yade-users team mailing list archive
-
yade-users team
-
Mailing list archive
-
Message #16610
[Question #663085]: Match Maker - Cohesive Triaxial
New question #663085 on Yade:
https://answers.launchpad.net/yade/+question/663085
Hi All,
I am trying to use match maker for cohesive triaxial code through below script to control normal and shear cohesion between spheres, which I am facing with an error as follow:
line 99, in <module>
label='cohesiveLaw')],
ValueError: Exactly 3 lists of functors must be given
Maybe I am doing something wrong to define normal and shear cohesion attributes - can you please advise me in this regards?
Thanks
Seti
######
#!/usr/bin/python
# -*- coding: utf-8 -*-
from __future__ import division
from yade import plot,pack,timing
import time, sys, os, copy
from yade import ymport, utils, pack, export
#from pylab import *
import math
import numpy as np
############################################
### DEFINING VARIABLES AND MATERIALS ###
############################################
# default parameters or from table
readParamsFromTable(noTableOk=True, # unknownOk=True,
targetPorosity=0.45, #the porosity we want for the packing
num_spheres=3000,# number of spheres
young=236e9,
poisson=.2,
density=2600,
frictionAngle=radians(30),
normalCohesion=3.e6,
shearCohesion=1.e6,
etaRoll=0.1,
compFricDegree=30, # contact friction during the confining phase
finalFricDegree=30, # contact friction during the deviatoric loading
key='_triax_base_', # put you simulation's name here
rate=-0.02, # loading rate (strain rate)
damp=0.7, # damping coefficient
stabilityThreshold=0.01, # we test unbalancedForce against this value in different loops (see below)
)
from yade.params import table
from yade.params.table import *
mn,mx=Vector3(0,0,0),Vector3(1,1,1) # corners of the initial packing
## create materials for spheres and plates
mat1=CohFrictMat(young=young,poisson=poisson,density=density,frictionAngle=frictionAngle,normalCohesion=normalCohesion,shearCohesion=shearCohesion,momentRotationLaw=True,etaRoll=etaRoll,label='cement')
mat_1=O.materials.append(mat1)
mat2=CohFrictMat(young=young,poisson=poisson,density=density,frictionAngle=frictionAngle,normalCohesion=3.e3,shearCohesion=1.e3,momentRotationLaw=True,etaRoll=etaRoll,label='glass_sphere')
mat_2=O.materials.append(mat2)
O.materials.append(FrictMat(young=2*young,poisson=.25,frictionAngle=0,density=0,label='frictionlessWalls'))
## create walls around the packing
walls=aabbWalls([mn,mx],thickness=0,material='frictionlessWalls')
wallIds=O.bodies.append(walls)
## use a SpherePack object to generate a random loose particles packing
sp=pack.SpherePack()
sp.makeCloud(mn,mx,-1,0,num_spheres,False, 0.95,seed=1) #"seed" make the "random" generation always the same
O.bodies.append([sphere(center,rad,material='cement') for center,rad in sp])
cement=[]
glass_sphere=[]
for b in O.bodies:
if not isinstance(b.shape,Sphere): # change material only on spheres
continue
if random.random() < 0.9:
b.mat = mat1
b.shape.color = (1,0,0)
b.state.mass*=mat1.density/mat1.density
cement.append(b.id)
else:
b.mat = mat2
b.shape.color = (0,1,1)
b.state.mass*=mat2.density/mat1.density
glass_sphere.append(b.id)
############################
### DEFINING ENGINES ###
############################
triax=TriaxialStressController(
maxMultiplier=1.+2.4e5/young, # spheres growing factor (fast growth)
finalMaxMultiplier=1.+2.4e4/young, # spheres growing factor (slow growth)
thickness = 0,
stressMask = 7,
internalCompaction=True, # If true the confining pressure is generated by growing particles
)
newton=NewtonIntegrator(damping=damp)
O.engines=[
ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Box_Aabb()]),
InteractionLoop(
#box-sphere interactions will be the simple normal-shear law, we use ScGeom for them
[Ig2_Sphere_Sphere_ScGeom6D(),Ig2_Box_Sphere_ScGeom()],
#Boxes will be frictional (FrictMat), so the sphere-box physics is FrictMat vs. CohFrictMat, the Ip type will be found via the inheritance tree (CohFrictMat is a FrictMat) and will result in FrictPhys interaction physics
#and will result in a FrictPhys
[Ip2_FrictMat_FrictMat_FrictPhys(), Ip2_CohFrictMat_CohFrictMat_CohFrictPhys(label="cohesiveIp")],
[Ip2_CohFrictMat_CohFrictMat_CohFrictPhys(normalCohesion=MatchMaker(matches=((mat_1,mat_1,3.e6),(mat_1,mat_2,3.e4),(mat_2,mat_2,3.e3))),shearCohesion=MatchMaker(matches=((mat_1,mat_1,1.e6), (mat_1,mat_2,1.e4),(mat_2,mat_2,1.e3))))],
#Finally, two different contact laws for sphere-box and sphere-sphere
[Law2_ScGeom_FrictPhys_CundallStrack(),Law2_ScGeom6D_CohFrictPhys_CohesionMoment(
useIncrementalForm=True, #useIncrementalForm is turned on as we want plasticity on the contact moments
always_use_moment_law=False, #if we want "rolling" friction even if the contact is not cohesive (or cohesion is broken), we will have to turn this true somewhere
label='cohesiveLaw')],
),
GlobalStiffnessTimeStepper(active=1,timeStepUpdateInterval=100,timestepSafetyCoefficient=0.8),
TriaxialStateRecorder(iterPeriod=1000,file='90%,,j'+key),
triax,
newton
]
triax.goal1=triax.goal2=triax.goal3=-100000
while 1:
O.run(1000, True)
##the global unbalanced force on dynamic bodies, thus excluding boundaries, which are not at equilibrium
unb=unbalancedForce()
print 'unbalanced force:',unb,' mean stress: ',triax.meanStress
if unb<stabilityThreshold and abs(-100000-triax.meanStress)/100000<0.001:
break
print 'timestep at confinedState:',O.iter
import sys #this is only for the flush() below
while triax.porosity>targetPorosity:
## we decrease friction value and apply it to all the bodies and contacts
compFricDegree = 0.95*compFricDegree
setContactFriction(radians(compFricDegree))
#print "\r Friction: ",compFricDegree," porosity:",triax.porosity,
sys.stdout.flush()
## while we run steps, triax will tend to grow particles as the packing
## keeps shrinking as a consequence of decreasing friction. Consequently
## porosity will decrease
O.run(1000,1)
print 'porosity:',triax.porosity
print 'timestep at compactedState:',O.iter
print "### Compacted state saved ###"
##############################
### DEVIATORIC LOADING ###
##############################
##We move to deviatoric loading, let us turn internal compaction off to keep particles sizes constant
triax.internalCompaction=False
## Change contact friction (remember that decreasing it would generate instantaneous instabilities)
setContactFriction(radians(finalFricDegree))
##set stress control on x and z, we will impose strain rate on y
triax.stressMask = 5
##now goal2 is the target strain rate
triax.goal2=rate
## we define the lateral stresses during the test, here the same 10kPa as for the initial confinement.
triax.goal1=-100000
triax.goal3=-100000
newton.damping=0.1
O.engines[2].lawDispatcher.functors[1].always_use_moment_law = True
#We assign cohesion to all contacts at the next iteration
O.engines[2].physDispatcher.functors[1].setCohesionNow = True
O.run(1000,True)
##Save temporary state in live memory. This state will be reloaded from the interface with the "reload" button.
O.saveTmp()
#####################################################
### Example of how to record and plot data ###
#####################################################
#from yade import plot
### a function saving variables
def history():
plot.addData(e11=-triax.strain[0], e22=-triax.strain[1], e33=-triax.strain[2],
ev=-triax.strain[0]-triax.strain[1]-triax.strain[2],
s11=-triax.stress(triax.wall_right_id)[0],
s22=-triax.stress(triax.wall_top_id)[1],
s33=-triax.stress(triax.wall_front_id)[2],
i=O.iter)
if 1:
## include a periodic engine calling that function in the simulation loop
O.engines=O.engines[0:5]+[PyRunner(iterPeriod=20,command='history()',label='recorder')]+O.engines[5:7]
##O.engines.insert(4,PyRunner(iterPeriod=20,command='history()',label='recorder'))
else:
## With the line above, we are recording some variables twice. We could in fact replace the previous
## TriaxialRecorder
## by our periodic engine. Uncomment the following line:
O.engines[4]=PyRunner(iterPeriod=20,command='history()',label='recorder')
O.run(100,True)
### declare what is to plot. "None" is for separating y and y2 axis
#plot.plots={'i':('e11','e22','e33',None,'s11','s22','s33')}
### the traditional triaxial curves would be more like this:
#plot.plots={'e22':('s11','s22','s33',None,'ev')}
plot.plots={'e22':('s11','s22')}
## display on the screen (doesn't work on VMware image it seems)
plot.plot()
##### PLAY THE SIMULATION HERE WITH "PLAY" BUTTON OR WITH THE COMMAND O.run(N) #####
## In that case we can still save the data to a text file at the the end of the simulation, with:
plot.saveDataTxt('400,alphaKr=0.6,normalCohesion=1e9,shearCohesion=.3e9,young=236e9,j'+key)
##or even generate a script for gnuplot. Open another terminal and type "gnuplot plotScriptKEY.gnuplot:
plot.saveGnuplot('400,alphaKr=0.6,normalCohesion=1e9,shearCohesion=.3e9,young=236e9,j'+key)
rr=yade.qt.Renderer()
rr.shape=True
rr.intrPhys=True
--
You received this question notification because your team yade-users is
an answer contact for Yade.