yade-users team mailing list archive
-
yade-users team
-
Mailing list archive
-
Message #21459
Re: [Question #686970]: run yade in parallel
Question #686970 on Yade changed:
https://answers.launchpad.net/yade/+question/686970
Status: Answered => Open
Mahdeyeh is still having a problem:
Than you Jan
I think so.
I ran the codes with : yade j-8 code.py , but it shows this error:
"ERROR /build/yade-
KKgSmd/yade-1.20.0/pkg/common/InsertionSortCollider.cpp:65
insertionSortParallel: Parallel insertion sort needs verletDist>0"
I think it because of my particles are polyhedra not sphere, yes? so is
this error is important? How I can solve it?
Here is my code:
from yade import export,polyhedra_utils
import os
from yade import plot
import math
from yade import utils
import pylab
import matplotlib; matplotlib.rc('axes',grid=True)
from matplotlib import pyplot
import numpy as np
from numpy import *
from yade import export as expt
# Input data:
RawVer=np.genfromtxt('ring.txt',names=True,dtype=None)
# ListVer is list of all the vertices of ring`s polygons
Ver=()
ListVer=[]
for b in RawVer:
if b[0]=='*LWPOLYLINE':
ListVer.append(Ver)
Ver=()
continue
Cordn=b[0]
Cordn=np.fromstring(Cordn, sep=',')
Cordn=tuple(Cordn.tolist())
Cordn1=Cordn+(0.1,) # add z vertex to coordinates
Cordn2=Cordn+(0.2,) # add z vertex to coordinates
if not Cordn1 in Ver:
Ver=Ver+(Cordn1,Cordn2)
ListVer.append(Ver)
RawVer1=np.genfromtxt('boundary.txt',names=True,dtype=None)
# ListVer1 is list of all the vertices of boundary`s polygons
Ver1=()
ListVer1=[]
for b in RawVer1:
if b[0]=='*LWPOLYLINE':
ListVer1.append(Ver1)
Ver1=()
continue
Cordn=b[0]
Cordn=np.fromstring(Cordn, sep=',')
Cordn=tuple(Cordn.tolist())
Cordn1=Cordn+(-2,) # add z vertex to coordinates
Cordn2=Cordn+(2,) # add z vertex to coordinates
if not Cordn1 in Ver1:
Ver1=Ver1+(Cordn1,Cordn2)
ListVer1.append(Ver1)
RawVer2=np.genfromtxt('waste.txt',names=True,dtype=None)
# ListVer2 is list of all the vertices of caved waste rock`s polygons
Ver2=()
ListVer2=[]
for b in RawVer2:
if b[0]=='*LWPOLYLINE':
ListVer2.append(Ver2)
Ver2=()
continue
Cordn=b[0]
Cordn=np.fromstring(Cordn, sep=',')
Cordn=tuple(Cordn.tolist())
Cordn1=Cordn+(0.1,) # add z vertex to coordinates
Cordn2=Cordn+(0.2,) # add z vertex to coordinates
if not Cordn1 in Ver2:
Ver2=Ver2+(Cordn1,Cordn2)
ListVer2.append(Ver2)
# Materials type:
Dolomite = PolyhedraMat()
Dolomite.density = 2870 #kg/m^3
Dolomite.young = 24.36e9 #Pa
Dolomite.poisson = 0.2
Dolomite.frictionAngle = radians(55.12) #rad
Shale = PolyhedraMat()
Shale.density = 2750 #kg/m^3
Shale.young = 6e9 #Pa
Shale.poisson = 0.23
Shale.frictionAngle = radians(42) #rad
for ii in ListVer:
O.bodies.append(polyhedra_utils.polyhedra(Dolomite,v=ii,fixed=False, color=(0.1,0.5,0.2), mask=3))
for iii in ListVer1:
O.bodies.append(polyhedra_utils.polyhedra(Dolomite,v=iii,fixed=True, color=(1,0,1), mask=4))
for iiii in ListVer2:
O.bodies.append(polyhedra_utils.polyhedra(Shale,v=iiii,fixed=False, color=(0.9,0.81,0.45), mask=5))
O.bodies.erase(340) # delete wall under ring: id: 340
# block z translation and block x, y, z rotations
for b in O.bodies:
if b.mask is 3:
b.state.blockedDOFs='zXY'
for b in O.bodies:
if b.mask is 5:
b.state.blockedDOFs='zXY'
# function for calming particles
def calm():
for c in O.bodies:
c.state.vel=Vector3(0,0,0)
c.state.angVel=Vector3(0,0,0)
# returns a value that can be useful for evaluating the stability of the packing. It is defined as (mean force on particles)/(mean contact force), so that it tends to 0 in a stable packing.
def checkUnbalanced():
print "iter %d , unbalanced forces %f"%(O.iter, utils.unbalancedForce()) # %[(keyname)][flags][width][.precision]typecode : String Formatting
iter00=O.iter
Unbalanced=open("Unbalanced iter Unbalanced forces.txt","a")
Unbalanced.write(repr(iter00)+' '+repr(utils.unbalancedForce())+' '+"\n")
Unbalanced.close()
# Engines:
#os.mkdir(O.tags['id']) # Created separate directory and put all files
of VTK in it, till external files be seperate because of large
simulation.
O.engines=[
ForceResetter(),
InsertionSortCollider([Bo1_Polyhedra_Aabb(),]), # We can set collider's verletDist to a fraction of the polyhedra minimum size, since it determines how much is each body enlarged to avoid collision detection at every step.
InteractionLoop(
[Ig2_Polyhedra_Polyhedra_PolyhedraGeom(),],
[Ip2_PolyhedraMat_PolyhedraMat_PolyhedraPhys()], # collision "physics"
[Law2_PolyhedraGeom_PolyhedraPhys_Volumetric()] # contact law -- apply forces
),
NewtonIntegrator(gravity=(0,-9.81,0),damping=0.2),
]
utils.calm()
# the model has to calm, because there are some overlaps in particles.
O.engines=O.engines+[PyRunner(iterPeriod=20,command='calm()',label="calmRunner")] # because we need to calm only on the first few steps in our model.
O.engines=O.engines+[PyRunner(command='checkUnbalanced()',iterPeriod=10000,label="checker")] # call our function defined above 1000 cycles
O.dt=10e-6
O.saveTmp('model1')
O.save('model1.bz2')
# first run of model
O.run(50000,True)
O.save('model2.bz2')
# Outputs:
clrOre=[0.1,0.5,0.2]
clrWaste=[0.9,0.81,0.45]
def positions():
for b in O.bodies:
if b.shape.color==clrOre:
time1=O.time
Positions=open("Positions time x y z.txt","a")
Positions.write(repr(time1)+' '+repr(b.state.pos[0])+' '+repr(b.state.pos[1])+' '+repr(b.state.pos[2])+' '"\n")
Positions.close()
def oreAmount():
clrOre=[0.1,0.5,0.2]
M_o=0
for b in O.bodies:
if b.shape.color==clrOre:
M_o+=b.state.mass
return M_o
os.mkdir(O.tags['id']) # Created separate directory and put all files of VTK in it, till external files be seperate because of large simulation.
O.engines=O.engines+[PyRunner(iterPeriod=20000,command='VTKview()',label="VTKview")] # every 20000 cycles we can see picture of model in Paraview
PolVtkData = expt.VTKExporter(O.tags['id']+'/'+'polData') # save animation and images of simulation in VTK format (paraview) in defined cycle
def VTKview():
PolVtkData.exportPolyhedra()
m_o = 0.00005 # mass of ore from the block
m_w = 0.00005 # mass of waste
R = 0 # R total ore utilization
D = 0
D_m = 0
E = 0 # E extraction
M_o = oreAmount() # M_o total ore mass
totalEMass = 1.25 * M_o # Convergence criteria for the models are set as 125% extraction of the ring mass.
def excavation():
m_o = 0.00005
m_w = 0.00005
for b in O.bodies:
if b.state.pos[0]>(-2.4) and b.state.pos[0]<1 and b.state.pos[1]>0 and b.state.pos[1]<1: # -2.4<x<1 because we don`t know about repose angle and distance for bucket yet
if b.shape.color==clrOre:
m_o += b.state.mass #total ore mass extracted
print 'ore'
if b.shape.color==clrWaste:
m_w += b.state.mass #total waste mass
print 'waste'
print 'm_o' , m_o , 'm_w' , m_w
iter1=O.iter
Mass=open("Mass iter massore masswaste.txt","a")
Mass.write(repr(iter1)+' '+repr(m_o)+' '+repr(m_w)+' '"\n")
Mass.close()
E = ( m_o + m_w) / M_o * 100 ##extraction definition
D = (m_w / (m_w + m_o)) * 100 ##ore dilution
D_m = (1- ( m_o / (m_w + m_o))) * 100 ##metal dilution
R = (m_o / M_o) * 100 ## Total ore recovery
print 'E' , E , 'D' , D , 'D_m' , D_m , 'R' , R
iter2=O.iter
DataAnalysis=open("DataAnalysis iter E D DM R.txt","a")
DataAnalysis.write(repr(iter2)+' '+repr(E)+' '+repr(D)+' '+repr(D_m)+ ' '+repr(R)+"\n")
DataAnalysis.close()
# Extra Engines:
O.engines=O.engines+[PyRunner(command='positions()',realPeriod=0.5,label="flow")]
# call our function defined above every 60 seconds
O.engines=O.engines+[PyRunner(iterPeriod=200,command='excavation()',label="excavate")]
# call our function defined above every 200 cycles
polyhedra_utils.SizeRatio() # save sizes of polyhedra into file
export.textPolyhedra('poly.txt') # Save polyhedra into a text file, id, number of vertices and number of surfaces, particleVelocity and ... .
--
You received this question notification because your team yade-users is
an answer contact for Yade.