yade-users team mailing list archive
-
yade-users team
-
Mailing list archive
-
Message #25851
[Question #697785]: RuntimeWarning: overflow encountered in double_scalars
New question #697785 on Yade:
https://answers.launchpad.net/yade/+question/697785
Hi,
I am running sphere compaction simulation, I am getting following error message:
1. RuntimeWarning: overflow encountered in double_scalars.
> I am getting this several times with different extra message such as: steps = self._extended_steps * scale, elif vmax - vmin <= maxabsvalue * tiny:
2. WARNING:matplotlib.text:posx and posy should be finite values
How should I solve this?
Best,
Mithu
Here is my code:
#!/usr/bin/env python
#encoding: ascii
# Testing of the Deformation Enginge with Luding Contact Law
# Modified Oedometric Test
# The reference paper [Haustein2017]
from __future__ import print_function
from yade import utils, plot, timing
from yade import pack
import pandas as pd
import numpy as np
from yade import pack, export
o = Omega()
# Physical parameters
fr = 0.54
rho = 1050
Diameter = 0.0006
D=Diameter
r1 = Diameter/2
#r2 = Diameter/2
k1 = 100000
kp = 12.0*k1
kc = k1 * 0.1
ks = k1 * 0.1
DeltaPMax = Diameter/3.0
Chi1 = 0.34
o.dt = 1.0e-7
particleMass = 4.0/3.0*math.pi*r1*r1*r1*rho
Vi1 = math.sqrt(k1/particleMass)*DeltaPMax*Chi1
PhiF1=0.999
#PhiF1 = DeltaPMax*(kp-k1)*(r1+r2)/(kp*2*r1*r2)
Tab_rad=0.005
Cyl_height=0.065
cross_area=math.pi*(Tab_rad**2)
Comp_press= 1.4e8
Comp_force=Comp_press*cross_area
compression_data_save=[]
#*************************************
# Add material
mat1 = O.materials.append(LudingMat(frictionAngle=fr, density=rho, k1=k1, kp=kp, ks=ks, kc=kc, PhiF=PhiF1, G0 = 0.0))
# Spheres for compression and walls
sp=pack.SpherePack()
sp.makeCloud((-4.5*Diameter,-4.5*Diameter,-50*Diameter),(4.5*Diameter,4.5*Diameter,40.0*Diameter), rMean=Diameter/2.0,rRelFuzz=0.18,num=4201)
sp.toSimulation(material=mat1)
walls=O.bodies.append(yade.geom.facetCylinder((0,0,0),radius=Tab_rad,height=Cyl_height,segmentsNumber=20,wallMask=6,material=mat1))
# Add engines
o.engines = [
ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb(aabbEnlargeFactor=1.05),
Bo1_Wall_Aabb(),
Bo1_Facet_Aabb()
]),
InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom(interactionDetectionFactor=1.05),
Ig2_Facet_Sphere_ScGeom(),
Ig2_Wall_Sphere_ScGeom()],
[Ip2_LudingMat_LudingMat_LudingPhys()],
[Law2_ScGeom_LudingPhys_Basic()]
),
NewtonIntegrator(damping=0.1, gravity=[0, 0, -9.81]),
PyRunner(command='checkForce()', realPeriod=1, label="fCheck"),
#DeformControl(label="DefControl")
]
def checkForce():
# at the very start, unbalanced force can be low as there is only few
# contacts, but it does not mean the packing is stable
if O.iter < 1200000:
return
# the rest will be run only if unbalanced is < .1 (stabilized packing)
timing.reset()
if unbalancedForce() > 0.2:
return
# add plate at upper box side
highSphere = 0.0
for b in O.bodies:
if highSphere < b.state.pos[2] and isinstance(b.shape, Sphere):
highSphere = b.state.pos[2]
else:
pass
O.bodies.append(wall(highSphere+0.5*Diameter, axis=2, sense=-1, material=mat1))
# without this line, the plate variable would only exist inside this
# function
global plate
plate = O.bodies[-1] # the last particles is the plate
# Wall objects are "fixed" by default, i.e. not subject to forces
# prescribing a velocity will therefore make it move at constant velocity
# (downwards)
plate.state.vel = (0, 0, -1)
# start plotting the data now, it was not interesting before
O.engines = O.engines + [VTKRecorder(fileName='vtk-',recorders=['all'],iterPeriod=5000),
PyRunner(command='storeData()', iterPeriod=4000),]
# next time, do not call this function anymore, but the next one
# (unloadPlate) instead
fCheck.command = 'unloadPlate()'
def unloadPlate():
# if the force on plate exceeds maximum load, start unloading
# if abs(O.forces.f(plate.id)[2]) > 5e-2:
if abs(O.forces.f(plate.id)[2]) > Comp_force:
plate.state.vel *= -1
# next time, do not call this function anymore, but the next one
# (stopUnloading) instead
fCheck.command = 'stopUnloading()'
def stopUnloading():
if abs(O.forces.f(plate.id)[2]) == 0:
# O.tags can be used to retrieve unique identifiers of the simulation
# if running in batch, subsequent simulation would overwrite each other's output files otherwise
# d (or description) is simulation description (composed of parameter values)
# while the id is composed of time and process number
# plot.saveDataTxt(O.tags['d.id'] + '.txt')
#plot.saveDataTxt('data'+ O.tags['id'] +'.txt')
#print(timing.stats())
O.pause()
compression_data=pd.DataFrame(compression_data_save, columns=['time(s)','compression_pressure(MPa)','iteration'])
compression_data.to_csv(r'compression_data_PH101_rp_0.0006.csv')
export.text('test.txt')
def storeData():
time=O.iter*o.dt
compression_pressure=(abs(O.forces.f(plate.id)[2])/cross_area)*1e-6
iteration=O.iter
data_to_save=[time,compression_pressure,iteration]
compression_data_save.append(data_to_save)
--
You received this question notification because your team yade-users is
an answer contact for Yade.