson_0_dof_map_2()), mesh)))
  {
    // Do nothing
  }

  CoefficientSpace_k(dolfin::Mesh & mesh):
    dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                          boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_0_finite_element_2()))),
                          boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_0_dof_map_2()), mesh)))
  {
    // Do nothing
  }

  CoefficientSpace_k(boost::shared_ptr<dolfin::Mesh> mesh):
      dolfin::FunctionSpace(mesh,
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_0_finite_element_2()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_0_dof_map_2()), *mesh)))
  {
      // Do nothing
  }

  CoefficientSpace_k(boost::shared_ptr<const dolfin::Mesh> mesh):
      dolfin::FunctionSpace(mesh,
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_0_finite_element_2()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_0_dof_map_2()), *mesh)))
  {
      // Do nothing
  }
 

  ~CoefficientSpace_k()
  {
  }
  
};

class CoefficientSpace_w: public dolfin::FunctionSpace
{
public:


  CoefficientSpace_w(const dolfin::Mesh & mesh):
      dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement
                            (boost::shared_ptr<ufc::finite_element>(new poisson_0_finite_element_3()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>
                            (new poisson_0_dof_map_3()), mesh)))
  {
    // Do nothing
  }

  CoefficientSpace_w(dolfin::Mesh & mesh):
    dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                          boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_0_finite_element_3()))),
                          boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_0_dof_map_3()), mesh)))
  {
    // Do nothing
  }

  CoefficientSpace_w(boost::shared_ptr<dolfin::Mesh> mesh):
      dolfin::FunctionSpace(mesh,
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_0_finite_element_3()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_0_dof_map_3()), *mesh)))
  {
      // Do nothing
  }

  CoefficientSpace_w(boost::shared_ptr<const dolfin::Mesh> mesh):
      dolfin::FunctionSpace(mesh,
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_0_finite_element_3()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_0_dof_map_3()), *mesh)))
  {
      // Do nothing
  }
 

  ~CoefficientSpace_w()
  {
  }
  
};

class Form_0_FunctionSpace_0: public pum::FunctionSpace
{
public:


  Form_0_FunctionSpace_0(const dolfin::Mesh & mesh ,const std::vector<const pum::GenericPUM*>& pums):
      pum::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement
                            (boost::shared_ptr<ufc::finite_element>(new poisson_0_finite_element_0()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>
                            (new poisson_0_dof_map_0(pums)), mesh)) ,pums)
  {
    // Do nothing
  }

  Form_0_FunctionSpace_0(dolfin::Mesh & mesh ,const std::vector<const pum::GenericPUM*>& pums):
    pum::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                          boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_0_finite_element_0()))),
                          boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_0_dof_map_0(pums)), mesh)) ,pums)
  {
    // Do nothing
  }

  Form_0_FunctionSpace_0(boost::shared_ptr<dolfin::Mesh> mesh ,const std::vector<const pum::GenericPUM*>& pums):
      pum::FunctionSpace(mesh,
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_0_finite_element_0()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_0_dof_map_0(pums)), *mesh)) ,pums)
  {
      // Do nothing
  }

  Form_0_FunctionSpace_0(boost::shared_ptr<const dolfin::Mesh> mesh ,const std::vector<const pum::GenericPUM*>& pums):
      pum::FunctionSpace(mesh,
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_0_finite_element_0()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_0_dof_map_0(pums)), *mesh)) ,pums)
  {
      // Do nothing
  }
 

  ~Form_0_FunctionSpace_0()
  {
  }
  
};

class Form_0_FunctionSpace_1: public pum::FunctionSpace
{
public:


  Form_0_FunctionSpace_1(const dolfin::Mesh & mesh ,const std::vector<const pum::GenericPUM*>& pums):
      pum::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement
                            (boost::shared_ptr<ufc::finite_element>(new poisson_0_finite_element_1()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>
                            (new poisson_0_dof_map_1(pums)), mesh)) ,pums)
  {
    // Do nothing
  }

  Form_0_FunctionSpace_1(dolfin::Mesh & mesh ,const std::vector<const pum::GenericPUM*>& pums):
    pum::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                          boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_0_finite_element_1()))),
                          boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_0_dof_map_1(pums)), mesh)) ,pums)
  {
    // Do nothing
  }

  Form_0_FunctionSpace_1(boost::shared_ptr<dolfin::Mesh> mesh ,const std::vector<const pum::GenericPUM*>& pums):
      pum::FunctionSpace(mesh,
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_0_finite_element_1()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_0_dof_map_1(pums)), *mesh)) ,pums)
  {
      // Do nothing
  }

  Form_0_FunctionSpace_1(boost::shared_ptr<const dolfin::Mesh> mesh ,const std::vector<const pum::GenericPUM*>& pums):
      pum::FunctionSpace(mesh,
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_0_finite_element_1()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_0_dof_map_1(pums)), *mesh)) ,pums)
  {
      // Do nothing
  }
 

  ~Form_0_FunctionSpace_1()
  {
  }
  
};

typedef CoefficientSpace_k Form_0_FunctionSpace_2;

typedef CoefficientSpace_w Form_0_FunctionSpace_3;

class Form_0: public dolfin::Form
{
public:

  // Constructor
  Form_0(const pum::FunctionSpace& V0, const pum::FunctionSpace& V1):
    dolfin::Form(2, 2), k(*this, 0), w(*this, 1)
  {
    _function_spaces[0] = reference_to_no_delete_pointer(V0);
    _function_spaces[1] = reference_to_no_delete_pointer(V1);

    _ufc_form = boost::shared_ptr<const ufc::form>(new poisson_form_0(V0.pums));
  }

  // Constructor
  Form_0(const pum::FunctionSpace& V0, const pum::FunctionSpace& V1, dolfin::GenericFunction & k, dolfin::GenericFunction & w):
    dolfin::Form(2, 2), k(*this, 0), w(*this, 1)
  {
    _function_spaces[0] = reference_to_no_delete_pointer(V0);
    _function_spaces[1] = reference_to_no_delete_pointer(V1);

    this->k = k;
    this->w = w;

    _ufc_form = boost::shared_ptr<const ufc::form>(new poisson_form_0(V0.pums));
  }

  // Constructor
  Form_0(const pum::FunctionSpace& V0, const pum::FunctionSpace& V1, boost::shared_ptr<dolfin::GenericFunction> k, boost::shared_ptr<dolfin::GenericFunction> w):
    dolfin::Form(2, 2), k(*this, 0), w(*this, 1)
  {
    _function_spaces[0] = reference_to_no_delete_pointer(V0);
    _function_spaces[1] = reference_to_no_delete_pointer(V1);

    this->k = *k;
    this->w = *w;

    _ufc_form = boost::shared_ptr<const ufc::form>(new poisson_form_0(V0.pums));
  }

  // Constructor
  Form_0(boost::shared_ptr<const pum::FunctionSpace> V0, boost::shared_ptr<const pum::FunctionSpace> V1):
    dolfin::Form(2, 2), k(*this, 0), w(*this, 1)
  {
    _function_spaces[0] = V0;
    _function_spaces[1] = V1;

    _ufc_form = boost::shared_ptr<const ufc::form>(new poisson_form_0(V0->pums));
  }

  // Constructor
  Form_0(boost::shared_ptr<const pum::FunctionSpace> V0, boost::shared_ptr<const pum::FunctionSpace> V1, dolfin::GenericFunction & k, dolfin::GenericFunction & w):
    dolfin::Form(2, 2), k(*this, 0), w(*this, 1)
  {
    _function_spaces[0] = V0;
    _function_spaces[1] = V1;

    this->k = k;
    this->w = w;

    _ufc_form = boost::shared_ptr<const ufc::form>(new poisson_form_0(V0->pums));
  }

  // Constructor
  Form_0(boost::shared_ptr<const pum::FunctionSpace> V0, boost::shared_ptr<const pum::FunctionSpace> V1, boost::shared_ptr<dolfin::GenericFunction> k, boost::shared_ptr<dolfin::GenericFunction> w):
    dolfin::Form(2, 2), k(*this, 0), w(*this, 1)
  {
    _function_spaces[0] = V0;
    _function_spaces[1] = V1;

    this->k = *k;
    this->w = *w;

    _ufc_form = boost::shared_ptr<const ufc::form>(new poisson_form_0(V0->pums));
  }

  // Destructor
  ~Form_0()
  {}

  /// Return the number of the coefficient with this name
  virtual dolfin::uint coefficient_number(const std::string& name) const
  {
    if(name == "k") return 0;
    else if(name == "w") return 1;
    dolfin::error("Invalid coefficient.");
    return 0;
  }
  
  /// Return the name of the coefficient with this number
  virtual std::string coefficient_name(dolfin::uint i) const
  {
    switch(i)
    {
      case 0: return "k";
      case 1: return "w";
    }
    dolfin::error("Invalid coefficient.");
    return "unnamed";
  }

  // Typedefs
  typedef Form_0_FunctionSpace_0 TestSpace;
  typedef Form_0_FunctionSpace_1 TrialSpace;
  typedef Form_0_FunctionSpace_2 CoefficientSpace_k;
  typedef Form_0_FunctionSpace_3 CoefficientSpace_w;

  // Coefficients
  dolfin::CoefficientAssigner k;
  dolfin::CoefficientAssigner w;
};

class Form_1_FunctionSpace_0: public pum::FunctionSpace
{
public:


  Form_1_FunctionSpace_0(const dolfin::Mesh & mesh ,const std::vector<const pum::GenericPUM*>& pums):
      pum::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement
                            (boost::shared_ptr<ufc::finite_element>(new poisson_1_finite_element_0()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>
                            (new poisson_1_dof_map_0(pums)), mesh)) ,pums)
  {
    // Do nothing
  }

  Form_1_FunctionSpace_0(dolfin::Mesh & mesh ,const std::vector<const pum::GenericPUM*>& pums):
    pum::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                          boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_1_finite_element_0()))),
                          boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_1_dof_map_0(pums)), mesh)) ,pums)
  {
    // Do nothing
  }

  Form_1_FunctionSpace_0(boost::shared_ptr<dolfin::Mesh> mesh ,const std::vector<const pum::GenericPUM*>& pums):
      pum::FunctionSpace(mesh,
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_1_finite_element_0()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_1_dof_map_0(pums)), *mesh)) ,pums)
  {
      // Do nothing
  }

  Form_1_FunctionSpace_0(boost::shared_ptr<const dolfin::Mesh> mesh ,const std::vector<const pum::GenericPUM*>& pums):
      pum::FunctionSpace(mesh,
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_1_finite_element_0()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_1_dof_map_0(pums)), *mesh)) ,pums)
  {
      // Do nothing
  }
 

  ~Form_1_FunctionSpace_0()
  {
  }
  
};

typedef CoefficientSpace_f Form_1_FunctionSpace_1;

typedef CoefficientSpace_g Form_1_FunctionSpace_2;

class Form_1: public dolfin::Form
{
public:

  // Constructor
  Form_1(const pum::FunctionSpace& V0):
    dolfin::Form(1, 2), f(*this, 0), g(*this, 1)
  {
    _function_spaces[0] = reference_to_no_delete_pointer(V0);

    _ufc_form = boost::shared_ptr<const ufc::form>(new poisson_form_1(V0.pums));
  }

  // Constructor
  Form_1(const pum::FunctionSpace& V0, dolfin::GenericFunction & f, dolfin::GenericFunction & g):
    dolfin::Form(1, 2), f(*this, 0), g(*this, 1)
  {
    _function_spaces[0] = reference_to_no_delete_pointer(V0);

    this->f = f;
    this->g = g;

    _ufc_form = boost::shared_ptr<const ufc::form>(new poisson_form_1(V0.pums));
  }

  // Constructor
  Form_1(const pum::FunctionSpace& V0, boost::shared_ptr<dolfin::GenericFunction> f, boost::shared_ptr<dolfin::GenericFunction> g):
    dolfin::Form(1, 2), f(*this, 0), g(*this, 1)
  {
    _function_spaces[0] = reference_to_no_delete_pointer(V0);

    this->f = *f;
    this->g = *g;

    _ufc_form = boost::shared_ptr<const ufc::form>(new poisson_form_1(V0.pums));
  }

  // Constructor
  Form_1(boost::shared_ptr<const pum::FunctionSpace> V0):
    dolfin::Form(1, 2), f(*this, 0), g(*this, 1)
  {
    _function_spaces[0] = V0;

    _ufc_form = boost::shared_ptr<const ufc::form>(new poisson_form_1(V0->pums));
  }

  // Constructor
  Form_1(boost::shared_ptr<const pum::FunctionSpace> V0, dolfin::GenericFunction & f, dolfin::GenericFunction & g):
    dolfin::Form(1, 2), f(*this, 0), g(*this, 1)
  {
    _function_spaces[0] = V0;

    this->f = f;
    this->g = g;

    _ufc_form = boost::shared_ptr<const ufc::form>(new poisson_form_1(V0->pums));
  }

  // Constructor
  Form_1(boost::shared_ptr<const pum::FunctionSpace> V0, boost::shared_ptr<dolfin::GenericFunction> f, boost::shared_ptr<dolfin::GenericFunction> g):
    dolfin::Form(1, 2), f(*this, 0), g(*this, 1)
  {
    _function_spaces[0] = V0;

    this->f = *f;
    this->g = *g;

    _ufc_form = boost::shared_ptr<const ufc::form>(new poisson_form_1(V0->pums));
  }

  // Destructor
  ~Form_1()
  {}

  /// Return the number of the coefficient with this name
  virtual dolfin::uint coefficient_number(const std::string& name) const
  {
    if(name == "f") return 0;
    else if(name == "g") return 1;
    dolfin::error("Invalid coefficient.");
    return 0;
  }
  
  /// Return the name of the coefficient with this number
  virtual std::string coefficient_name(dolfin::uint i) const
  {
    switch(i)
    {
      case 0: return "f";
      case 1: return "g";
    }
    dolfin::error("Invalid coefficient.");
    return "unnamed";
  }

  // Typedefs
  typedef Form_1_FunctionSpace_0 TestSpace;
  typedef Form_1_FunctionSpace_1 CoefficientSpace_f;
  typedef Form_1_FunctionSpace_2 CoefficientSpace_g;

  // Coefficients
  dolfin::CoefficientAssigner f;
  dolfin::CoefficientAssigner g;
};

// Class typedefs
typedef Form_0 BilinearForm;
typedef Form_1 LinearForm;
typedef Form_0::TestSpace FunctionSpace;

} // namespace Poisson

// DOLFIN wrappers

// Standard library includes
#include <string>

// DOLFIN includes
#include <dolfin/common/NoDeleter.h>
#include <dolfin/fem/FiniteElement.h>
#include <dolfin/fem/DofMap.h>
#include <dolfin/fem/Form.h>
#include <dolfin/function/FunctionSpace.h>
#include <dolfin/function/Function.h>
#include <dolfin/function/GenericFunction.h>
#include <dolfin/function/CoefficientAssigner.h>

namespace Poisson
{

class Form_auxiliary_0_FunctionSpace_auxiliary_0: public dolfin::FunctionSpace
{
public:


  Form_auxiliary_0_FunctionSpace_auxiliary_0(const dolfin::Mesh & mesh):
      dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement
                            (boost::shared_ptr<ufc::finite_element>(new poisson_auxiliary_0_finite_element_0()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>
                            (new poisson_auxiliary_0_dof_map_0()), mesh)))
  {
    // Do nothing
  }

  Form_auxiliary_0_FunctionSpace_auxiliary_0(dolfin::Mesh & mesh):
    dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                          boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_auxiliary_0_finite_element_0()))),
                          boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_auxiliary_0_dof_map_0()), mesh)))
  {
    // Do nothing
  }

  Form_auxiliary_0_FunctionSpace_auxiliary_0(boost::shared_ptr<dolfin::Mesh> mesh):
      dolfin::FunctionSpace(mesh,
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_auxiliary_0_finite_element_0()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_auxiliary_0_dof_map_0()), *mesh)))
  {
      // Do nothing
  }

  Form_auxiliary_0_FunctionSpace_auxiliary_0(boost::shared_ptr<const dolfin::Mesh> mesh):
      dolfin::FunctionSpace(mesh,
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_auxiliary_0_finite_element_0()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_auxiliary_0_dof_map_0()), *mesh)))
  {
      // Do nothing
  }
 

  ~Form_auxiliary_0_FunctionSpace_auxiliary_0()
  {
  }
  
};

class Form_auxiliary_0_FunctionSpace_auxiliary_1: public dolfin::FunctionSpace
{
public:


  Form_auxiliary_0_FunctionSpace_auxiliary_1(const dolfin::Mesh & mesh):
      dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement
                            (boost::shared_ptr<ufc::finite_element>(new poisson_auxiliary_0_finite_element_0()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>
                            (new poisson_auxiliary_0_dof_map_0()), mesh)))
  {
    // Do nothing
  }

  Form_auxiliary_0_FunctionSpace_auxiliary_1(dolfin::Mesh & mesh):
    dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                          boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_auxiliary_0_finite_element_0()))),
                          boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_auxiliary_0_dof_map_0()), mesh)))
  {
    // Do nothing
  }

  Form_auxiliary_0_FunctionSpace_auxiliary_1(boost::shared_ptr<dolfin::Mesh> mesh):
      dolfin::FunctionSpace(mesh,
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_auxiliary_0_finite_element_0()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_auxiliary_0_dof_map_0()), *mesh)))
  {
      // Do nothing
  }

  Form_auxiliary_0_FunctionSpace_auxiliary_1(boost::shared_ptr<const dolfin::Mesh> mesh):
      dolfin::FunctionSpace(mesh,
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_auxiliary_0_finite_element_0()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_auxiliary_0_dof_map_0()), *mesh)))
  {
      // Do nothing
  }
 

  ~Form_auxiliary_0_FunctionSpace_auxiliary_1()
  {
  }
  
};

class Form_auxiliary_0: public dolfin::Form
{
public:

  // Constructor
  Form_auxiliary_0(const dolfin::FunctionSpace& V0, const dolfin::FunctionSpace& V1):
    dolfin::Form(2, 0)
  {
    _function_spaces[0] = reference_to_no_delete_pointer(V0);
    _function_spaces[1] = reference_to_no_delete_pointer(V1);

    _ufc_form = boost::shared_ptr<const ufc::form>(new poisson_auxiliary_form_0());
  }

  // Constructor
  Form_auxiliary_0(boost::shared_ptr<const dolfin::FunctionSpace> V0, boost::shared_ptr<const dolfin::FunctionSpace> V1):
    dolfin::Form(2, 0)
  {
    _function_spaces[0] = V0;
    _function_spaces[1] = V1;

    _ufc_form = boost::shared_ptr<const ufc::form>(new poisson_auxiliary_form_0());
  }

  // Destructor
  ~Form_auxiliary_0()
  {}

  /// Return the number of the coefficient with this name
  virtual dolfin::uint coefficient_number(const std::string& name) const
  {
    dolfin::error("No coefficients.");
    return 0;
  }
  
  /// Return the name of the coefficient with this number
  virtual std::string coefficient_name(dolfin::uint i) const
  {
    dolfin::error("No coefficients.");
    return "unnamed";
  }

  // Typedefs
  typedef Form_auxiliary_0_FunctionSpace_auxiliary_0 TestSpace;
  typedef Form_auxiliary_0_FunctionSpace_auxiliary_1 TrialSpace;

  // Coefficients
};

class Form_auxiliary_1_FunctionSpace_auxiliary_0: public dolfin::FunctionSpace
{
public:


  Form_auxiliary_1_FunctionSpace_auxiliary_0(const dolfin::Mesh & mesh):
      dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement
                            (boost::shared_ptr<ufc::finite_element>(new poisson_auxiliary_1_finite_element_0()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>
                            (new poisson_auxiliary_1_dof_map_0()), mesh)))
  {
    // Do nothing
  }

  Form_auxiliary_1_FunctionSpace_auxiliary_0(dolfin::Mesh & mesh):
    dolfin::FunctionSpace(dolfin::reference_to_no_delete_pointer(mesh),
                          boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_auxiliary_1_finite_element_0()))),
                          boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_auxiliary_1_dof_map_0()), mesh)))
  {
    // Do nothing
  }

  Form_auxiliary_1_FunctionSpace_auxiliary_0(boost::shared_ptr<dolfin::Mesh> mesh):
      dolfin::FunctionSpace(mesh,
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_auxiliary_1_finite_element_0()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_auxiliary_1_dof_map_0()), *mesh)))
  {
      // Do nothing
  }

  Form_auxiliary_1_FunctionSpace_auxiliary_0(boost::shared_ptr<const dolfin::Mesh> mesh):
      dolfin::FunctionSpace(mesh,
                            boost::shared_ptr<const dolfin::FiniteElement>(new dolfin::FiniteElement(boost::shared_ptr<ufc::finite_element>(new poisson_auxiliary_1_finite_element_0()))),
                            boost::shared_ptr<const dolfin::DofMap>(new dolfin::DofMap(boost::shared_ptr<ufc::dof_map>(new poisson_auxiliary_1_dof_map_0()), *mesh)))
  {
      // Do nothing
  }
 

  ~Form_auxiliary_1_FunctionSpace_auxiliary_0()
  {
  }
  
};

class Form_auxiliary_1: public dolfin::Form
{
public:

  // Constructor
  Form_auxiliary_1(const dolfin::FunctionSpace& V0):
    dolfin::Form(1, 0)
  {
    _function_spaces[0] = reference_to_no_delete_pointer(V0);

    _ufc_form = boost::shared_ptr<const ufc::form>(new poisson_auxiliary_form_0());
  }

  // Constructor
  Form_auxiliary_1(boost::shared_ptr<const dolfin::FunctionSpace> V0):
    dolfin::Form(1, 0)
  {
    _function_spaces[0] = V0;

    _ufc_form = boost::shared_ptr<const ufc::form>(new poisson_auxiliary_form_0());
  }

  // Destructor
  ~Form_auxiliary_1()
  {}

  /// Return the number of the coefficient with this name
  virtual dolfin::uint coefficient_number(const std::string& name) const
  {
    dolfin::error("No coefficients.");
    return 0;
  }
  
  /// Return the name of the coefficient with this number
  virtual std::string coefficient_name(dolfin::uint i) const
  {
    dolfin::error("No coefficients.");
    return "unnamed";
  }

  // Typedefs
  typedef Form_auxiliary_1_FunctionSpace_auxiliary_0 TestSpace;

  // Coefficients
};

// Class typedefs
typedef Form_auxiliary_0 BilinearForm_auxiliary;
typedef Form_auxiliary_1 LinearForm_auxiliary;
typedef Form_auxiliary_0::TestSpace FunctionSpace_auxiliary;

} // namespace Poisson

#endif
# Copyright (C) 2008-2009 Mehdi Nikbakht and Garth N. Wells.
# Licensed under the GNU GPL Version 3.0 or any later version.
#
# The bilinear form a(v, u) and linear form L(v) for
# Poisson's equation with discontinuities.
#
# Compile this form with FFC: ffc-pum -l dolfin Poisson.ufl
#

elem_cont = FiniteElement("CG", triangle, 1)
elem_discont = ElementRestriction(elem_cont, dc) # or ec[dc]

element = elem_cont + elem_discont

(vc, vd) = TestFunctions(element)
(uc, ud) = TrialFunctions(element)

v = vc + vd
u = uc + ud


k  = Constant(triangle)      
f  = Coefficient(elem_cont)
w  = Coefficient(elem_cont)
g  = Coefficient(elem_cont)

a = w*dot(grad(v), grad(u))*dx + k*inner(vd, ud)*dc #+ (u*v)('-')*dS
L = v*f*dx - v*g*ds


Follow ups

References